m"-

™

e
£)

S B
o
?:
;
5%
%
=

L)
LY
ot

i

-
Im

COCO III SECRETS REVEALED is a filled with useful information
and powerful secrets that will help you utilize the new features of
your Color Computer III. It will present several unique routines
and show you some powerful features that were not available with
the Color computer or Color Computer II.

COCO III SECRETS REVEALED does not require any knowledge of
machine language. It should be noted that this book was written to
explain the features of the new Coco III and since some of the new
features are of a technical nature, there will be sections of this
book that may not be fully understood by everyone.

Coco III Secrets Revealed »
Copyright 1886 Creative Northuwest Programming
wWritten by John Gabbard
Licensed to Spectrum Projects
All Rights Reserved

Reproduction or use, without express written permission from
Creative Northwest Programming, of any portion of this book 1is
prohibited. While reasonable efforts have been taken in the
preparation of this book to assure its accuracy, Creative Northuwest
Programming assumes no liability resulting from any errors or

ommissions in this book, or from the use of the information
contained herein.

Edition 2 - February 1887

TABLE OF CONTENTS

INTRODUCTION . ¢ e oot vveseonsecssonsonosaeossoenaneeessesPAGE 1

CHAPTER 1
LET'S'GET sTARTED-.--...-..----to--co--aucoococnoooo-pAGE 4

CHAPTER 2
NEw COmmANDS'....‘....0....'...........l.'...“......pABE7

CHAPTER 3
pLAYING WITH pALETTES.....‘........"'..'.....I.....IPAGE 12

CHAPTER 4
SMOOTH SCROLLING, PEEKS, POKES AND OTHER TIDBITS.....PAGE 19

CHAPTER S
COCO III MEMORY MAP...ceveannns ceesessassssnsassaass PAGE 29

CHAPTER 6
COCO III SUMMARY ceevevvovoscsaracncoasaansas ceeseessPAGE 37

INTRODUCTION

The Color Computer has been around for gquite a while in one
form or another. The first version was known as the "C" board.
Most people never heard of this version; there were only a feuw
hundred produced and it was quickly upgraded to what is normally
thought of as the first Color Computer, the "D" board.

This computer came with either 4 or 16K of memory, with
Standard or Extended basic. It wasn't long before 16K of memory
just wasn't enough, so someocne figured out a way to install up to
32K of memory. Radio Shack followed suit and came out with the "E"
board which was able to use 32K of memory without performing major
surgery on the computer. As games became more complex, more memory
was required so somebody discovered a way to increase the Coco's
memory to B64K. Radio Shack again followed suit and produced the
"F" board. In the years that followed the computer technology grew
tremendously and a cost reduced version of the Color Computer
appeared as the Color Computer II and Color Computer IIA.

During all of these changes, not once was anything done about
improving the graphics capabilities, Oh sure, aritfacting was
discovered, tricky use of the interrupts was used to manipulate the
screens in new ways, houwever these were not actual changes in the
computer, but instead the work of some extremely clever and
creative programmers.

It is again time for an upgrade, a few companies have already
come out with memory upgrades to 128K, 256K and even 512K. In the
spirit of keeping a tradition going, Radio Shack has again followed
suit, but this time they have gone a step further by addressing
some of the other limitations of the Color Computer.

The Color Computer III is Radio Shack's solution to these
limitations. +tisted below are some of the new and advanced
features:

1. Three display interfaces are included, Standard TV,
Composite monitor (monochrome or color) and Analog RGB.

2. Three character text modes are available, 32x16, 40x24
and B80x24.

3. True lower case is available in the 40 and 80 column
modes however, basic still does not understand lower
case commands.

4, Graphics resolution has increased to a maximum of
B40x225.

S. Up to 16 colors can be displayed at a time and can be
chosen from a palette of 64 different colors.

6. Memory starts at 128K and can be increased to S12K.

7. Smooth scrolling is available in both the horizontal
and vertical directions.

8. True double speed is now supported.

g. There are now two fire buttons per joystick.

10. The IRQ and FIRQ interrupts are each divided into six
seperate sources. Programmable timer, horizontal
border, vertical horder, serial data, keyboard data and
cartridge interrupts.

11. Along with all of these new features, the Coco III will
still run about 80% of the current Color Computer

software.

Almest anytime you add new features =2 something, you also
create new problems to go along with them. This is true in the
case of the Coco III also, listed below are a few of these. Most
of the problems are minor ones but deserve to be mentioned.

1. Since artifacting is primarily a product of your video
display, it is something that the computer cannot
really correct. In the higher graphics modes, some
detail in resolution is lost if you are using a TV or a
composite monitor. If you are using an analog RGB
monitor, the new graphics modes work very well however,
the old modes which rely on artifacting to produce
colors won't work since RGB monitors don't artifact.

2. In order to fit 40 and 80 column text on the screen,

the screen area has been widened. This is great so far
as the readability of the text is concerned, because

the 40 column characters are exactly the same size as
the 32 column characters, and the 80 column characters
are a little bit larger than the old software driven 51
character screens. A problem occurs because when the
screen was widened, it was also shifted slightly to the
left. This has the annoying effect on some TV and
Composite displays of shifting the first few characters
of f of the left side of the screen totaly out of view.
It may be possible to adjust this if your televison or
composite monitor has a horizontal hold control.

THIS DOES NDT APPEAR TD EFFECT THE RGB MONITORS.

3. Smooth scrolling in the horizontal direction requires
48K of memory to allow proper wrap around. Neither the
horizontal or vertical scrolling are supported by basic
commands, Peek and Poke must be used.

4. Basic has not been re-written. The new commands have
been patched into the old code. This point is both
good and bad. On the good side, most of the existing
software will work without modification, also since
Basic is now always in RAM, it is very easy to add
patches and modifications of your ocun. 0On the bad
side, any shart commings that Basic originmally hed will
still exist. For example, only 32K can be used for
basic programs, the PCOPY bug still exists and PCLEAR O
still is not allowed.

5. Because of the new interrupts, some multi-pak
interfaces will require a small modification.

NOTE: A good monitor to purchase which will eliminmate the
Composite/RGE problems is the Magnovox B50S5. It has a TTL (RGBI)
input for IBM computers, anm ANALOGC RGB input for the Coco III and a
COMPOSITE (Audio/Video) input which will allow artifacting games to
show up 1in color. I have found three places that sell these
monitors, TOYS R US for about $200.00 (without a cable), PRICE
SAVERS WHOLESALE WAREHOUSES for about $170.00 {(without a cable) and
SPECTRUM PROJECTS for about $200.00 (with a cable).

New Basic commands have been added to the existing commands by
Microware Systems Corp. These new commands allow access to some of
the Coco IIl's new features. Following is a brief list:

HSCREEN PALETTE HCLS HPOINT
HLINE HCOLGOR HPAINT HDRAW
HSTAT HBUFF HSET HRESET
HCIRCLE HGET HPUT HPRINT
BUTTON LOCATE ATTR WIDTH
LPEEK LPOKE ONERR ONBRK
ERLN ERNQO : '

These commands will be listed in a later chapter along with a
brief explaination of what each one does, Most of them are high
resolution counterparts of already existing commands with syntaxes
that are the same or similar. The rest of them deal with error and
break key control and commands for manipulating the new text
screens. The bulk of this book will concentrate on the new
hardware features of the Color Computer III. Short Basic programs
which use some of the new commands will be used to help further
your understanding of these features.

T
LET'S GET

In order to get started, there are a few things we need to
know about the way the Color Computer III does things. The Coco
111, @s we said earlier, is capable of using S12K of memory but the
CPU, a 6B8BOSBE, is an B8 bit microprocessor and can only directly
address 64K of memory at a time. Because of this a special method
known as MEMORY MANAGEMENT must be wused. Memory management is a
scheme uwhich maps a block of memory into the CPU's 354K workspace
when it is neegded, In some systems this process is autcmatic, but
in the Coco III this is not the case.

In the Color Computer III, the CPU's 684K bank or workspace is
a seperate entity than that of the memory. This 64K workspace 1is
divided into eight 8K slots by the Memory Management Jnit (MMU) and
each slot is controlled by an MMU register. The actual memory used
in these slots is determined by the values stored in the MMU
registers. Basic initializes these registers to the highest part
of the 512K memory space (even if you only have a 128K system).
This is actually the address range of $70000 to $7FFFF but the CPU
will see it as $0000 to S$FFFF.

The MMU registers are located in memory at $FFAQ-3FFAF, please
note that there are 15 registers but only B8 of them =zre needed to
gefine the CPU's B4K workspace. This is because there asre actually
two sets of MMU registers. By using both sets you can map the
CPU's B4K workspace two different ways and quickly toggle between
the two set ups by using the task register (TR). The TR is located
at bit 0 of the control register at $%FFB81,

The following table shows each MMU register address and the
specific block of CPU workspace that it controls:

TR MMy REGISTER 8K BLOCK

0 $FFAQ $0000-%1FFF
0 $FF A1 $2000-%3FFF
0 SFFA2 $4000-35FFF
0 3FFAZ $6000-%57FFF
0 $FFAL $8000-38FFF
0 $FFAS $A000-8BFFF
g $FFAB $CO00-3DFFF
0 $FFA7 $EQQO-SFFFF
1 $FFAB $0000-31FFF
1 $FFAS $2000-83FFF
1 $FFAA $4000-85FFF
1 $FFAB $6000-37FFF
1 $FFAC $8000-%8FFF
1 §FFAD $A000-%BFFF
1 $FFAE $CO00-3DFFF
1 $FFAF $EOQC-3FFFF

The Color Computer III's memory is also divided into BK
blocks. There are a total of 64 8K blocks of memory (0-%$3F) and
gach one is referenced by a number. The first 8K block is block O,
the second is block 1 and so on. If you only have a 128K system
then blocks 0-%F, $10-1F and $20-2F will be mirreors of blocks $30-
$3F, in other words if you only have 128K and you try to place

block 0, block $10 or block $20 into the CPU's memory space, block
$30 will appear to be there instead. So in a 512K system you have
memory blocks 0-$3F available for mapping into the CPU's workspace,
but in a 128K system you only have blocks $30-%3F available.

Moving a block of memory inte the CPU's workspace is done by
simply placing the number of the block that you want into the CPU
workspace slot of your choice. It is possible to put the same
block of memory into more than one CPU memory slot. It 1is
important to note that placing a new block of memory into one of
the CPU's workspace slots, does not effect the information of the
block that was in that slot previously. For example, if the CPU
workspace slot controlled by the MMU register at $FFAQ currently
contains a $38, and we replace it with block $39, the information
stored in block $38 does not get hurt or destroyed in any way, it
is simply moved out of the CPU's workspace and can be brought back
at any time by storing a $38 into one of the CPU's memory slots (it
could be the one at $FFAD, but it doesn't have to be). In a later
chapter we will manipulate the MMU registers to allow a 32K
graphics screen to be saved from basic.

PALETTE REGISTERS are another item that need a little
explanation. On the old Color Computer, colors were generated on
the graphics screen by placing the proper bit pattern on the screen
for the color you uwanted. The Color Computer III does this in
nearly the same way, a bit pattern is still placed on the screen,
but instead of this pattern defining the color, it points to a
palette register. The value that is stored in the palette register
is what actually defines the color. There are 16 palette registers
avallable but the number of active ones is determined by the
graphics color mode selected. In the 16 color modes all 16
registers are active, in the 4 color modes only 4 registers are
active and in the 2 color modes just 2 registers are active.
Regardless of the color mode, the active palette registers may be
sget to display any of the 64 different colors simply by storing the
code for that color into the proper register. It is possible to
store the same color into any or all of the active palette
registers. Following is a 1list of the 64 available colors and
their codes. Please note that the codes do not necessarily
generate the same colors on a composite monitor as they do on an
RGB monitor.

RGB CMP COLQCR AGB CmpP ZZLOR

01 Qa0 BLACK 22 23 MEDIUM RED

0z 12 DARK BLUE 33 08 MEDIUM RED/MAGENTA
g2 02 DARK GREEN 36 21 YELLOW/ORANGE

03 14 DARK CYAN 35 06 LIGHT RED

04 07 DARK RED 36 38 BRIGHT RED

05 08 DARK MAGENTA 37 24 LIGHT RED/MAGENTA
06 05 BROWN 38 38 ORANGE

07 15 DARK GREY 39 54 PALE RED/MAGENTA
08 28 MEDIUM BLUE 40 25 MEDIUM BLUE/MAGENTA
09 44 BRIGHT BLUE 41 42 BLUE/PURPLE

10 13 LIGHT BLUE/CYAN 42 26 LIGHT MAGENTA

11 28 LIGHT BLUE 43 58 PURPLE

12 11 INDIGO 44 24 LIGHT PURPLE

13 27 MED BLUE/PURPLE 45 41 BRIGHT MAGENTA

14 10 MEDIUM SKY BLUE 46 40 PALE BLUE/MAGENTA
15 43 MEDIUM PEACOCK 47 S6 PALE PURPLE

16 34 MEDIUM GREEN 48 20 MEDIUM YELLOW

17 17 MEDIUM GREEN/CYAN 48 04 LIGHT YELLOW

18 18 BRIGHT GREEN 50 35 LIGHT YELLOW/GREEN

18 33 BRIGHT GREEN/CYAN 31 51 PALE YELLOW/GREEN
20 Q3 MEDIUM YELLOW/GREEN 52 37 LIGHT YELLOW/ORANGE

21 01 LIGHT GREEN/CYAN 53 53 MEDIUM YELLOW
22 19 BRIGHT YELLOW/GREEN 5S4 36 BRIGHT YELLOW
23 S50 LIGHT GREEN S5 52 PALE YELLOW

24 30 MEDIUM CYAN 56 32 LIGHT GREY

25 45 PEACOCK 57 53 PALE BLUE

26 31 LIGHT GREEN/CYAN 58 48 PALE CYAN

27 4B BRIGHT CYAN S8 62 PALE BLUE/CYAN
28 15 LIGHT PEACOCK 80 55 PALE RED

28 B0 PALE PEACOCK 61 57 PALE MAGENTA
30 47 PALE GREEN/CYAN 62 53 VERY PALE YELLOW
31 61 LIGHT CYAN 63 48 WHITE

The following short program called RGBTOCMP is an example of
how the above palette infarmation can be used to make your programs
more useful on both RGB and Composite monitors. The data for
composite coclors are read into the array CP in RGB colcr order.
Line 30 selects palette register 8 and an RGB color of 1€ (medium
green)., The subroutine at line 900 will determine which type of
monitor is being used and set the selected palette register to the
proper value.

5 RGB=1 'Set to 0 if composite monitor used

10 DIM CP(B3) 'Set up array for composite values

20 FOR X=0 TO B3:READ CP(X):NEXTX 'Fill array

30 PL=B:CL=16 'Palette to change (PL) RGB value (CL)
40 GOSuUB 300 'Call conversion routine

50 GOTO 80

900 IF RCGB=1 THEN PALETTE PL,CL:RETURN

910 PALETTE PL,CP(CL) 'Use array value if Composite
820 RETURN

1000 DATA 0,12,2,14,7,9,5,16,28,44,13,29,11,27,10,43
1010 DATA 34,17,18,33,3,1,19,50,30,45,31,46,15,60,47,61
1020 DATA 23,8,21,6,39,24,38,54,25,42,26,58,24,41,40,56
1030 DATA 20,4,35,51,37,53,36,52,32,59,49,82,55,57,563,48

NEW COMMANDS

To help make wuse of the Color Computer III's enhanced
features, a set of new commands has been added. Basically the
commands deal in 3 areas, graphics, character display and
miscellanegus enhancements, Each new command, along with a brief
description of the function it performs, will be discussed in this
chapter. The commands will be broken into the three groups listed
above and presented in that order. It should be pointed out that
this list of commands was included simply for reference uwhile
examining the programs in this book and is not intended as a
programming aid. The manual which was included with your Coco III
was designed, and is better suited for this purpose.

GRAPHICS:

PALETTE R,C =~ Places the color code indicated by "C" into the
palette register indicated by "R"., The command PALETTE 15,83 would
place the color code for white into palette register 15. Instead of
"R" and "C", the words CMP or RGB may be used to set up system
defaults for composite (CMP) or RGB monitors.

HSCREEN M - Activates and displays the graphics mode selected by
mn, 0 = text mode, 1 = the 320x182 4 color mode, 2 = the 320x1382
16 color mode, 3 = the b640x192 2 color mode, 4 = the 640x1892 4
color mode.

HCLS R - Clears the graphics screen to the palette specified by
"Rn, The actual color of the screen will be determined by ¢the
color code stored in that palette register.

HCOLOR F,B - Sets the Foreground and Background defaults to the
palettes specified by "F" and "B". The palettes specified will be
used as defaults during certain graphics commands such as line and
circle if no palettes are specified.

HSET (X,Y,R) - Sets the point at horizontal coordinate X, vertical
coordinate Y to the palette specified by "R",. If "R" is omitted,
the foreground palette specified by the HCOLOR command will be
used.

HRESET (X,Y,R) - Sets the point at horizontal coordinate X,
vertical coordinate Y to the palette specified by "R", If "R" is
omitted, the background palette specified by the HCOLOR command
will be used.

HPOINT (X,Y) - Returns the palette value located at the horizontal
coordinate X and vertical coordinate Y. HPOINT is considered a
function because it returns a result to Basic rather than
performing an action. The proper syntax for this command is
A=HPOINT(X,Y) where "A" 4is the wvariable that will contain the
result and "X" and "Y" are the horizontal and vertical coordinates.

HLINE - Draws a line from X1,Y1 to X2,Y2. The syntax for this
command is the same as the LINE command of Extended Basic.

HDORAW - Allows you to draw a shape by givimg an imaginary grachics
cursor directicn and color instructions. The syntax for this
command is the same as the DRAW command of Ixtended Basic.

HCIRCLE - Allows a circle to be drawn on the screen. The syntax

for this command is the same as the CIRCLE command of Extended
Basic,

HPAINT - Allows an area on the screen to be filled with a palette.
The syntax for this command is the same as the PAINT command of
Extended Basic.

HPRINT (X,Y),"STRING" - Allows text messages to be displayed on the
graphics screen. X and Y are the horizontal and vertical
coordinates at which to start. "STRING" is the message to be
printed, up to 40 characters (80 for HSCREEN 4) may be displayed on
a line. The character color and the color of it's background is

determined by the foTreground and background colors set with the
HCOLOR command.

HBUFF N,AR - Reserves a memory buffer for HGET and HPUT where "A" is
the number of bytes to reserve and "N" is the buffer number. This

method 1s used instead of dimensioning an array "to reserve space
(Buffer is limited to BK).

HGET - Gets an area of screen memory and places it in the buffer
specified. The syntax for this command is the same as the GET
command of Extended Basic.

HPUT - Takes the screen memory that was saved by HGET and puts it
onto the screen at the coordinates specified. The syntax for this
command is the same as the PUT command of Extended Basic.

CHARACTER DISPLAY:

WIDTH W - Changes the character width of the display to the value
specified by "U"., Legal values are 32, 40 and B80.

LOCATE X,Y - This command is used instead of the PRINT® staterent
of Basic for the 40 and 80 column screens. The cursor will be
positioned at the horizontal and vertical coordinates specified by
"x" and "Y"'

HSTAT A%$,A,X,Y - Returns the X/Y position, the attributes and the
character located at the current cursor position,

ARTTR F,C,B,U - Sets the attributes of the character located at tne
current cursor position. Foreground color, Background color, Blink
and Underline options may be specified.

MISCELLANEDOUS ENHANCEMENTS:

BUTTON - Returns the status of the specified joystick button. The
command A=BUTTON(O) will return the status of button 0. O=Right
button 1, 1=Right button 2, 2=Left button 1, 3=Left button 2.

ONERR - Allows the user to trap system errors. The command ONERR
GOTO 100 would transfer program control to line 100 anytime a
system error occurs.,

ERNO - Contains the number of the system error that just occured.

ERLN - Contains the 1line number where the last system error
occured.

ONBRK - Allows the user to trap the break key. ONBRK GOTO 1000
would transfer control to line 1000 when the BREAK key is pressed.

LPEEK - Allows peek access into the entire 512K memory range.
LPOKE - Allows poke access into the entire 512K memory range.

Modifying old programs to work with the new graphics and text
features if the Color Computer III is NOT a very difficult job. In

the case of most graphics commands, it is just a matter of adding
an "H" in front of the old command. PARINT becomes HPAINT, DRAUW
becomes HDRAW, CIRCLE becomes HCIRCLE and so. on. In some cases
other changes must alsoc be made, for example PRINT® will not work
on the 40 or 80 column screens, LOCATE must be used instead,
another example would be when using HGET and HPUT, instead of
dimensioning an array to hold the graphics information, HBUFF must
now be used to reserve this space.

The following program, CC2TOCC3.BAS, will aid in converting
your cld programs. It won't do everything, but it will handle the
majority of the work and will flag out most of the problem areas by
preceeding the cemmand in question with two asterisks.
CC2TOCC3.BAS works with DISK ONLY, it reads in a normally saved
basic file and writes out a converted ASCII file. Notice that the
command LPEEK was included twice in the area for the new secondary
functions, this is not a mistake. Due to a bug in basic, the new
secondary functions skip token 168 and start with 1639, the first
LPEEK is simply a dummy to take this error intoc account.

10 CLS:CLEAR1500:DIM TK$(120),5F%(45):TK=120:5F=45
40 PA=0 'set to 1 if print@ to be left alone
S0 FORX=0TOTK:READTK$(X):NEXTX:FORX=0TOSF:READSF$(X) :NEXTX
70 LINEINPUT"ENTER FILENAMED";FLS
B0 IF FL$=""THEN END
80 IF LEN(FL$)<=4 AND LEFT$(FL$,3)="DIR" THEN
A=VAL(RIGHT$(FLS$,1)):DIR A:GOTO70
100 CLS:PRINT:PRINT"SCREEN, PRINTER OR DISK(S/P/D)?2"
110 AS=INKEY$:IF A$=""THEN110
120 IF NOT(A$="S" QR A$="P" OR A%="D") THEN110
130 IF A$="P" THEN DON=-2 ELSE IF A$="S" THEN ON=0 ELSE DN=2
140 FXS=LEFTS(FLS+" ",B)tEXT$="BAS"
150 IF A$="D" THEN LINEINPUT"OUTPUT FILENAME>";FO$:IF FOG=""
THEN FOS$="OUTFILE"
160 GOSUBSO0:IF FL=0 THEN PRINT:PRINTFL$"."EXTS$;
" NOT FOUND...":PRINT:GOTO70
170 OPEN"D",#1,FL$+".BAS",1
180 FIZLOD#1,1A5BYS
180 QP:ZN"Q", #DN,FO%+".BAS"

200U
210

220
230
240
250
260
270
280
280
300
310
320
330
340
350
360
370
380
380
400
410
420

430
435
440
4860
480
500
520
540
S60
570
580
610
630
640
650
670
680
685
686
6387
6588
6389
710
720
740
7860
770
780
8GO0
820
830

EN=LUF (T) =1

'set flag (FL) to zero if basic program is tokenized,
set to one if ascii

GET#1,1:A%=BY$:IF ASC(A$)=255 THEN FL=0 ELSE FL=1
ON FL GOTO 400

X=43:AD=1

IF AD=1 THEN GOSUB410:IF E£X THEN 380
GETH#1,X:A=ASC(BYS$):AS=CHRS(A)

IF A%=CHR$(0) THEN A$=CHR$(13):A=13:AD=1

IF A$=":;" THEN GOSUBSBSO

IFf A=255 THEN GOSUBBBO:G0T0370

IF A=128+7 THEN GOSUB1020

IF A=128B+59 THEN GOSUBS90

IF A=128+68 THEN GOSUB1040

IF A=128B+61 THEN GOSUB1080

IF A=128+62 THEN GOSUB1060

IF A>=128 THEN A=A-12B:PRINT#DN,TK$(A);:G0T0370
PRINTH#DN,AS;

X=X+1:IF INKEYS$<O"Q" THEN GOTO2S80

CLOSE

PRINT:GOTO70

PRINT"FILE NOT TOKENIZED":G0TO380

IF X=EN THEN EX=1:G0T0430 ELSE EX=0
X=X+2:GET#1,X:A$=BY$:A=ASE(A$):X=X+1:GET#1,X:A$
B=ASC(AS$):A=A*256+B:A%=MIDS(STRE(A),2,LEN(STRS(
tPRINTH#DN,AS; " ";:eX=X+1:AD=0

RETURN

'Start of Basic's commands

DATA FOR,GO,REM,REM,ELSE,IF,DATA,PRINT, DN INPUT
DATA END, NEXT DIm READ RUN, RESTDRE RETURN,STOP
DATA PDKE.CDNT,LIST,CLEAR.NEW.CLDAD,CSAUE

DATA QOPEN,CLOSE,LLIST,SET,RESET,CLS,MOTOR,SOUND
DATA AUDIO,EXEC,SKIPF,TAB(,TO0,SUB,THEN,NOT

DATA STEP,OFF,+,-,%*,/,%2,AND,OR,>,=,<

fStart of Extended Basic's commands

DATA DEL,EDIT,TRON,TROFF,DEF,LET,LINE,HCLS,SET
OATA RESET,**HSCREEN,*®*PCLEAR,HCOLOR,HCIRCLE ,HPAINT,GET
DATA HPUT,HDRAW,**PCOPY,**PMODE,PLAY,DLOAD,RENUM,FN
DATA USING

'Start of Disk Basic's commands

DATA DIR,DRIVE,FIELD,FILES,KILL,LOAD,LSET,MERGE

DATA RENAME,RSET,SAVE,WRITE,VERIFY,UNLOAD,DSKINI

DATA BACKUP,COPY,DSKI$,DSK0%,D0S

'CoCo III's commands start here

DATA WIDTH,PALETTE,HSCREEN,LPOKE,HCLS,HCOLOR

DATA HPARINT,HCIRCLE,HLINE,HGET,HPUT,HBUFF ,HPRINT

DATA ERR,BRK,LOCATE,HSTAT,HSET,HRESET ,HDRAW

DATA CMP,RGB,ATTR

'Start of Basic's secondary functions

DATA SGN,INT,ABS,USR,RND,SIN,PEEK,LEN,STR%,VAL,ASC

DATA CHR$,EQF,JOYSTK,LEFTS,RIGHTS,MIDS,POINT

DATA INKEY$,MEM

'Start of Extend Basic's secondary functions

DATA ATN,COS,TAN,EXP,FIX,L0G,P0S,SQR,HEX$,VARPTR

DATA INSTR,TIMER,HPOINT,STRINGS

'Start of Disk Basic's secondary functions

DATA CUN,FREE,LDOC,LOF,MKN%,AS

=BY$:
R)))

10

835 'Colo III's secondary functions

836 DATA LPEEK,LPEEK,BUTTON,HPOINT,ERNO,ERLIN
B4 'tnd of tokens

BS0 GETH1,X+1:T=ASC(BY$):T$=CHRS(T)

860 IF T=&HB3 OR T=&HB4 THEN X=X+1:A$=T3:A=T
870 RETURN

880 X=X+1:GETH1,X:A=ASC(BYS$):A%= CHRS(A)

890 A=A-128: PRINT#DN SF$(A); :RETURN

900 FL=0:FORS=3 TO 17:DSKI$0,17,5,A%,8%

910 FORM=1TOLEN(A$)STEP32

920 IF MID$(A$,M,11)=FX$+EXTS THEN FL=1

930 NEXTM

940 FORM=1TOLEN(BS$)STEP32

950 IF MID$(BS$,M,11)=FXS+EXTS THEN FL=1

g60 NEXTM

970 IF FL=1 THEN S=17

980 NEXTS:RETURN

980 GET#1,X+1:T=ASC(BY$)

1000 IF T<>128+3 THEN PRINTHDN,"H";

1010 RETURN

1020 IF PA=0 THEN GETH#1,X+1:IF BY$="@"THEN PRINTHDN,"#®xn,
1030 RETURN

1040 GETH#1,X+1:IF BYS<O"E" THEN PRINTHDN,"H";
1050 RETURN

1060 GETH#1,X+1:IF BY$="("THEN PRINTHON,"H"; ELSE PRINTHON,"P";
1070 RETURN

11

CHAPTER 3
PLAYING WITH PALETTES

One of the nicest new features of the Color Computer III is
the ability to display your choice of B4 different colors, 15 at a
time on a high resolution screen.

On the Color Computer and Color Computer II, each pixel
(picture element) was defined by two bits (1/4 of a byte). If we
use two bits to count in binary, the most different combinations ye
can attain is ¢4 (00, 01, 10, 11). These bit pairs were hard wired
to a specific color and the only time that a color could change uwas
if they all changed by switching color modes.

In the Coco III 4 color mode, the description would be the
same except that the colors are not hard wired anymore. Instead of
the bit pairs defining a color, they point to a byte in the I/0
space called a palette register. Each palette register may be
programed individually with one of 64 different color codes. In
the 2 color mode, two palette registers are used, in the 4 color
mode, 4 of the palette registers are used and in the 168 color mode,
all 16 of the palette rsgisters are used. (The 2 color mode uses
one bit per pixel, the four color mode uses 2 bits per pixel and
the 16 color mode uses 4 bits per pixel).

The palette registers are located in memory from $FFB0 to
$FFBF and may be set by either POKEing new values or by using
Basic's PALETTE command. The only way to read what is stored in a
palette register is to use the PEEK command and AND the result with
63. PEEK($FFB1) AND 63 wuwould read the value stored in palette
register 1.

Any palette register may contain any color at anytime. If
desired, all palette registers may be set to the same thing.
Changing a palette register to a new color will cause all pixels
pointing to that paletts to instantly change to that color. The
following Basic program called CIRCLES will draw 4 circles on the
screen in different palettes and set them all to the same color.
It will then wait for the keys "™1", "2", "3" or "4" to be pressed,
each key will turn on a different circle when pressed and turn it
of f when released. Noticze in line 110 that the last statement is
cmp., This is the same as the command PALETTE CMP, Also take a
peek at linmes 2 and 3 for some useful POKES.

1 ONBRK GOTQO110

2 'Set computer to doublz speed, disable HCLS during H3SCREEN
3 POKE&HFFDY,0:POKE&AHEBCS,18:POKE&AHESBC?7,18

10 HSCREEN 2:HCLSB:DIM QOP(4)

15 'Draw the circles

20 FOR X=1 TO 4:HCIRCLE(Xx*40+50,182/2),15,X%

23 HPAINT(X*40+60,182/2),X,X:NEXTX

25 'Get current values for palette registers 1-4
30 FOR X=1 TO 4:0P(X)=PIZ<X(&HFFBO+X)AND B3:NEXTX
35 'Set palettes 1-4 to black

40 FOR X= 1 TO 4:PALETTZ X,0:NEXTX

41 'Set colors for Hprin: and print message

42 HCOLOR 11,0:HPRINT (%1,1),"PRESS 1, 2, 3 OR 4"

l()-

12

45 'wait for keys and respond accordingly

50 A$=INKEYS

51 'Cause keys to repeat and do counter for message blink

52 FORPJ=0TO7:POKE&H152+PT,255:NEXTPI:LL=LL+1:IF LL<4 THENGO
S3 'Blink characters by changing the palette value

54 LL=0:MB=1-MB:IF MB THEN PALETTE11,0 ELSE PALETTE 11,63

58 'Act on keyboard response

60 IF A%$="1" THEN PALETTE 1,0P(1
70 IF A$="2" THEN PALETTE 2,0P(2
80 IF A$="3" THEN PALETTE 3,0P(3
80 IF A$="4" THEN PALETTE 4,0P(4
100 IF A$<O>O"Q" THEN SO

108 'Go back to single speed and restore palette defaults
110 POKE&HFFD8,0:CMP

) ELSE PALETTE
) ELSE PALETTE
) ELSE PALETTE
) ELSE PALETTE

’
’
14
’

BN -
o000

The next example is a little more elaborate and involves a
fairly long program. It will build a large ball onto the graphics
screen and make it appear to rotate by simply changing the palette
registers through a series of colors. To save space, and typing
time, the DATA statements from lines 310 to 720 only cantain the
top left corner of the ball, the program will take this data and
mirror it into a complete ball. The DATA statements from lines 240
to 290 contain the ball pattern information and may be changed to
create different patterns on the ball. Notice that the last value
of each line is an "F", this determines the palette used for the
background area of the ball and should not change. Each of these
values is the number of the palette register to use for that area
of the ball.

1 POKE&HFFDS,0 'Double speed

10 PCLEAR1:CLS:PRINT" DEMO BALL GENERATOR "

20 CLEAR10000:DIM RW$(6,25),R%(42),CL(11,11)

21 ONBRK GOTO 1030

30 FORX=1TO6:FORY=1T025:READ RW$(X,Y):NEXTY,X

40 READ A%$:IF ASCO"ENDT"™ THEN PRINT "DATA ERROR!"™:END

50 M=1:FORX=1TO42:READ A$(X)

60 A$="":FORIM=LEN(AS(X))TO 1 STEP-1:A%$=A$+MIDS(AS(X),IM,1)
65 NEXTIM:GOSUB730:A$(X)=AS(X)+BS+"YY"

70 PRINT@32%4,"READING ROW"X:NEXTX

75 HSCREEN2:HCLS 15

80 BW=88:BD=84:S5A=%HB0000:H0=128/2-(BW/2):v0=182/2-(BD/2)
890 FORL=1TD42:G0SUB180:NEXTL

100 FORL=42T01STEP-1:G05UB180:NEXTL:G0T0230

170 '*''"!'' suybroutine ''*'*!

180 SC=INT((M=1)/14)+1:M=M+1

190 B3="":FORX=1TOLEN(AS(L))

182 B$=B$+RW$(SC,ASC(MIDS(AS(L),X,1))=ASC("A")+1)

194 NEXTX:FORX=1TOLEN(B$)STEP2

196 LPOKE SA+{VO®*160)+HO+INT(X/2),VAL("&H"+MID$(BS,X,2))
188 NEXTX:V0=V0O+1

200 RETURN

210 '''" end of subroutine ''!

230 GOTO 1000

13

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
480
500
510
520
530
540
550
560
570
580
580
600
610
620
630
640
650
660
670
680
680
700
710
720
730
735
740
988

CATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DARTA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

U”’2'3"""5’5’795’99;\y813y7 12:3939:-7’51798:9
3,4,5,6,7,3,3,A,8,0,1,2,3,4,5,5,7,8,3,AR,8,0
5,7,8,9,A4,8,0,1,2,3,4,5,5,7,8,3,A,8,0,1,2,3
8,A,8,0,1,2,3,4,5,6,7,8,9,A,8,0,1,2,3,4,5,6
0,1,2,3,4,5,6,7,8,9,A,8,0,1,2,3,4,5,5,7,8,89
2&3{5'517t8t91A98'0a1,2'3v475v5v7s8’9,As5v0

Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYYYYYYYYYYYYYYYYYYEEFGHIL
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYCDDEEFFGHIJK
YYYYYYYYYYYYYYYYYYYYYYYYYYYBBCCODEEFFGHHITIL
YYYYYYYYYYYYYYYYYYYYYYYYYBBBCCDDEEFFGGHIIKL
YYYYYYYYYYYYYYYYYYYYYYYABBCCCODEEFFGGHHIIKL
YYYYYYYYYYYYYYYYYYYYYAABBCCCODEEFFGGHHIIIKL
YYYYYYYYYYYYYYYYYYYAABBBCCCODDEEFFGGHHIIJIKKL
YYYYYYYYYYYYYYYYYYAABBBCCCODEEFFGGGHHIIJKKL
YYYYYYYYYYYYYYYYAAABBBCCCDDEEFFFGGHHIIJIKLL
YYYYYYYYYYYYYYYAAABBBCCCODEEFFFGGHHIIIJKKLL
YYYYYYYYYYYYYYAAABBBCCCDDEEEFFGGGHHIITIKKLL
YYYYYYYYYYYYYARABBBCCCDDDEEFFGGGHHHITIJIKKLL
YYYYYYYYYYYYAARABBBCCCODDDEEFFFGGGHHIITIIIKKLL
YYYYYYYYYYYAAABBBBCCCODEEEFFGGGHHHIIITIIKKLL
YYYYYYYYYYAAABBBBCCCDDEEEFFGGGGHHITIITIIKKLL
YYYYYYYYYAAAABBBCCCODDEEEFFGGGHHHIIIJIKKKLL
YYYYYYYYARAABBBCCCODDEEEFFFGGGHHITIIIJIKKKLL
YYYYYYYYARAAABBBCCCDODEEEFFGGOHHHITIIJIIIKKLLL
YYYYYYYARAABBBCCCDDDEEEFFFGGGHHHIIITIIKKLLL
YYYYYYYAAABBBBCCCODDEEEFFFGGGHHHITIIJIIKKLLL
YYYYYYAAAABBBCCCODDEEEFFFGGGHHHIITIIIIKKKLLL
YYYYYARAARBBBCCCCODDEEEFFFGGGHHHITITIIIKKKLLL
YYYYYAAABBBBCCCDDDEEEFFFGGGHHHHIIIJIIKKKLLL
YYYYAARAAABBBCCCCODDEEEFFFGGGHHAHHITIIIIIKKKLLL
YYYYAARABBBCCCDDDEEEEFFGGGOHHHITIITIIIIKKKLLL
YYYARAAABBBCCCCDODEEEFFFGGGGHHHITIIIJIIIKKKLLL
YYYAAAABBBCCCDDDEEEEFFFGGGHHHHIIIJIIKKKKLLL
YYYARAABBBCCCCDDDEEEEFFGGGGHHHHIIIJIIKKKKLLL
YYRARAABBBCCCDDODEEEFFFGGGGHHHIIIIIIIKKKKLLL
YYAAABBBBCCCDDDEEEEFFFGGGGHHHIIITIIIKKKKLLL
YYAAARBBBCCCCODDEEEEFFFGGOHAHHIIIIJIIKKKKLLL
YAARAABBBCCCDODDEEEFFFFGGGHHHHIIIIJIIKKKKLLL
YARRAABBBCCCDDDEEEEFFFGGGGHHHHIIITJIIJIKKKKLLL
YARABBBCCCCDODEEEEFFFGGGOHHHHIIIIIJIKKKKLLL
YAAARBBBCCCCDODEEEEFFFGGGOHHHHITITIIJIIKKKKKLLL
AAAARBBBCCCODDDEEEEFFFGOGGHHHITITIIIIKKKKLLLL
ARARABBBCCCOODDEEEFFFFGGGHHHRITIIJIIIKKKKLLLL
AAAABBBCCCODDDEEEFFFFGGGOHHHITIIJIIIKKKKLLLL
ARABBBBCCCDDDEEEEFFFFGGGOHHHITIITIIIKKKKLLLL
ARAABBBCCCCODDEEEEFFFFGGGOHAHITIITJIJIKKKKLLLL
RAABBBCCCCDDDEEEEFFFFGGGOHHHIIIIIIIKKKKLLLL
AARBBBCCCCDDODEEEEFFFFGOGGHHHITIITIIIIKKKKLLLL

B3="":FORC=1TOLEN(AS):A=ASC(MIDFS(AS,C,y1))=1
I A=ASC("Y")-1THEN A=A+1:G0T0740 ELSE A=88-(A-B4)
B3=B$+CHRS(A):NEXTC:RETURN

' NOW THAT THE BALL IS BUILD, MAKE IT SPIN
1000 FOR P=0 TO 11:FOR C=0 TO 11:RELD CL(P,C):NEXT C,P

- w % e e e

R

. w w w e

ND O W

- w % w e -

-1

MMM T

1010 FOR P=0 TO 11:FOR C=0 TO 11:POKE&HFFBO+C,CL(P,C)
1020 NEXT C,P:IF INKEY$<>CHR$(13) THEN 1010
1030 POKE&HFFD8,0:CMP:END

1050 DATA 9,9,9,26,26,26,16,16,16,63,63,63
1060 DATA 63,9,9,8,26,26,26,16,16,16,63,63
1070 DATA 63,63,9,9,9,26,26,26,16,16,16,63
1080 DATA 63,563,63,9,9,9,26,26,26,16,16,16
1080 DATA 16,63,63,53,9,9,9,26,26,26,16,16
2000 DATA 16,16,63,63,53,9,9,9,26,26,26,18
2010 DATA 16,16,16,53,53,63,9,9,9,26,26,26
2020 DATA 26,16,16,16,63,63,63,9,8,9,26,26
2030 DATA 26,26,16,16,16,63,63,63,9,9,9,26
2040 DATA 26,26,26,16,16,16,63,63,63,9,9,3
2050 DATA 8,26,26,26,16,16,16,63,63,63,9,9
2060 DATA 9,9,26,256,26,16,16,16,63,63,63,9

All color displayed on the screen is controlled by the palette
registers, this is true even for the text modes. In the Color
Computer compatible mode's 32X16 screen format, the background
screen color is controlled by palette 13 and the color of the text
is controlled by palette 12. This is the only Coco III text screen
where these registers are forced. In the 40 or 80 column screens
the ATTR command may be wused to point the text and individual
character backgrounds to different palettes. 1In fact the 40 and 80
column screens are set up entirely different, instead of one byte
per text character, the 40 and B0 column screens use two., All even
numbered bytes contain the value of the character to display, and
the odd bytes contain the attributes for that character. The
attribute bit definitions are defined in chapter 5.

The 40 and 80 column screens are located in memory at address
$6C000 and 1is only moved into the CPU's 64K workspace when a
character needs to be printed. This nice because it means that the
high resolution text screens do not use any of Basic's program
space. The following routine will LPOKE all of the available
characters onto the text screen.

10 WIDTH 40:LOCATED,10

20 AT=16

30 FOR X=0 TO 510 STEP 2

40 LPOKE &HBCOOO+X,INT(X/2):LPOKE &HBCOOO0+X+1,AT
S0 NEXTX

The second portion of -line 40 pokes in the attribute byte for
the character preceding it, you can easily play around with this by
changing the value of AT which is set in line 20.

It should be noted that the blink rate of a character that has
the blink attribute bit set is controlled by the programmable timer
interrupt ($FFS4 and $FFG85). If both of these bytes are zero'd,
the characters will not blink.

The following program called "CC3WORD" will give you an
example of how the 40 and 80 column text mode commands may be used
to create some very powerful programs with almost no effort.
"CCIWORD" is a simple single screen word processor, it allows you
fill the screen with text, save it and print it (Press BREAK to get

18

Page 16
Missing

360 IF DS THEN POKE&HFFDS,O0

370 ONBRK GOTO300:G0OTO300

380 'Print options and wait for key

390 ONBRK GOTOD400

400 TY=0:FORTX=0TOWD-1:LOCATETX,TY
tHSTAT WNS,WUN(TX),MO,M7:WNS(TX)=WUNS :NEXTTX

410 LOCATEQ,O:ATTRO,4,B:PRINTSTRINGS(WD-1," ");
+LOCATE (wD-39)/2,0
:PRINT"BREAK=EXIT P=PRINT I=I/0 C=CONTINUE";

420 ONBRK GOTO04S0

430 A$=INKEY$:IF A$=""THEN43IO ELSE RETURN

440 'Restore text under message window and end

450 GOSUB4E0:LOCATED,22:G0SUBB10:POKE&AHFFDB,0:END

460 LOCATED,O0:ATTRO,0:FORTX=0TO(WD*2)-1STEP?2
:LPOKE SS+TX,ASC(WNS(INT(TX/2))):LPOKE SS+TX+1,0
¢tNEXT:LOCATEQ,O0:RETURN

470 'Save or Load text

480 ONBRK GOTOB10:FX=LPEEK(SS+(wD*2)):G0SUB700
:LOCATE (wWD-17)/2,0:PRINT"SAVE OR LOAD TEXT";

480 A3=INKEYS

S00 IF NOT(A$="S" OR A$="L") THEN&4SO

510 GOSUB700:LOCATE 4,0:PRINT"FILENAME TO ";:IF A$="S" THEN
PRINT "SAVE>";:ELSE PRINT"LOADD>";

520 LINEINPUT FL$:LOCATED,O:LPOKE SS+(wp®*2),FX
:LPOKE SS+(wD*2)+1,0:FL$=LEFTS$(FLE+" ", 8)

530 GOSUB4B0:IF FL$=STRING$(B," ")THENSBO

540 IF DS THEN POKE&HFFDS,O0

550 IF A$="S" THEN GOSUBS3Q

860 IF A%="L" THEN GOSUBGOO

570 IF DS THEN POKE&HFFDS,O0

580 POKE&H11A,CA:G0TO300

590 POKE&HFFA3,&H36:SV=wD*2%24

582 SAVEM FL$,&H6000,&H6000+SV,&HE000:RETURN

600 POKE&HFFA3,&H36:L0OADM FL$:RETURN

610 LOCATEO,O:LPOKE SS+(WD*2),FX

612 LPOKE SS+{(wWD*2)+1,0:G0SUB4680:G0T0300

620 'Process errors here

630 ER=ERNO:LN=ERLIN:OPEN"QO",0,""

640 IF DS THEN POKE&HFFDS,O0

6§50 IF ER=26 THEN EM$="FILE NOT FOUND, PRESS ANY KEY"
¢EL=LEN(EM$) ELSE EM$="ERROR ENCOUNTERED, PRESS ANY KEY"
tEL=LEN(EMS)

660 GOSUB700:LO0CATE (WD-EL)/2,0:PRINTEMS;

670 M$=INKEYS:IF M$=""THENG70O

680 GOSUB4B0:G0TO300

680 'Print white message windouw

700 LOCATEC,D:ATTRO,4:PRINTSTRINGS(WD=-1," ");:RETURN

800 FORX=1TO7:READA(X):POKEA(X),4:NEXTX:RETURN

810 FORX=1TO7:POKEA(X),&H40:NEXTX:RETURN

800 DATA &HF787,&HF7A3,&HF7EC,&HFB0F,&HFB4F ,&4HF318,&HFBIC

Saogme new enhancments are also available for the 32X18 screen,

these include true lower case, border color change and an invert
screen color mode. Basic was not re-written to allou these

17

features to work, but since it now always resides in RAM, a simple
POKE may be used to correct this problem.

POKE &HSSCS,&HT7F

This will prevent the console out vector from reseting the
values at $FF22. To enable true lower case, POKE &HFF22,&H10, To
enable the inverted screen mode, POKE &HFF22,&H2D0 and to enable the
border color invert, POKE &HFF22,&H40. To get a combination of
these features, add the values of the features desired together and
POKE address $FF22 with the result.

18

CHAPTER 4
SMOOTH SCROLLING, PEEKS AND POKES, AND OTHER TIDBITS

The most interesting new feature of the Color Computer III is
its ability to smooth scroll in both the vertical and horizontal
directions. Scrolling is not supported by Basic except through the
use of the POKE command.

Vertical scrolling is controlled by three registers of the
GIME (Graphics Interrupt Memory Enhancer) chip, $FFSD, $FFSD AND
$FFOE. These registers work together to display addresses uwithin
the 512K system, in register $FFSC only bits 5-7 are used. Each
time these registers are incremented, the display moves by 8 bytes.
In order to scroll an entire row, the registers need to be
incremented by a value which is equal to the NUMBER OF BYTES PER
HORIZONTAL ROW divided by 8. The following example will start at
Basic's graphics page ($60000) and scroll the screen according to
the position of the Jjoystick. The particular screen being vieved
has 160 bytes per horizontal row.

10 ONBRK GOTO 190

20 HSCREEN 2:HCLS _

30 HCIRCLE(1606,86),40,4

40 HPAINT(160,96),5,4

50 ST=48152

60 JO=JOYSTK(Q):J1=JOYSTK(1):31=31-32

70 IF INKEY$="Q"THENST=439152:G0SUB150:END

80 S=SGN(J1):J1=ABS(31)

80 IF J1<15 THEN S=0

100 IF J1>23 THEN S=5%2

120 IF J1>30 THEN S=5%3

130 ST=ST-(S*(160/8)):G0SUB 150

140 GOTO60

150 A=INT(ST/65536):A0=A%*32

160 A1=INT(ST/256):A2=ST-(A1%*256):A1=A1 AND 255
170 POKE&HFFS9C,A0:POKE&HFFSD,AT :POKE&HFFOE,A2
180 RETURN

190 ST=48152:G0SUB150

Line 130 is where the registers get incremented, "S" will
equal -1, 0 or 1 depending upon the position of the joystick. This
will be multiplied by the number of bytes per horizontal row (180)
divided by 8. This value is then converted by the subroutine
starting at line 150, into the 3 bytes necessary for storage into
registers $FF8C, $FF8D and $FFSE. To make the scroll faster, add
the DOUBLE SPEED poke to line 10 (POKE&HFFDS,0).

The horizontal scroll register is located at address $FFSF.
Only 7 bits (0-6) of this register are used to control the scroll,
bit 7 is used to activate the HORIZONTAL VIRTUAL ENABLE (HVEN)

mode. Horizontal Virtual Enable uses 48K of memory, is not
accessable through Basic except with pokes and is required anytime
horizontal scrolling needs to do a complete wrap around,. HVEN

works by forcing the bytes per horizontal row toc 256, the graphics
mode selected has no effect on this except to defime how much of

19

the 256 horizontal bytes to display. In other worgs, if a 320X182
(160 bytes across) graphics mode is selected whils HVEN is turned
on, the screen will show the normal 160X192 bytes and an area of
96X182 bytes will be hidden off of the edge of the screen. The
following diagram will help clarify this.

em == e -- - -- 258 bytes --!

-- -- -- 160 bytes =- == -- -=! --- Q8B bytes --

1 1 1
1 ' 1
1 ! '
! 1 !
1 ' !
! This is the area ! This area is !
! that is displayed ! hidden from !
! on the screen. ' view. !
! ! |
Y 1 !
1 ! 1
) 1 1

The following short program will set up a horizontal virtual
enable screen, clear it with a small machine language routine
(Basic will only clear a 32000 byte screen), LPOKE a colored block

on the screen and allow it toc scroll according to the position of
the joystick.

NOTE: THIS PROGRAM MAY NOT FUNCTION ON EARLY RELEASES OF THE COCO
IITI DUE TO A RAM TIMING PROBLEM. TANDY HAS CORRECTED THE PROBLEM
BY USING RAMS WITH A FASTER ACCESS TIME,. CONSULT YOUR DEALER IF
YOU ARE HAVING PROBLEMS.

10 CLEARZ200,&HSFFF-256

20 ON BRK GOTO180

I0 HO=0

40 HSCREEN 2:G0S5UB 180

50 FOR X=&4HSFOO TO &HS5F10:READ A:POKEX,A:NEXTX

60 FORX=&H3I0 TO &H3IS:POKE&GHFFAJZ,X:EXEC &HSFOO:NEXTX
80 AD=415838

80 FORY=0 TO 7:FOR X=0 TO 19

100 LPOKE AD+X,1:NEXTX

110 AD=AD+2S5B:NEXTY

120 JO=JOYSTK(0):J0=J0-32:5=5GN(J0):J0=ABS(JO)

130 IF JO0<15 THEN S=0

140 HO=(HO-S)AND 255

150 GOSUB 160:G0T0120

160 POKE&HFFSF,(HO OR &HB8O)

170 RETURN

180 HO=0:G05UB180

180 ' The following machine language code is contained
200 ' in the DATR statements that follow:

210 ' PSHS X,D0,U,Y SAVE REGISTERS

20

220 ' LDY #$2000 CLEAR THIS MANY BYTES (8K)
230 ' LDX #$5000 START CLEARING AT THIS ADDRESS

240 'L0O0OP
260 ' LEAY -1,Y COUNT DOWN HOW MANY TO CLEAR
270 ' BNE LOOP KEEP GOING IF COUNT NOT=0

280 ' PULS X,D,U,Y,PC RETURN TO BASIC
2890 DATA &H34,&H76,&H10,&HBE,&H20,4&H00,&HBE,&HED, &HOO
300 DATA &HBF,&HBO,&H31,&H3F ,&H26,&HFA,&H35,4HFB

Line 50 pokes in a small machine language routine that will
zero the 8K block of memory locate at %6000 of the CPU's workspace.
Line 60 then swaps each B8K block of memory required for the
graphics screen into the slot at $6000 and executes the routine to
clear it. Notice that at line 180, the Horizomtal Offset (HO) is
DR'd with $80, this will insure that HVEN will remain set. If for
some reascn it was desirable to not be in the HVEN mode, HO would
need to be ANDed with $7F to insure that the HVEN bit was forced
off.

Rlong with the blessing of more memory comes the greater
possibility that part of it may be bad, it's simply the law of
averages and somewhere down the line the law will catch somecne,
The following routine is a simple 128/512K memory test program,
written partially in Basic with a small machinme language routine
that will check the 8K block of memery located at $5000 of the
CPU's workspace. The Basic program will be used to print messages,
seguentially swap BK blocks of memcry into the slot at $6000 and
execute the machime language routine to check the block.

10 CLEAR200,&HSFFF-256

20 PB=PEEK(&HFFAZ2)AND &H3F

25 DIM BB(&H3F)

27 FOR X=0 TO 48:READ A:POKE&HSFOO+X,A:NEXTX

30 CLS:PRINT@32%S,"MEMORY SIZE (128 OR 512) >";:INPUTMS

40 IF NOT(MS=128 OR MS=512) THEN 30

50 IF MS=128 THEN S8=&H30 ELSE S8=0

60 FOR X=SB TO &H3F:IF X=PB THEN 80

70 POKE&HFFA3,X:EXEC &HS5FO0:IF PEEK(&H5F02)<>0 THEN BB(X)=1

80 IF (X AND 1) THEN A$="WORKING" ELSE A%="

80 PRINT@32%#7+12,A3:NEXTX

100 F1=0:F2=0

110 FOR X=SB TO &H3F:IF BB(X)<>0 AND F1=0 THEN F1=1
+PRINT@32%3,"BYTE(S) BAD IN BLOCK(S):"

111 IF F1=1 THEN PRINTX",";

120 NEXT X:PRINT CHR$(8):IF F1=0 THEN

PRINT@32%g," ALL MEMQORY CHECKS GOOD"
130 PRINT" MEMORY TEST COMPLETE"
140 END

150 'The following machine code 1s contained in the DATA
180 'statements that follow:

170 ' START
180 ' BRA START1 GOTO PROGRAM START

180 ' ERBYTE

21

200 ' fFCcB O STDRE Z3ROR CODE HERE

210 ' START1

220 ' PSHS D,X,U,Y SAVE ALL REGISTERS

230 ' LEAU ERSYTE,PCR POINT U TO ERROR STORACE BYTS

240 ' CLR ,U START WITH ND ERROR

250 ' LDY #%2000 CHECK TH5IS MANY BYTEZS

280 ' LDX #%$8000 START CHECKING FROM HERE

270 ' LOQOP

280 ' LDA ,X SAVE QORIGINAL BYTE

280 ' LDB #3%53

300 ' STB ,X STORE A 0101 BIT PATTERN

310 ' LDB ,X GET IT 2ACK

320 ' CMPB #%55S SEE IF THE SAME AS STORED
330 ' BNE BAD BRANCH IF NOT THE SAME

340 ' COmBs

330 ' S8TB ,X NOW STORE 1010 PATTERN

360 ' LDB ,X GET IT BACK

370 ' CMPB #%AA SEE IF THE SAME AS STORED

380 ' BEQ NOTS3AD BRANCH X7 IT IS THE SAmME

3890 ' 3AD

400 ' STB ,U SE£T ERROR BYTE

410 ' NOTBAD

420 ' STA X+ PUT BACK DRIGINAL, MOVE TO NEXT BYTE

430 ' LEAY -1,Y DECREMENT COUNTER '

440 ' BNE LOOP BRANCH IF NOT REACHED ZERO YET

450 ' PULS D,X,U,Y,PC RETURN TO BASIC

480 '

500 DATA &HZ20U,&HO01,4H00,&H34,&H765,&H33,&HBD,&HFF
510 DATA &HFS,&HGEF,&HC4,4H10,4H8E,&H20,4H00,&HBE
520 DATA &HB0,&H00,&HAS,&HB4,4HCE,&H55,4HE7,&HBS
830 DATA &HEE ,&HMB4,&HMC1,&HES,4H28,4H09,&4H53,&HE7
540 DATA &HMB4,&HEG,&HB4,&HCY1,&HAAR,&H27,&H02,&HE7
350 DATA &HC4,&HA7,4HBO,&H31,&H3F,&H26,&HES3, &H35
580 DATA &HFS

The new high resoclution screens are great. Very detailed
pictures, graphs and charts can be drawn and painted with a variety
of different coleors. The 320X182 screen uses 32K bytes of memory.
This memory is not taken from the Basic program argea which means
that your program size doesn't have to suffer when using the new
high resolution screens. It also means (because of +the screen
size) %hat you can't directly save the screen to tape or disk. A
Basic program must now be used to save the screen a block at a
time. The number of blocks to save is determined by the size of
the screen, cemember, each block is 8K, so a 32K screen would use 4
blocks. Basic always puts it's graphic screen starting at block
$30, so to save a 32K screen tlocks $30, $31, $32 and %33 would all
need to be saved. The following routine will illustrate how this

is done.

5 WIDTH 40

10 CLEAR200,&HS5FFF 'Reserves BK from $65000 to $7FFF
1S ONERR GOTO 200 ;

16 POKE&HEBCGE,18:POKE&EHEBLC7,18 'disable clear screen
20 CLS:PRINT"(S)AVE OR (L)OAD A SCREEN?"

30 A$=INKEY$:IF NOT(A$="S" OR A$="L") THEN 30

40 IF A$="S" THEN AC$="SAVE":A=0 ELSE AC$="LOAD":A=1
50 PRINT"ENTER FILENAME TO "AC$:LINEINPUT FLS

60 IF FL$="" THEN END

65 C=INSTR(FLS$,"."):IF C=0 THEN C=INSTR(FLS,"/")

67 IF C<>0 THEN FL$=LEFT$(FLS$,C-1)

69 HSCREEN2

70 FOR X=&H30 TO &H33:POKE&HFFA3,X

80 IF A=0 THEN SAVEM FL$+"/"+STR$(X),&H8000,&H7FFF,&HE000
S0 IF A=1 THEN LOADM FL$+"/"+STRS$(X)

100 NEXT X:PRINT ACS$;" SUCCESSFUL":END

200 QPENTQ",Q, "

210 PRINT:PRINT "ERROR ENCOUNTERED DURING ";ACS$:END

Notice the OPEN statement in line 200, it opens a file to the
screen. This may seem like a strange thing to do, but it is
necessary in this case because the routine that handles the ONBRK
control does not reset the device number to the screen. Most of the
time this will not effect anything, but here the error could
occured while accessing the disk which would cause the message in
line 210 to be printed to the disk buffer instead of to the screen.
Other commands that will reset the device number are CLS and
POKE&HEF,QO.

PEEK and POKE are a couple of commands that allow direct
access to memory within the CPU's 64K workspace. Some wvery
powerful things can be accomplished if they are used properly, to
include modifying Basic. Listed below are a few interesting angd
useful changes that can be made.

To prevent HSCREEN command from clearing the screen:
POKE&HEBCE,18:POKE&HEGBC7,18

To change the rate of blink rate of characters with the blink
attribute set:

POKE&HFF34,(MSB OF BLINK RATE)
POKE&HFFS5,(LSB OF BLINK RATE)

To change the color values for the CMP command, poke a value from O
. to B3 inmto the memory between $EG654 - $EB63. ($EG654=PALETTE O,
$E655=PALETTE 1, ETC.)

To change the color values for the RGB command, poke a value from O

to B3 intoc the memory between $EB664 - $E673. ($EBB4=PALETTE O,
$EBB65=PALETTE 1, ETC.)

23

To fix a oug and make the CMP and 35G8 commands change all 13
palette registers:

POKE&HEB48,18

To change the depth of the HSCREEN graphics modes from 182 ta 200
and to allow the graphics commands to reach down that far:

POKE&HEQOBC,&H35
POKE&HEQEBD,&H3E
POKE&HEOBE ,&H34
POKE&HEOGBF, &H3D
POKE&HEB75,188

POKE&HE7BA, 200

POKE&HE7BE, 199

POKE&HEFBF,18

To change the cursor on the Width40 and Width80 screens:
POKE&HF797,X
POKE&HF7A3,X
POKE&HF7ELC, X
POKE&HFBOF ,X
POKE&HFB4F , X

POKE&HFS18B,X
POKE&HFBSC, X

(Where X equals the attribute value to wuse. See character
attributes in chapter 5 for more information.)

To find out the current screen width:

PRINT PEEK(&HE7)
(0=32 Characters, 1=40 Characters, 2=80 characters)

To finmd out the current HSCREEN mode:

PRINT PEEK(&HES)
(0=TEXT, 1=HSCREEN 1, 2=HSCREEN 2, 3=HSCREEN 3, 4=HSCREEN 4)

To find the current default foreground color for HSCREEN graphics
modes:
PRINT PEEK(&HFEQA)

To find the current default background color for HSCREEN graochics
maodes:

PRINT PEEK(&HFEDB)
To find the current ON BRK line number:

PRINT PEEK(&HFEDQC)®*258+FEEK(&HFEQOD)

24 -

To find the current ON ERR linme number:

PRINT PEEK(&HFEDE)*256+PEEK(&HFEDF)
High resolution character set for HPRINT is located betwsen:
&HFOSD - &HF39C

The characters are arrainged in the following order:.

NUMBERS AND SYMBOLS
(space) !"#3%&"' ()*+,-./0123456789:;>=<"?

UPPER CASE CHARACTERS
@ABCDEFGHIJKLMNOPQRSTUVWXYZ] (backslash) [(up arrow)(left arrow)

LOWER CASE CHARACTERS
2abcdefghi jklmnopqrstuvwuxyzi(vertical bar)f(tilde)_

Each character requires B8 bytes to describe it. The first byte
defines the top row of the character, the second byte defines the
second row, the third byte defines the third row amd soc on. There
are a total of 96 characters and each character begins on an 8 byte
boundry starting from address $F0380. The following table shows the
B bytes required to build the upper case A. Each 0 within the byte
is shown as a "." and each one 1s shown as a "*", this was done
primarily to make the appearance of the character stand out.

HEX BINARY PATTERN

$10 »
$28
$44
$44
$7C
$44
$44
$00

X e o

x e L) [)

-
e & o e o & o o
e o o ® @ o o o

AR new character may be formed by changing the bit patterns for
each of the 8 rows and POKEing the bytes into their proper place in
the table. Once your character set is complete, you can use the
CSAVEM or SAVEM command to save it to your cassette or disk for
later use. Remember, these characters are only used during HPRINT,
and will not effect the characters on the WIDTH4O or WIDTHBC text
screens. The following Basic program called CHAREDIT can be used
to edit the character set that is in memory and allows you to save
it onto the disk., For use with a cassette, change the LOADM and
SAVEM in line 860 to CLOADM and CSAVEM.

25

10 ONBRK GOTO 420

20 ONERR GOTO430

30 RG=0 'Set to 1 if RGB monitor used

40 IF RG=1 THEN A=17:8=63 ELSE A=17:B=48

50 PALETTE O,A:PALETTES,B:CLS1

60 WIDTH&O

70 DIm PA(7),RC(95,7)

BO LOCATED,11:PRINT"LOAD INITIAL FONT FILE?";:LINEINPUTAS
¢IF LEFTS(AS,1)="Y" THEN K$="L":CLS:I=1:005UB890

80 CLS

100 BA=&HFOSD

110 LOCATE?7,12:ATTR0O,0,B,U:PRINT" INITIALIZING, PLEASE WAIT";
tATTRO,O0

120 FORX=0TDY5:FORC=0T07

130 RC(X,C)=PEEK((BA+(8%X))+C):NEXTC,X

140 CH=0:X0=5:Y0=2:CX=0:CY=0

150 POKE&HFFD9,0:G0SUB470 'GET CHAR AT PA+CH

160 CLS:GOSUBSBO0 'SHOW CHAR ON SCREEN

170 GOSUB7B0 :

180 K$=INKEY$:IF K$="" THEN180

180 IF K$<O>CHR$(103) THEN 220

200 GOSUB520:CH=CH-1:IF CH<O THEN CH=0

210 GOSUB470:C0OSUBSE0:G0OSUB780

220 IF K$<OCHR$(4) THEN 250:CH=CH+1:IF CH>385 THEN CH=386

230 GOSUBS520:CH=CH+1:IF CH>35 THEN CH=95

240 GOSUB&470:COSUBSB0:C0SUB780

250 IF K$=CHR$(8) THEN GOSUBBE0:GOSUB780

260 IF K$=CHR$(9) THEN GOSUBGEBO:GOSUB780

270 IF K$=CHR$(84) THEN GOSUB700:G0SuB780

280 IF K$=CHR$(10) THEN GCOSUB720:G0SUB780

290 IF K$=CHR$(32) THEN GOSuBS8OO

300 IF K$="R" THEN GOSUBSO0:GOSUB470:GC0SURSE0:G0SUB780

310 IF K$="VU" THEN GOSUBBSGO

320 IF K$="Q" THEN 420

330 IF K$=CHR$(3) THEN&420

340 IF K$=CHR$(12) THEN GOSUBBBO:GOSUB78O

350 IF K$=CHR$(52) THEN GOSUBS20:GOSUB740:G0SUB470:G0SUBSED
:GOSUB780

360 IF K$=CHR$(214) THEN GOSUBS20:G0OSUB760:G0SUB470:G0SUBSE0
:GOSUB780

370 IF K$="!" THEN GOSUBS520:CH=0:G0SUB470:G0SUBSED

380 IF K$="=" THEN GOSUBS20:CH=85:G0SUB470:G0SUBSEN

380 IF K$="S" QR K$="L" THEN GOSUBBSO

400 IF K$="P" THEN GOSUBSSO

410 GOT0180

420 POKE&HFFDB,0:LOCATED,20:END:GOTO150

430 QPEN"O",#0," ":A=ERNO:B=FERLIN:IF SGN(B)=-1 THEN B=65536+8

440 IF A=26 THEN LOCATEOD,21:PRINT:LOCATED,21
tPRINTFLSE" NOT FOUND!":FORT=1TO1S00:NEXTT:LO0CATED,21
:PRINT:GOT0190

450 LOCATED,21:PRINT:LOCATEQ,21:PRINT"ERROR"A"IN LINE"SB
:FORT=1T01500:NEXTT:LOCATED,21:PRINT :POKE&HFFDY,0:G05UB470
:GOSUBS560:G0SUB780:60T0180

460 ' Cet char at BA+CH

470
480
430
500

S10
520
530
540
S50
560
570
S80
580
600
610
620
630
640
650
660
670
680
680
700
710
720
730
740
750
760
770
780
780
800
810
820
830

840

850
860

870
880
830
900
810
820
930
8940
850

LC=BA+(CH*8)

FORX=0 TO 7:PA(X)=PEEK(LC+X)

NEXTX:RETURN

LOCATED,21:PRINT"RESTORE, ARE YOU SURE? "
:IF S$<O"Y™ THEN 510 ELSE FORX=0TO07:Pa(X
:GOSUBS520
LOCATEQ,21:PRINT:GOSUB780:RETURN
LC=BA+(CH"*B)

FORX=0TQO7

POKE LC+X,PA(X)

NEXT X:RETURN
LOCATE13,0:ATTRO,0,U:PRINT"EDIT CHARACTER";:ATTRO,O
PRINT:PRINT

FORX=0T07

PRINT"$"; :AS=HEXS(PA(X)):PRINT RIGHT$("O"+AS+" ",4);
FORBP=7TDO0 STEP-1

IF PA(X)AND22BP THEN PRINT"® "; ELSE PRINT", ";
NEXTBP:PRINT:PRINT:NEXTX

LOCATE25,9:PRINT"NORMAL";
LOCATE25,10:PRINT"CHARACTER="CHR$(32+CH);

tLINEINPUTSS
RC(CH,X):NEXTX

.
4

RETURN

CX=CX-1:IF CX<0 THEN CX=7
RETURN

CX=CX+1:IF CX>7 THEN CX=0
RETURN

CY=CY-1:;IF CYKO THEN CY=7
RETURN

CY=CY+1:IF CY>7 THEN CY=0
RETURN .

CH=CH-10:IF CH<O THEN CH=0
RETURN

CH=CH+10:IF CH>35 THEN CH=85
RETURN

LOCATE XO0+(CX*2),Y0+(CY%*2)
RETURN

HSTATCS,A,X1,Y1

IF C$="." THEN PRINT "#"; E| SE PRINT".";

GOSuUB780

IF C$="." THEN PA(CY)=PA(CY)OR(22(7-CX)) ELSE
PA(CY)=PA(CY)AND((NDOT(22(7-CX)AND255)))

LOCATE 1,YD+(CY*2):A$=HEX$(PA(CY)):PRINT RIGHTS("0O"+A%,2);
¢+GOSUBS520:G0OSUB780

RETURN

HCOLOR10,0:G0SUB520:HSCREEN2:FORMM=1 TO 39 STEP2
¢HPRINT(MM,1),CHR$(32+CH))

M$=INKEY$:IF M$LO"Y" THENB70 ELSE HSCREENO:RETURN

FORX=0 TO 7:PA(X)=0:NEXTX:GOSUBSB0:RETURN

IF K$="L" THEN P$="LOAD"ELSE P$="SAVE"
LOCATED,21:PRINT"FILE TO "P$">";:LINEINPUTFLS
A=INSTR(FLS,"."):IF A=0 THEN A=INSTR(FLS$,"/"):IF A=0 THENQ3O
FL$=LEFTS(FLS,(A-1))

IF FL$="" THEN 980

IF LEN(FL$)>8 THEN LOCATEQ,21:PRINT:GOT0880

FL$=FLS+".FNT"

27

860 POKE&HFFDB,0:IF K$="_" THEN LOADMFLS$ ELSE
SRVEMFLS,&HFO8D,&HF 23C,&HFO9D

870 POKE&HFFDS,Q

980 LOCATEO,21:IF I=1 THEN I=0:RETURN ELSE PRINT:GOSUB470
:GOSUBS60:G0S5UB780:2ETURN

990 LOCATEQ,21:INPUT"ENTER POSITIOND>";PO$:P=VAL(POS)
+IF PO$="" THEN P=CH:G0T01020

1000 IF P=0 AND PO%<>"QO" THEN P=CH:G0TD1020

1010 IF P<O OR P>95 THEN LOCATEQ,21:PRINT:COTO09S0

1020 LOCATED,21:PRINT:G05UB520:CH=P:G0SUB470:605UBS80
:GOSUB7BO:RETURN

The program starts up by asking you for an initial file to
load. This file will become the base file used during the recover
command. If you do not load a file at this time, then the font
currently in memory will be used. Following is a list of command
keys and their functions: '

<F1> Selects the previous character for edit.

<F2> Selects the next character for edit.

{Shift F1> Selects the 10th {previous) character for edit.
{Shift F2> Selects the 10th (next) character for edit.

<> Selects the first character for edit.
{=> Selects the last character for edit.
<P> Selects character for edit by position.
<V Views the current edited character.
<Clear> Erase current character.

<R> Restores original character.

<S> , Saves character set to disk.

<L> Loads character set from disk.

<Lft arrow> Moves edit cursor to the left,
<{Rgt arrow> Moves 2dit cursor to the right.

<Up arrow> Moves edit cursor up.

{Dwn arrow> Moves =2dit cursor down.
{Spacebar> Sets/resets point at edit cursor.
<Q> Quit program

<{Break> Quit program.

Font files saved by this program may be lpaded into memory at
any time by wusing the LOADM command. This will allow for special
fonts to be made and used from your Basic programs. It should be
noted that you need not create just normal characters; special
shapes, lines or anything else you might dream up may be created
and used to achieve special effects., The NORMAL CHARACTER shown on
the right side of the screen is the character to HPRINT from basic
in order to display the new font character you have created.

28

CHAPTER 5
COCO III NEMORY MAP

The Color Computer III has two modes, the COCO mode which acts
just like a Color Computer or Color Cemputer II, and an ADVANCED
VIDEQ PROCESSOR (AVP) mode which uses memory management, new high
resolution screens and the other new features of the Color Computer
III. In brief, the memory map looks something like this.

Total range: 0000 - $7FFFF (512 Kilobytes)
I1/0 and Control: XFFOO - XFFFF (All banks)

ROM: - $78000 - $7FEFF (Deselectable)
oT

$78000 - $7FDFF (Deselectable)

RAM: '
64K Coco mode: X0000 - XFEFF (Except for ROM)

128K Coco mode: X0000 - XFEFF (Except for ROM)
4 additional 16K pages at X4000 - X7FFF
128K AVP mode: $60000 - $7FEFF (Except ROM, I/0 & CTRL)
Duplicated at... $40000 - $5FFFF
$20000 - $3FFFF
$00000 - $1FFFF

512K Coco mode: (Same as 128K Coco mode)
512K AVP mode: $00000 - $7FEFF (Except ROM, I/0 & CTRL)

1/0: XFFOO - XFFFF
XFFOO - XFFO3 . PIAD (Same as old Coco)
XFF10 - XFF1F RESERVED
XFF20 - XFF23 PIA1 (Same as old Coco)
XFF30 - XFF3F RESERVED
XFF40 - XFFS5F SCS
XFFB0 -~ XFF7F UNDECODED (Current peripherals)
XFF890 - XFFgSF GIME CHIP CONTROL
XFFAQ - XFFAF mmu
XFFBO - XFFBF COLOR PALETTE
XFFCO - XFFDF SAM CONTROL REGISTERS
XFFEQ - XFFFF INTERRUPT VECTORS

It is possible for a device to respond to more than one
address, but only those listed above should be used.

28

FFOO

FFOO

FFO1

FFO2

FFO3Z

FF20

FF20

Following iIs a detailed breakout of tne I/0 section.

- FFO3

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT

- FF23

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

-0
nau

(0=IRQ to CPU
(0=1IRQ occurs
(1=IRQ occors

PIAO

0= KEYBOARD ROW 1 and
1= KEYBOARD RDW 2 and
2= KEYBUARD ROW 3 and
3= KEYBOARD ROW 4 and
4= KEYBOARD ROW 5

5= KEYBOARD ROUW 6

6= KEYBOARD ROW 7

7= JOYSTICK

right joystick button one
left joystick button one
right joystick button tuo
left joystick button tuwo

COMPARISON INPUT

disabled; 1=IRQ to CPU enabled)
on falling edge of Horiz sync)
on rising edge of Horiz sync)

2= Normally 1 (0 changes data dir reg to $FFO0Q)
3= LSB of the two amalog MUX select lines
4= ALWAYS 1

S= ALWAYS 1
B= NOT USED

7= HORIZONTAL SYNC

NP WN 20

- g

KEYBOARD COLUMN
KEYBOARD COLUMN
KEYBOARD COLUMN
KEYBOARD COLUMN
KEYBOARD COLUMN
KEYBOARD COLUMN
KEYBOARD COLUMN
KEYBOARD COLUMN

(0=IRQ to CPU
(0=IRQ occurs
(1=IRQ occors

(oo BEN Wo) WS RN SR PN B

INTERRUPT FLAG

disabled; 1=IRQ to CPU enabled)
on falling edge of Field sync)
on rising edge of Field sync)

2= Normally 1 (0 changes data dir reg to $FF02)
3= MSB of the two analog MUX select lines

4= ALWAYS 1
S= ALWAYS 1
6= NOT USED

7= FIELD SYNC INTERRUPT FLAG

PIA1
O=

1=

2= B
3= B
4= 6
5= 6
B= 6
7= 6

BIT
BIT
BIT
BIT
BIT
BIT

CASETTE DATA INPUT
RS-232 DATA QUTPUT

D/A LSB
D/A
D/A
D/A
D/A
D/A MSB

30

FF22

FF27
FFDB
FFDS

FFDE
FFDF

GImE

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT

NOnNPEwN

(0=FIRQ to CPU disabled; 1=FIRQ to CPU enabled)
(0=Set flag on falling edge of CD)

(1=Set flag on rising edge of CD) .

NORMALLY 1; O Changes Data dir reg to $FF20
CASETTE MOTOR CONTROL: O=0FF 1=0N

ALWAYS 1

ALWAYS 1

NOT USED

= CD Interrupt flag

n e nunn

RS-232 DATA INPUT
SINGLE BIT SOUND OUTPUT

NOT USED

VDG CTRL OUTPUT CsS

VDG CTRL OUTPUT GMO & UPPER/LOWER CASE NOT
VDG CTRL OUTPUT GM1 & INVERT

VDG CTRL OUTPUT Gm2

VDG CTRL OUTPUT A NOT/G

(0=FIRQ to CPU disabled; 1=FIRQ to CPU enabled)
(0=Set flag on falling edge of CART)

(1=Set flag on rising edge of CART)

NORMALLY 1; 0O Changes Data dir reg to $FF20

SIX BIT SOUND ENABLE

ALWARYS 1

ALWAYS 1

NOT USED

CARTRIDGE Interrupt flag

USED FOR POWER UP SYSTEM CONFIGURATION, BIT DEFS
ARE NOT AVAILABLE AT THIS TIME

TURN OFF DOUBLE SPEED
SET TO DOUBLE SPEED

SET TO ROM MODE
SET TO ALL RAM MODE

CHIR CONTROL

BIT
BIT
BIT
BIT
BIT
BIT

4

- O=-=2NUPEPO

REGISTERS: FFSO0 - FFSF

1=Color Computer compatible mode

- 1=MMU enabled

1=zChip IRQ output enabled
1=Chip FIRQ output enabled
1=DRAM at XFEXX is constant
1=Standard SCS

- ROM map control (see table below)

ROM map control (see table belouw)

BIT O ROM MAPPING

X 16K INTERNAL, 18K EXTERNAL

] 32K INTERNAL :
1 32K EXTERNAL (Except vectors)

31

BIT 7 - NOT USED

8IT 6 « NOT USED

BIT 5 - Timer input select: 2=70us, 1=83us
FF31 BIT 4 - NOT USED

BIT 3 - NOT USED

BIT 2 - NOT USED

BIT 1 - NOT USED

BIT 0 - MMU Task Register Sszlect (TR)

BIT 7 - NOT USED

BIT & - NOT USED

BIT 5 - Interrupt from Timer enabled
FF32 BIT 4 - Horizontal border IRQ enabled

BIT 3 - Vertical border IRQ enabled

BIT 2 - Serial data IRQ enabled

BIT 1 - Keyboard IRQ enabled

BIT O - Cartridge IRQ enabled

BIT 7 - NOT USED

BIT 5 - NOT USED

BIT 5 - Interrupt from Timer enabled
FF33 BIT 4 - Horizontal border FIRQ enabled

8IT 3 - Vertical border FIRQ enabled

BIT 2 - Serial data FIRQ enabled

BIT 1 - Keyboard FIRQ enabled

BIT 0 - Cartridge FIRQ enabled
FFQ4 - TIMER MOST SIGNIFICANT BYTE

FFa@5 - TIMER LEZAST SIGNIFICANT BYTE

The above timer is a 15 bit interval timer, <the count
automazically begins when a value is stored in the MSB. 7The input
clock is either 14 MHz or horizontzl sync as selected by ZIT7 5 of
FF@4., As the count falls through :z=sro, an interrtupt is zsnerated

(if enacled), and the count is automatically reloaded.

rved for future use
rved for future use

- QO=alphanumeric, 1=bit plane graphics

- 1=individual attributes enabled in alpha

- 1=color set flip for old articfacting scroeens
1=Monochrome signal output (on composite)
- 1=50 Hz vertical sync

- lines per row (sees table below)

- lines per rou (see table below)

- lines per row (see table belou)

M
M
w
(8]
(e8]
—
-4
O =N EOo -~
]

32

T T T T T T T R T T P T T T T R AW RGN G®EE"®0®® ..o " ®e = - ewme - -omme e e o

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

O-2NWEsEO

-0 =-200

NOT USED
lines per field (see table below)
lines per field (see table below)
Horizontal resolution (HRES2) (see video

Horizontal resolution (HRES1)
Horizontal resolution (HRESO)

tw
(r

Color resolution (CRES1)
Color resolution (CRESQ)

Lines per

field

8]
0
0
0
1
1
1
1
FF8s
BITE
0
0
1
1
FFSA
FF8B
FFQC

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

NOT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

Q-2 NWPEPOO 2

USED

oO=MNuEeEOO

NOT
NOT
mse
msB
msB
LS8
LS8
LSB

USED
USED

of
of
of
of
of
of

RED borde
GREEN bor
BLUE bord
RED borde
GREEN bor
BLUE bord

NOT USED

Vertical
Vertical
Vertical
Vertical
Vertical
Vertical
Vertical

of fset
offset
offset
scroll
scroll
scroll
scroll

33

r color
der color
er color
r color
der color
er color

address Y18
address Y17
address Y16
bit (alpha
bit (alpha
bit (alpha
bit (alpha

elve
eserved)

resolution
page)
(see video
resolution page)

mode)
mode)
mode)
mode)

BIT 7 - Vertical offset address Y15
BIT 6 - Vertical offset address Y14
BIT 5 - Vertical offset address Y13
Fr8D BIT 4 - Vertical offset address Y12
BIT 3 - Vertical offset address Y11
BIT 2 - vertical offset address Y10
BIT 1 - Vertical offset address Y9
BIT 0 - Vertical offset address Y8
BIT 7 - Vertical offset address VY7
BIT 6 - Vertical offset address YB
BIT 5 - Vertical offset address YS
FFSE BIT 4 - Vertical offset address Y4
BIT 3 - Vertical offset address Y3
BIT 2 - Vertical offset address Y2
BIT 1 - Vertical offset address Y1
BIT D - Vertical offset address YO
BIT 7 - Horizontal virtual enable (HVEN)
BIT 6 - Horizontal offset address
BIT 5 - Horizontal offset address
FF8F BIT 4 - Horizontal offset address
BIT 3 - Horlzontal offset address
BIT 2 - Horizontal offset address
BIT 1 - Horizontal offset address
BIT 0 - Horizontal offset address

NOTE: HVEN enables a horizontal screen width of 256 bytes
regardless of the resolution or color mode bits selected. This
will allow a "virtual" screen somewhat larger than the displayed
screen. The user can move the "windouw" {(the displayed screen) by
means of the horizontal offset address bits. In character mode,
+he screen width is 128 characters regardless of attribute (or 54,

-RY

if double wide is selected).

34

VIDEO RESOLUTION

The combination of HRES and CRES bits determine the resolution
of the screen. Listed below are the resolutions which are

supported. Any combinations not listed below may not be supported
in future versions.

ALPHANUMERICS: (Bit 7 of FF98=0, Bit 7 of FF90=0)

HRESZ2 HRES1 HRESDO CRES1 CRESO MODE
0 -- 0 -- -- 32 character
0 -- 1 -- -- 40 character
1 - 0 -- -- 64 character
1 -- 1 - - 80 character
GRAPHICS: (Bit 7 of FFS8=1, Bit 8 of FFQ0=0)
BYTES
HRESZ2 HRES1 HRESO CRES1 CRESO PIXELS COLORS ACROSS
1 1 1 0 1 640 4 160
1 0 1 0 2] 640 2 80
1 1 g o 1 512 4 128
1 0 0 0 0 512 2 64
1 1 1 1 0 320 16 160
1 0 1 0 1 320 4 80
0 1 1] 0 320 2 40
1 1 Q0 1 0 256 16 128
1 0 D 0 1 256 4 84
] 1 0 0 0 256 2 32
1 0 1 1 0 160 16 80
] 1 1 0 1 160 4 40
0 0 1 0 0 160 2 20
1 0 s 1 0 128 16 64
0 1 0 0 1 128 4 32
0 0 0 0 0 128 2 16

In addition to the above modes, the previous Coco modes are
available. These result when Bit 7 of FF80 is set, the HRES and
CRES bits have no effect on these modes. The number of required
banks of ram listed above is a minimum requirement. Please note
that in the 2 color modes there are 8 pixels per byte, in the 4
color modes there are 4 pixels per byte and in the 16 color medes
there are B8 pixels per byte.

35

n

CHARACTEZR ATTRIBUTEZ MODE

Individual attribute mode: (Bit & of FFg8=1)

In this mode, each character on the screen has it's ouwn
attribute byte, this byte immediately follows tne character byte.
This method allows for great flexibility but costs a little bit of
gxtra memory.

Character bit definitions (Even byte)

- S U G G L W T W S TR U R GG G M T T e e e A W e

BIT NOT USED
BIT Character bit
BIT Character bit

Character bit
Character bit
Character bit
Character bit
Character bit

BIT
BIT
BIT

m
-
—
O NP~

QO-=MNHETD

Attribute bit definitions (0dd byte)

BIT 7 = Blink this character

BIT 8 = Underline this character

BIT 5 = Character color bit (palette address)

BIT 4 = Character color bit (palette address)

BIT 3 = Character color bit (palette address)

BIT 2 = Background color bit (palette address)

BIT 1 = Background color bit (palette address)
BIT 0 = Background color bit (palette address)

—h

Individual character attributes are not available if Bit 7 o
crg0=1 (Coco compatible mode).

38

CHAPTER 6
COCO III SUMMARY

The Color computer III has turned out to be a fine machine, it
contains many features that until now have only been available in
the more expensive machines. 512K of memory, 640 by 200 high
resolution graphics mode, 16 colors at a time on some screens, a
choice of 64 different colors.... and the list goes on. I will
admit that the Coco III is not the most powerful home computer
available, but it is the best buy on the market today. You will not
be able to find a computer anywhere that has all of the features of
the color computer III and sells for $218 dollars.

Can you imagine COCO MAX running on a 512K machine, using the
320 by 182, 16 color graphics screen! How about a 512K graphics
adventure! What about spreadsheets, word processors and other
business programs! Level II 0S9 for the Coco III is amazing, it
features a windowing enviroment that will make MAC owners envy you!
The possibilities for this machine are endless.

There are a couple of hidden tricks within the Basic ROM that
I would like to mention at this point. First, type WIDTH 40, then
type CLS 100. Thank you T. Harris and T. Earls, they are the ones
who wrote the new Basic commands. (If you type CLS 100 again, you
will find that the names are gone). Now for one more thing to try.
Turn off the computer, press and hold down the ALT and CTRL keys
while turning it back on. Pictured from left to right are M.
Hawkins, T. Harris and T. Earls., (Nice photo guys!)

Don't worry, code space was not wasted, not only was there
enough space left over in the ROM for that picture, but probably a
couple more as well. Hmm, I wonder if...

37

	CoCo 3 Secrets Revealed
	Table of Contents
	Introduction
	Chapter 1. Let's Get Started
	MMU Register Address
	Pallette Registers

	Chapter 2. New Commands
	Graphics
	Miscellaneous Enhancements
	Converting Old Programs

	Chapter 3. Playing With Pallettes
	Chapter 4. Smooth Scrolling, Peeks and Pokes, and Other Tidbits
	Chapter 5. CoCo III Memory Map
	Chapter 6. CoCo III Summary

