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INTRODUCTION

The purpose of this paper is to introduce to a general audience of scientists some
recent mathematical results and to show how they can be applied to the construction of
geometrical models for physical structures. Euclidean geometry works well to describe
the conformation of elements in a building. However, it is an inefficient tool for
modeling the placement of a quarter of a million pine needles on a pine tree. The basic
tools of Euclidean geometry are readily available; they are straightedge and compass,
and include some knowledge of how to write down equations for lines and circles in the
Cartesian plane. Here, in equally simple terms, we present a basic tool for working with
fractal geometry.

Possible applications of the technique include the construction of geometrical
models for features of plants; the spread of a virus on the surface of a human lung; the
blood system; tissue masses; dynamical processes, such as growth of plants or networks;
and functions on biological structures, such as temperatures on ferns.

Some precisions are in order: (1) By a fractal, we mean here any subset of R"
(typically » = 2, 3, and 4) that possesses features that are not simplified by
magnification (observation at successively higher visual resolution). In two dimen-
sions, a location on a set is simplified by magnification if it reveals a straight-line
segment or isolated point in the asymptotic limit of infinite magnification. This
definition is more general than the usual one that states that the HausdorfT-Besicovitch
dimension of the set exceeds its topological dimension. (2) A set, such as a Sierpinski
Triangle or Classical Cantor Set, which is made exactly of “little copies of itself,” is
likely to be a fractal; however, in the sense and spirit with which we use the word, it
would be a very special case. The fractal geometrical models that we describe here are,
in general, much more complicated. Features that are apparent at one location may not
be present at other locations nor be retrieved upon closer inspection. (3) We are
concerned with deterministic geometry. Thus, any model produced will always be the
same subset of R" irrespective of how many times it is regenerated. We are not
concerned with random fractal geometries. Interest in the latter resides in their
statistical properties; deterministic fractals may be used to model the exact structure of
a specific object over a range of scales. (4) All geometrical models for physical entities
are inevitably wrong at some high enough magnification. The architect’s drawing of a
straight line representing the edge of a roof breaks down as a model if it is examined
closely enough. On fine enough scales, the edge of the roof is wriggly, while the

(intended) drawing remains endlessly flat. Fractal geometry can provide a better
model for the edge of the roof: the model may appear as straight at one scale of
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observation and to have the right kind of wriggliness at another; however, in the end, it
too will be wrong because of the dual nature of matter.

ITERATED FUNCTION SYSTEMS: A WORKSHOP
FOR FRACTAL GEOMETRY

The terminology, Iterated Function System (IFS), was introduced by Barnsley and
Demko' to describe a convenient framework for understanding fractal geometry. This
name includes reference to the fact that an IFS has much in common with a dynamical
system. Basic work relating to this framework has been described by Hutchinson,?
Moran,’ Diaconis and Shashahani,* and Dubins and Freedman.® Mandelbrot® uses the
framework implicitly in special cases. Most results referred to here are instances of
more general recent theorems due to Demko, Elton, Geronimo, and others.™

Let K denote one of the spaces R" (n = 2, 3, or 4). Let W:K — K be a continuous
mapping. For example, with n = 2, we will usually be concerned with mappings of the

T e

The symbols a, b, c, d, e, and fare real constants that specify the transformation. Here,
(x, y) are the coordinates of a point before the transformation has been applied and
(ax + by + e, cx + dy + f) are the coordinates afterwards. Such a transformation is
said to be affine because it takes straight lines to straight lines. For example, W will
typically map a square to a parallelogram, as illustrated in FIGURE 1.

A continuous mapping W:K — K is said to be contractive if it always decreases the
distance between points. Let the distance between two points P and Q in K be denoted
|P — Q|. Then W is contractive with contractivity factor S (such that 0 < S < 1) if

|w(P) - W(Q)|=S|P-Q|

for all pairs of points P and Q in K. For example, the affine map described above will be
contractive if the numbers a, b, ¢, and d are sufficiently small. A suitable choice would
bea=0.7,b=0.1,c= —0.3,and d = 0.5.

The space K, together with a finite set of continuous contractive mappings W:K —
K,say W\, W,, ..., Wy, provides an example of an Iterated Function System (IFS).

Here is an example of an IFS with N = 2:
X 02 0.3\/x —0.1
() Cor aal)* (i )
y —-0.1 0.5/\y 18
x 0.1 0.5\/x —1.4
Wz - ( ) + ( B
¥ 0.7 0.1/\y 109

We will always associate a probability P, with a map W, such that P+ P+ ...+
Py = 1. In the last example, we might choose P, = 0.39 and P, = 0.51.
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The fundamental tool of fractal geometry that allows one to write down formulas
for fractal sets is the following beautiful result.

THEOREM ON EXISTENCE
Let {K, W, W,, ..., Wy} be an IFS where each mapping W is contractive with

contractivity factor § (such that 0 < S < 1). Then, there is exactly one (nonempty
closed bounded) set 4 in K so that

A= wa).
n=1

Here, we use the notation of W,(A4) to mean the image under W, of the set A: it is
the same as the union of the images of all points in 4 under W,. (A set in R" is bounded

Y 4

> X
FIGURE 1. An affine transformation will typically map a square into a parallelogram.

if it is contained in an n-dimensional sphere of finite radius. A set in R" is closed if it
contains all its boundary points.) We call 4 the attractor of the IFS.

An example of an attractor of an IFS is shown in FIGURE 2. It corresponds to six
affine maps and is specified by thirty numbers. We draw attention to the following
features: (1) The image as a whole is not self-similar—it is not the disjoint union of
uniformly shrunken copies of itself. (A magnifying-glass study of the picture will not
reveal exact copies of the original.) (2) The image does contain features that recur
under affine deformation. For instance, there are various different types of large holes
in the image, along with skewed smaller versions of these as well. (3) The image is a
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FIGURE 2. An attractor for six affine contraction maps in the plane.

fractal in the sense we defined—it contains features that are not simplified by
magnification. (4) The image represents enormous data compression. We treat the set
as data on a 1000 x 1000 grid. Uncompressed, a string of 10° zeros and ones is needed
to store or transmit the image. Compressed, using an affine IFS, it can be represented
exactly by using 30 four-digit numbers, which requires 30 - In 1000 = 300 bits, giving
a compression ratio of 3333:1.

We will describe two methods by which the attractor of an IFS may be computed.
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These are (1) random iteration and (2) set iteration. We use the notation x for a point
in K.

THEOREM ON COMPUTING THE ATTRACTOR OF AN IFS

Let {K, W, W, ..., Wyl be an IFS where each mapping W, is contractive with
contractivity factor S (such that 0 =S < 1). Algorithm no. 1: Let x & k. Choose
inductively for n = 0, 1, 2,..., x,,, € {W,(x,), Wi(x,),..., Wy(x,)], where
probability P,, > 0 is assigned to the choice W,, (x,). (For example, in the case of NV = 2,
one might choose P; = P, = 0.5 and use an unbiased coin toss to decide which map, W,
or W), is to be applied at each next step.) Then, with probability one, the limiting set of
points derived from the sequence {x,, x;, x,, . . .} will be the attractor A4 of the IFS.
Algorithm no. 2: Let 4, be any nonempty bounded subset of K. Define 4,, = W(A4,,_,)
for m = 1, 2, 3,.... Then the sequence of sets {4,, 4,, 4,,...} converges to the
attractor A of the IFS.

We describe how these algorithms work in computational practice. We choose the
following framework. Let N = 2 and S = 0.5. Suppose that both affine maps W, and
W, take the unit square with corners at (0, 0), (1, 0), (1, 1), (0, 1) into itself, as
illustrated in FIGURE 3. We consider the implementation of the algorithms on a
graphics screen of resolution 100 by 100 pixels. Let B denote the digitized version of A4
on this 100 by 100 grid. On applying algorithm no. 1 in this framework, we will find
that all the x’s after a certain number will lie on B. To find how many iterations H are
required, we use the formula

SH_R,

where R is the resolution. In the present case, § = 0.5, R = 0.01, and thus H < 7.
Hence, if we choose x= (0.3, 0.8) (which lies inside the unit square) and we skip the
first seven points, then all of the subsequent points {x;, Xg, Xy, ..., x_} will lie on B.
Moreover, if we simply plot {x;, X5, Xy, . . ., %0}, then it is very likely that every point
in B will have been plotted. If different choices are made for P, and P, (say, P, = 0.25
and P, = 0.75), then exactly the same set B will be obtained in the end; however, one
may have to plot many more points before the complete set is plotted, especially if one
of the P’s is very small. An incomplete rendition of the digitization B of an attractor A4
is shown in FIGURE 4.

We use the same setting as in the previous paragraph to illustrate the practical
implementation of algorithm no. 2. It is convenient (and permissible when S < 0.5) to
work directly with the graphics screen pixel elements in place of points in the plane. In
place of the sequence Ay, 4,, A, ..., we use a corresponding sequence of subsets By,
By, By, . . . of the 100 by 100 discretization grid. Then B, is any subset of elements of
the grid: for example, B, may be the whole grid or just a single element of it. We misuse
the notation B,,,; = W(B,,) to mean the result of calculating the images of all real
points corresponding to B,,, which then projects the result back into the discretization
grid. In our framework, we would find B; = B: moreover, B, = By = By —=....In
FIGURES 5-14, we show a sequence of sets computed using the set iteration algorithm
no. 2, starting from B, defined by the black square in the upper left corner of FIGURE 5.
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FIGURE 4. A superposition of four incomplete attractors computed using the random iteration
algorithm.
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unit square into itself.

computed using the random iteration

FIGURE 5. The following sequence was computed by Henry Strickland. It illustrates the set
iteration algorithm for finding the attractor of a collection of maps. The resolution is 1000 by
1000. The black square is B.
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FIGURE 6. The set B, resulting from application of four affine maps to the set B, in FIGURE 5.
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FIGURE 7. The set B,.

FIGURE 8. The set B,.
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FIGURE 9. The set B,.

FIGURE 10. The set B;.
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FIGURE 11. The set By,.

FIGURE 12. The set B,;.
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FIGURE 13. The set By.

FIGURE 14. The set By,.
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This time, there are four affine maps in the IFS. The attractor in this instance is a
geometrical model for a branch of a Black Spleenwort Fern.

So far, we have described a way of associating an often elaborate geometrical set
with a brief set of numbers that defines an IFS. This is no use as it stands. What one
wants is to be able to determine an IFS that represents a given structure. We may want
to make a three-dimensional model of the His-Purkinje branching system in the heart
in order to make simulations of the timing distribution of the arrivals of electrical
pulses at the tips of the structure. To give an idea of how this may be achieved, we
consider a simple analogous two-dimensional problem: find an IFS whose attractor
approximates the image sketched in FIGURE 18.

First, we need to understand the concept of the distance between two (closed

bounded) sets U and V in say R We use the Hausdorff distance H(U, V), which is
defined by

where

D(U, V) = MAX IMIN {|lu —v|: u € Uk v E V}L.

A
//-' Ao,
P A

W)
y \
- L—%
X

0 1

FIGURE 15. A target set L, its images under two affine maps, and the attractor 4. As the union

of the images moves closer to L, so the attractor moves closer to L. (See also FIGURES 16 and
17)
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FIGURE 16. See caption to FIGURE 15.

For example, let U denote the real interval 1 = x = 4 and let V denote the real interval
0=x=2 Then D(U, V) = 1, D(V, U) = 2, and the HausdorfT distance between the
two sets is 2, The important point is that two (closed bounded) sets are more and more
nearly the same set as the Hausdorff distance between them grows smaller and smaller.
In saying that they are nearly the same, we mean that they look alike at a fixed
resolution.

We can now present the fundamental modeling tool.

THEOREM ON FINDING THE MAPS (COLLAGE THEOREM)

Let {K, W,, Wy, ..., Wyl be an IFS where each mapping W), is contractive with
contractivity factor S (such that 0 = § < 1). Let L be a given (closed bounded) subset
of K. Suppose that the maps have been chosen so that the Hausdorfl distance between
L and the union of the images of L under all of the W,’s is smaller than E. Then, the
Hausdorff distance between L and the attractor A of the IFS will be smaller than
E/(1 — §). In other words, the closer L is to | y Wy(L), the closer A is to L.

We illustrate this theorem with the sketches in FIGURES 15-17. In FIGURE 15, the
target set L is the line segment [0, 1], whose images under two affine contractive maps
are line segments each of length 0.5; the Hausdorff distance between L and the union
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FIGURE 18. A simple branching structure for which one might wish to construct a geometrical generation. Standard University
model using an IFS of affine contractions.
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FIGURE 19. This shows how to choose affine maps so that their attractor will model the
structure in FIGURE 18.

of its images is about 0.5. The attractor is the squiggly entity and its Hausdorff
distance from L is about 1. In FIGURE 16, the images of the line segment are closer to L
and the attractor is proportionately closer as well. In FIGURE 17, the target L is
indistinguishable both from the union of its images and from the attractor of the
corresponding IFS.

Finally, we are able to see how to design an IFS of affine maps whose attractor
models the branching structure in FIGURE 18. Three affine maps are required: they are
determined by the requirement that they take the whole image to the three component
parts shown in FIGURE 19. Although we make errors in the calculation of the maps, and
although the image is not exactly the same as the union of the three images of it under
them, the Collage Theorem assures us that the attractor should be a reasonable model
for the original target.
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