YaK:: Hypercomplex Numbers : Quaternion, Octonion, Sedenian, and beyond [Changes]   [Calendar]   [Search]   [Index]   [PhotoTags]   
[mega_changes]
[photos]

Hypercomplex Numbers: Quaternion, Octonion, Sedenian, and beyond

http://math.ucr.edu/home/baez/octonions/node5.html

https://orion.math.iastate.edu/jdhsmith/math/JS26jan4.htm

http://oas.uz.zgora.pl:7777/bib/bibwww.pdf?nIdA=14291&nIdSesji=-1

http://english.stackexchange.com/questions/234607/what-comes-after-the-ducentiquinquagintasexions

Quaternions (4-ions)
Octonions (8-ions)
Sedenions (16-ions)
Tricenibinions / trigintabinions (32-ions)
Sexageniquaternions / sexagintaquaternions (64-ions)
Centeniduodetricenions / centumduodetricenions (128-ions)
Duceniquinquagenisenions / ducentiquinquagintasenions (256-ions)

Quingeniduodenions / quingentiduodenions (512-ions)
Miliaviceniquaternions / millevigintiquaternions (1024-ions)
Binamiliaduodequinquagenions / duomiliaduodequinquagenions (2048-ions)
Quaternamilianonagenisenions / quattuormilianonagintasenions (4096-ions)

https://ece.uwaterloo.ca/~dwharder/C++/CQOST/

Cayley-Dickson Construction First, we define the reals R where a ∈ R implies that a* = a. Given an algebra A of diminsion n, we create, using the Cayley-Dickson construction, an algebra of dimension 2n by taking pairs (a, b) ∈ A × A and thus define the standard operations:

1 = (1, 0)
−(a, b) = (−a, −b)
(a, b)* = (a*, −b)
(a, b) + (c, d) = (a + c, b + d)
(a, b)(c, d) = (ac − d*b, da + bc*)

In order to maintain a standard behaviour, a variation of the Cayley-Dickson construction shown in wikipedia is used for calculating products in higher dimensions. The justification is that it would be nice if the original quaternion identity ijk = -1 holds — the variation on wikipedia defines ijk = 1.

https://en.wikipedia.org/wiki/Octonion

https://upload.wikimedia.org/wikipedia/commons/2/2d/FanoPlane.svg

(unless otherwise marked) Copyright 2002-2014 YakPeople. All rights reserved.
(last modified 2016-01-22)       [Login]
(No back references.)