
FORTH09TM

FORTH09 TM

September 26, 1988

(C) Copyright 1988 D. P. Johnson
All Rights Reserved

FORTH09 is protected by United States copyright laws and international treaty provisions. The end
user may make whatever copies of the software that are necessary for backup purposes and normal
usage on one computer system only. You may not copy the written materials that accompany the
software. No copy of the software may be sold, lent, or in any way transferred to any other person
unless all code and documentation that is a part of this work is transferred entirely and no copy is
retained by you the original end user. You are granted the royalty free right to reproduce and
distribute executable files that you create using FORTH09. (Executable files are those created with
the FORTH09 SAVE or XSA VE words. Any module containing the complete FORTH09 system as
created by the FORTH09 word SAVESYS may not be distributed.)

FORTH09
Forth-83 Required Documentation
FLO AD
Editor
Assembler
Glossary
Forth Language Overview
Appendix (Memory Maps}
Appendix (Error Messages)
Index

CONTENTS

Chapter
1

2

3
4
5
6
7
A
B

FORTH09 is a trademark of D. P. Johnson
OS-9 is a trademark of Microware Systems Corporation

FORTH09

FORTH09 is a Forth-83 Standard system for use under the OS-9 operating system. The
implementation uses separate data and code areas as is standard practice under OS-9. The result of

this is that although all standard words match the Forth-83 Standard definitions, there may be some
operational differences between FORTH09 and other Forth-83 systems due to the split memory map.
The intent has been to meet the Forth-83 requirements as closely as possible without restricting the
functionality under OS-9 in any way.

This chapter will concentrate on the use of FORTH09, focusing mainly on those features that are
unique to this system. Those users who are not already familiar with Forth should obtain a book on
the subject from your local book store. "Starting Forth" by Leo Brodie is a good beginning text,
although you need to be aware that a few of the word definitions used in that book are different from
the Forth-83 definitions.

When Forth "word" names are mentioned in this document they are CAPITALIZED (unless the word
is a lower case word). Word names are also highlighted in most cases. The complete explanation
of each word's function can be found in the glossary section later in this document. Refer to the
glossary for more information about any Forth word mentioned in this text.

SYSTEM INSTALLATION

The FORTH09 distribution disk contains a number of files that should be copied to your working disk.
(Make a backup of the distribution disk before proceeding).

From the distribution CMOS directory, copy
FLOAD to your working disk execution directory.

From the distribution F09 directory, copy
FORTH
BLOCKS
BLOCKS.S to your working data directory.

To enter the Forth system:

chd to your working data directory (containing Forth, blocks, and blocks.s)
and type:

fload Forth

This loads the core system which is saved in the data module "Forth" . To load the complete
standard system type:

1 LOAD (or FORTH-83)

Be sure you are typing In upper-case characters. (All Forth words shown in upper-case in this
manual must be typed in upper-case to be found in the dictionary unless you set the VAR CAPS to
TRUE.)

The appearance of the prompt character (">") indicates that the load is complete and the interpreter
is ready to accept keyboard input.

1 LOAD will load the entire "required word set" and many of the extensions, however it will not load
the screen editor. If you do a 2 LOAD instead of a 1 LOAD on entry, the Color Computer 3 80 column
screen editor will also be loaded. You must be operating from an 80 column window on the Color
Computer 3 prior to invoking the screen editor. If you are using a video terminal instead of the Color
Computer then see the EDITOR chapter on specializing the editor for your terminal. See the line
editing words L and R in the glossary. These are loaded by 1 LOAD , so they are available to modify
the editor if need be. NOTE: The above procedure does not load all of the words listed in the

(C) Copyright 1988 D.P. Johnson
1-1

glossary and various other parts of this manual. You may need to load additional screens for some of
these words.

The second task you should undertake after installing the proper editor, (or perhaps before), is to
designate the printer path for the word SHOW, so you will be able to print screens. The default
path name is "/P1 ", if this is your printer path, you need make no change. If not, then locate the
screen defining word SOPEN, which is a local word used by SHOW to open the printer path. Edit the
pathname /P1 in the definition of SOPEN to match your printer port. The flag VAR 132COL? , is
used to indicate to SHOW to use the 132 column print format which lists shadow screens side by side
with normal screens. If you printer path is not "/p1" then also edit this in the screen for the word
>PRINTER.

To exit back to the OS-9 shell, type the "keyboard abort" character (break key on Color Computer).
The "keyboard interrupt" character, usually 11C will break out of endless loops and return to the
interpret state through the Forth word QUIT . All words shown as upper-case in the glossary must be
typed in upper-case to be found in dictionary searches, unless the flag CAPS is set to true. CAPS is
a type VAR, see glossary.

The initial " 1 LOAD " does not load all of the words listed in the glossary. You will need to search
through the block storage (with INDEX or LIST) to find the appropriate blocks to load for specific
words. If you try to INDEX or LIST past the end of file, the message "-- block read error'' will be
displayed.

PROGRAMMING MODEL

Dictionary headers in FORTH09 are kept separate from the code (i.e. all code is headerless). The
code and dictionaries are further divided into PRIMARY and SECONDARY areas. The PRIMARY
code area contains all code that can be saved in a stand alone executable module (application code).
The SECONDARY code area contains all other code, i.e. all compiler words, defining words, editor,
etc.

Each area has its own dictionary header area, thus allowing separate FORGETing of PRIMARY and
SECONDARY words. At any given time, definitions will only compile to one of these areas. The
system VAR PSTATE determines whether you are "in" (i.e. compiling into) the PRIMARY or
SECONDARY area. The values of HERE and CURHEAD will be different for primary and secondary
areas, i.e. HERE and CURHEAD actually access different system variables depending on which area
you are in. The value of CURHEAD HERE - is the available memory in that area which is used for
both dictionary headers and code.

The word ORDER , will display the current search order, and also indicate whether definitions compile
to the PRIMARY or SECONDARY areas. The word PRIMARY causes future definitions to compile to
the PRIMARY area, and SECONDARY causes future definitions to compile to the SECONDARY

area. A SECONDARY definition can compile any PRIMARY or SECONDARY word, but a PRIMARY

definition can only compile other PRIMARY words. This is because if a primary word is saved as an
executable module the secondary code will no longer be accessible since it is not a part of that
module. All immediate words are secondary, but the runtime action that they compile may be primary
code. Words like IF ELSE etc. even though they are secondary words, can be used in a primary
definition since they are immediate. Attempts to compile secondary words to primary definitions will
be aborted and an error message displayed.

Each vocabulary has a primary and a secondary thread, thus there is PRIMARY FORTH and
SECONDARY FORTH, or PRIMARY ASSEMBLER or SECONDARY ASSEMBLER , et cetera. In
fact, the ASSEMBLER vocabulary contains only secondary definitions, since they execute only during
compile time.

The word WORDS will display the word names in the first vocabulary in the search order. The
primary words are displayed first, followed by the secondary words.

(C) Copyright 1988 D. P. Johnson
1-2

All compiled code is 6809 machine code. Most word references are compiled as lbsr or bsr
instructions, however some instructions may compile as inline machine code. (E.G. DROP compiles
as leau 2,u ,which is faster and also shorter than an lbsr). The system VAR COMPLIMIT determines
the maximum number of bytes that compile inline. If you set complimit equal to 6 for instance, then
code words that would take 6 or fewer bytes are compiled inline (provided they are flagged with a
permission bit allowing this to happen). The default setting of COMPLIMIT is 2, this provides for the
shortest possible code. If maximum speed is needed for a particular word, then COMPLIMIT can be
set to a higher value during the compilation of that word.

Literal values are compiled inline, and as such are faster than CONSTANTs, however space can be
saved by using constants when they will be referenced more than once. Constants can not be legally
changed in a SAVEd program. (This violates OS-9's rules for reentrant code). If you need to change
a constant. use the type VAR instead.

A VAR is a type of VARIABLE that automatically fetches its value when referenced. If the variable
name is preceded by the word TO , then a value will be stored instead of fetched.

VAR is a defining word like VARIABLE, e.g.
VARIABLE DOG
VAR CAT

to fetch the value: DOG @

or CAT
to store the number 3: 3 DOG !

or 3 TO CAT
Fetching a value from CAT is both shorter and faster since the word (@) need not be referenced.
The store operation is about the same, but is usually one byte shorter for the VAR.

A primary VAR and primary or secondary VARIABLEs have an offset into the data space stored in
their code space parameter field. At runtime the absolute data storage address is computed. A
secondary type VAR actually stores its value in its code space parameter field. This is legal since the
secondary code space, which only exists in the development system, not in a saved application, is
actually in the FLOAD process data memory. If you save the system with the word SAVESYS, upon
reloading that system (with FLOAD) any secondary VARs will have the value they had at the time the
SAVESYS was done. All other variable types, including space reserved with RMB will be set to zero
by the loader code.

BLOCK STORAGE

The block storage system utilizes "shadow" screens. A shadow screen is a comment only screen
associated with a LOADable screen, for the purpose of providing more documentation text. All block
storage is in standard OS-9 RBF files. The LOADable screens and the shadow screens occupy
separate files, with the shadow file having the same name as the LOADable but with a ".s" extension
on the name. The default filename is "blocks" and "blocks.s" for the shadow screens. FLOAD can
specify an alternate storage file to use instead of the default "blocks" file. The word USING can be
invoked at any time to switch to a different file (and shadow).

Any mass storage file and its shadow may each have a maximum length of 32,768 blocks (or
screens) numbered from {O .. n} where n is the number of blocks-1. A file with fifty screens, will have
them numbered from 0 .. 49. To add more blank screens to a file, use the word MOREBLOCKS, but
note that the file must be accessed first to open the file. The word LIST or any other word that calls
BLOCK will open the file. To make a new empty block file, use the OS-9 BUILD command, or some
other means to make a file with 0 allocated storage. Also build the shadow file at the same time.
Then in FORTH09, execute USING to change to that file (unless you already designated that file with
the FLOAD command). Perform a LIST (0 LIST) which will return a "--block read error", but this is
necessary to open the file. Now use MOREBLOCKS to create some blank storage. E.G. 20
MOREBLOCKS will extend both files by 20 blank screens.

(C) Copyright 1988 D.P. Johnson
1-3

The word SHADOW is used to convert a LOADable screen number to a shadow screen number. The
numbers are the same but with the most significant bit ORed to 1 for the shadow screen. This bit
flags the words BUFFER and BLOCK to access the shadow file instead of the normal file. To list the
shadow screen for screen 1, 1 SHADOW LIST .

The words EXCHANGE , COPY , SLIDE , CONVEY , and LCOPY are used to rearrange screens.
BLK-ERASE is used to erase a screen and its shadow. (See the glossary).

When an error occurs during the loading of a screen, the location of the error can be shown by
executing the word WHERE .

As is the standard for Forth-83, screen number 0, is not LOADable. This is because a value of 0 in
the variable BLK causes input to come from the console device instead.

SAVING FORTH APPLICATION AND SYSTEM MODULES

The Forth system is defined to be all Forth code present when you do an FLOAD. You may start up
Forth every time with ''fload forth" and then LOAD the screens you want, however there is a time
saving shortcut. After you load the screens you want to use regularly, the word SAVESYS will save
the system with all LOADed words. This can later be reloaded from the shell with FLOAD.

E.g. fload Forth
1 LOAD
SAVESYS myforth

OS9: fload myforth
(creates file myforth in current execution directory)

(loads system with all words that were present when
SAVESYS was executed).

There is a catch however, you can not perform SAVESYS after a new vocabulary has been defined.
Only the predefined vocabularies FORTH , ASSEMBLER , and ONLY may be present. The reason
is that SAVESYS is really a quite complex operation, involving packing the memory map, and
adjusting a number of addresses and offset parameters. Internal vocabulary pointers must be
modified, and allowing for additional vocabularies would increase the already high complexity. The
need for additional vocabularies is less than in some other Forth systems however because of the
LOCAL word name feature. In fact all of the screen editor consists of local words, except for the one
word EDIT which is placed in the FORTH vocabulary.

Application code is all code in the primary code area. You may save any PRIMARY word as a stand
alone OS-9 executable module, using the words SAVE or XSAVE . All primary code up to the
designated word is saved. Initialization code is generated to properly setup the registers and memory
structure on entry. BASE MEMLIMIT and 'FREE are initialized, and a call is made to the word you
saved. When the saved application word exits, a return to the system is made through an F$EXIT
system call, after resetting path 0 options. The user must Initialize all data structures. The words
REV and EDITION allow for setting the revision number and edition number of the saved modules.
The word SAVE saves the designated word to a pathname of the same name in the execution
directory. XSAVE allows for a pathname that differs from the word name and also allows you to
designate a larger minimum data memory size for the saved module. You would use a larger
minimum data memory if the runtime program will use the data between 'FREE and MEMLIMIT.
Note that if the application module is invoked with the shell# parameter to supply more memory, then
this extra memory will be reflected in the values of 'FREE and MEMLIMIT. Refer to the glossary for
details on any of the words mentioned in this text.

(C) Copyright 1988 D.P. Johnson
1-4

NOTE: The only reason for the existence of separate PRIMARY and SECONDARY code areas, is to
simplify the SAVE of the application module. If you are not planning to save a word as an executable
module, then there is no reason for using the PRIMARY area. The saved PRIMARY application
word, will never include the Forth dictionaries, or BLOCK mass storage access. Any words dealing
with the dictionary in any way MUST be defined as a SECONDARY word. This includes any
IMMEDIATE word, since it is only the finding of the precedence bit in the dictionary for that word that
makes it IMMEDIATE. Some words defined orginally as SECONDARY can be changed to PRIMARY
by editing the screen where they are defined, if you should want to use them in an application. E.g.
>PRINTER

INPUT/OUTPUT

When FLOAD sets up the Forth system it also performs a I$SETSTI call on path 0 to change the
path options. Echo is shut off and the EOF character is set to null. No other changes are made.
These changes are necessary in order to make the actions of the word KEY match the standard. A
SAVEd application module also has initialization code to change these path options. If the normal
exit is made from the application module (i.e. the entry word is exited), then these options are reset
on exit. It may be desirable for the application to leave these options on, if for example you wish to
use the word READLNO for console input which is more powerful than EXPECT. Leaving echo on
will allow for normal OS-9 line editing features. You can force the initialization code of your SAVEd
module to NOT tamper with the path 0 options, by setting bit 7 of REV to a one before invoking SAVE
(or XSAVE). Only the least significant 4 bits of REV {0 .. 3} are actually used as module revision
number. Bit 7 acts as a flag to bypass the path 0 options change code.

Most of the OS-9 system call words are provided. These are all PRIMARY words, and are arranged
in sets, so you would only load what are needed. Most of the 110 calls are grouped together. E.g.
I$CREATE I$0PEN I$READ etc.

The glossary defines the stack parameters for each call, but you should also refer to the OS-9
technical manual for a detailed functional description of each call. Each call has a uniform error
return procedure. After each call, if an OS-9 system error was returned by the call, then the VAR
ERROR# will contain the error number returned. If there was no error, then ERROR# will be zero.
This allows you to either check for errors after a call or ignore them. Any register parameters used as
input by the call are taken from the data stack. Any parameters returned in registers by the call, are
returned on the data stack. In a number of cases it is usual to ignore some of the return parameters,
or use a default for the input. Several 1/0 words are provided with reduced parameter usage to
simplify 1/0 programming.

These are: GETCH PUTCH READ WRITE READLN WRITELN READLNO

The more commonly used I$GETSTT and I$SETSTT calls are provided as individual words. e.g.
GET.OPT SET.OPT GET.SIZE GET.POS etc.

STRINGS

Many of the OS-9 system calls require an address of a string that is either terminated by having the
high bit of the last character set, or terminated by a null, space, or other separator character. Several
string words are provided to accomplish this.

See the words: FCS" 0" " CR"

The words " (quote) and CR" can be used in both compilation and execution mode, and produce the
address and count of a text string.

E.g. " Hello there"

Leaves two numbers on the stack. The first is the address of the string, and the second is the string
length in bytes (or characters). These two numbers are suitable for the word TYPE. The OS-9 110

word WRITELN is set up to take its buffer address and byte count in this order to simplify writing a
literal string to a path.

(C) Copyright 1988 D.P. Johnson
1-5

E.g. " Hello there" 1 WRITELN

Writes the string out to path number 1 (console screen, unless redirected).

The internal string storage format for " and CR" is a counted string. That is, one byte is used to
store the string length count {0 .. 255}, and the following bytes are the actual string bytes. The
operation DROP 1- will convert the address count parameters on the stack to a "counted string
address" as used by various system words, e.g. WORD returns a counted string address.

FCS" and 0" each produce a string containing all characters after the first space after the word, up
to the closing quote. Each of these leaves only an address on the stack, which is the address in
memory of the first byte of the string. The usage of these is mainly with the various OS-9 system
calls that require a string address, for a pathname, or module name.

FCS" produces a string with the highest bit of the last character set (similar to the FCS assembler
directive). CR" produces a string with an ASCII carriage return character appended on the end,
which is needed by the SHELL word and F$FORK . 0" produces a string with an ASCII null
character appended to the end. For most system calls using a pathname string, any of these three
can be used. The FCS" will produce a string one byte shorter than the other two, since there is no
terminating character appended, however this word is defined as compilation only. For interactive
use, 0" and CR" can be used since these work in both compilation and execution mode.

All of the string types covered here are literal constant strings. They may not be altered in memory
once they are defined since they occupy the OS-9 module code space. You could alter the strings at
runtime, but doing so violates one of the rules for reentrant modules, and makes the code non­
reentrant. Some systems may also have implemented memory protection hardware that will prevent
you from doing so.

To alter a string at runtime, it should be copied to a predefined data memory buffer.

E.g. 80 RMB STRINGBUF defines an 80 byte data memory buffer

" Hello OS-9" STRINGBUF SWAP CMOVE

Moves the string into the buffer just defined.

For extensive string operations, it is probably best to make up a new string defining word and
structure that keeps track of the current string length. A set of words can then be produced to do
whatever string manipulations you require (concatenation, comparison, etc.). The string memory can
be allocated with RMB or by a new defining word with ALLOT_D .

NUMERIC INPUT

All numbers input in FORTH09 are assumed to be 16 bits in length, unless designated otherwise. If a
number being input from the console, or mass storage is prefixed with the character"#", then it will be
converted as a double number. Any number or double number may be prefixed with a "-" (minus
sign) to make it negative. A decimal point will end the number conversion (i.e. is not allowed). The
usage of a decimal point is reserved to indicate floating point (not currently implemented.)

Number conversion is always in the current number base, as indicated by the value of the variable
BASE . The words DECIMAL and HEX set the value of BASE to 10 and 16 respectively. Any
number base between 2 and 72 may be used, but DECIMAL and HEX account for most usage.

Any number input while in execution mode will be placed on the stack. If a number is entered as part
of a colon definition (i.e. compiling) then a numeric literal will be compiled such that at execution time
the number will be placed on the stack.

The internal storage format for both single and double numbers is with the most significant byte at the
lower memory address, and the least significant byte at the highest memory address. This is the
reverse of the format internally used by Z80, 6502, and Intel processors, but is the norm for all
Motorola processors.

(C) Copyright 1988 D. P. Johnson
1-6

LOCAL WORD NAMES

FORTH09 implements local word names. A local word is one which has its header removed from the
dictionary when no future reference to the word is required. The words LOCAL GLOBAL and
MODULE define the scope of the local name and remove the header from the dictionary. Once the
header is removed, the dictionary is packed, thus saving memory and the word is no longer found in
dictionary searches. The object code for the word still remains however. The word LOCAL marks the
start of a group of local word definitions. GLOBAL marks the end of the local section and the start of
GLOBAL definitions. The word MODULE packs the dictionary removing all the local names. No
change of vocabulary, or change between PRIMARY and SECONDARY is allowed between LOCAL
and MODULE. The screen editor uses these words to remove all of the editor words from the
FORTH vocabulary except for the word EDIT . This eliminates the need for a separate EDITOR
vocabulary to hide these words, and also saves memory space. The word HIDE provides a means
to remove single word names (i.e. make them local) after they are defined. There must have been no
definitions into any vocabulary, other than the one the hidden word is in, since the definition of the
word to be hidden. If there have been, then invoking HIDE will mutilate the dictionary chain.

WORD WIDTH

The maximum word name length allowed is 63 characters, using a longer name than this may cause
incorrect operation. (Due to the fact that the length is smudged during compilation by ORing 64 to the
count). The number of characters of the name that will actually be stored in the dictionary for a new
definition is determined by the value of the VAR WIDTH. E.G. if you set WIDTH to 3, then only the
first three characters of word names will be stored for new definitions. The actual length is known
also. So if you defined the words NEWXXX and NEWYYY they would both be stored as NEW???
which you would think would cause them to be confused for one another during dictionary searches.
Normally this would be the case, but FORTH09 also stores a 16 bit hashing code for each name. It is
extremely rare that two words would have the same hash code, even for the case given above. Since
the hash code is the first thing compared during a search, the two words NEWXXX and NEWYYY
would still be found as unique words. The default setting of WIDTH is 16, you may want to change
this to something smaller to conserve space if you are running short. The minimum would be a
WIDTH of 1, which will work fine, but makes the WORDS list a little hard to read.

WORD SYNONYMS

Largely due to my own personal preference, synonyms for a number of the standard words, are used
throughout the blocks file with FORTH09 instead of the standard words. These are ENDIF instead of
THEN (makes the IF statement a little easier to read doesn't it), and D@ D! DDROP DDUP DOVER
DROT DCONSTANT DSWAP DVARIABLE instead of the same word names with the "2" prefix. This
makes things more consistent, by having ALL words dealing with double number operands start with
the letter D. To my thinking a word like 2DUP implies doing DUP DUP which is not at all the same

as DUPing a double number is it. The "tradeoffs" used by the standards team indicate they place a
higher priority on "Naming clarity" than on "historical continuity", so I rather feel they fell down on the
job with these. 1 know I will probably hear a lot of argument about this, but I don't really want to listen
to it. If you don't like it, go ahead and edit it back to the standard and don't call me. After all that's
one of the nice things about Forth, isn't it. You can change things to your liking. At any rate the word
EQU is used to make a word synonym, i.e. another dictionary entry is produced that points to the
already existing code of an existing word. See EQU in the glossary.

SPECIAL CONSIDERATIONS for DEFINING WORDS

Because of the memory map used in FORTH09, you will need to give special consideration to
defining words. You can use the words CREATE and , (comma) to make tables of constant values.
These values should not be changed once they are stored. ALLOT allocates space in the code area
of the memory map. Another word, ALLOT_D is used to allocate space in the data memory area.
Any variable data space required should be allocated with RMB . For large variable size buffers, use
'FREE and MEMLIMIT to determine the available unallocated data space address limits. These

(C) Copyright 1988 D.P. Johnson
1-7

values are calculated at runtime so they always provide the correct absolute address of available data
memory.

When making a defining word with CREATE and DOES> , the defining word itself is normally a
SECONDARY word. This is because the dictionaries do not exist in the application code, only when
the complete system is present. However it is often desirable for the words defined by the new
defining word to be PRIMARY (application) words. For this reason the runtime code after DOES> is
always placed in the PRIMARY code area. DOES> makes the switch from secondary to primary
automatically, and switches back at the end of the definition. This allows words defined by the new
defining word to be either PRIMARY or SECONDARY words.

A new companion word to DOES> is DOES>S which has the same action but the runtime code after
DOES>S remains in the SECONDARY code area. This is used for defining words that will only
define other SECONDARY words.

The word ;CODE functions like DOES> except that it defines a runtime action of a defining word in
ASSEMBLER. The code between ;CODE and END-CODE will automatically be stored in the
PRIMARY code area even though the word definition is in the SECONDARY area. To make the
runtime code in the secondary area, use ;CODES instead.

An alternate method of defining runtime action for a compiling word rather than to use DOES> or
;CODE , is to define the runtime action as a separate word. E.g. if the runtime action is a word called
"RUNTIME" then the defining word can contain the sequence: COMPILE RUNTIME .

Since the compilation of words in definitions is done by compiling a bsr/lbsr instruction to the word,
you can not compile a word with ' and , 'lick and comma" like you can in systems that thread the
addresses. The word ['] will compile a constant that will be computed at runtime into the absolute
code address, but here again you can not use , "comma" to compile that address. Instead use the
word H' "h-tick" to find the header address of the word and then {COMPILE) to compile that word.
(COMPILE) also takes care of deciding whether to compile the code inline or as a bsr or lbsr.

If you create a table of constant values using CREATE and, ("comma") in execution mode, the name
you CREATEd will not be accessible in the dictionary until the next colon definition is complete unless
you execute the word (;) .

E.G. CREATE SMOOZ 10000 I 1000 I 100 I 10 I 1 ' (;)

The word {;) "unsmudges" the name SMOOZ and updates internal pointers, making SMOOZ

accessible.

Variable arrays should be built with the word RMB .

E.g. 100 RMB BIG (creates an 100 byte array)

: SIGN 2* BIG + ;

The word BIGN expects an array subscript on the stack {0 .. 49}. This is multiplied by two, to
adjust for two byte elements, and added to the base address returned by BIG. The result is the
address of the specific array element, on which you can use the standard access words @ and ! .

COMPILER ERROR MESSAGES

The compiler does error checking whenever possible. Things like imbalanced control structures and
illegal nesting are trapped and reported. This should reduce the instances of system crashing and
make initial debugging quicker. It should be noted however that just the existence of the ! ("store")
operator makes it impossible to completely crash proof the system with out resorting to elaborate
checking of each operation. This is considered undesirable due to the additional overhead required
and the restrictions it would place on the user. All this boils down to saying that while "C" an some
other languages let you shoot yourself in the foot, Forth will let you shoot yourself in the head. So
think before you pull the trigger (i.e. hit return). It is interesting to note that most early versions of
Forth contained no error checking what so ever. The current common practice is to provide some

(C) Copyright 1988 D.P. Johnson
1-8

compile time checks for imbalanced control structures and the like, but no runtime checking (which
would restrict execution speed).

Error messages are preceded with "--" (two hyphens). Compile time stack checking is done for both
overflow and underflow. No runtime error checking is done. However, when testing words in interpret
mode, if they underflow or overflow the data stack, this will be reported. After any message is printed
the word ABORT is executed, which will reset the stacks, and make the input source the console.

The exception to this is the warning: --redefined

which will be displayed preceded by a word name any time a word is redefined. If a new definition is
made for a word that already exists in the current search order, then the --redefined warning message
will be displayed. No ABORT is taken for this as it is a warning only.

If an error occurs while LOADing a screen, the word WHERE will tell which screen the error was in,
and print the contents of the screen up to the point where the error was detected. If the error was a
missing control word, or the like, the error will not be detected until the end of the word definition in
which the error occurred.

OPTIMIZING FOR SPEED

FORTH09 was designed to make it as short an fast as possible. In most cases the shorter code is
also the faster code. FORTH09 maintains several flag bits in the dictionary header for each word in
addition to the customary IMMEDIATE precedence bit. This allows it to copy the code for some
CODE words inline into new definitions instead of compiling it as a branch to subroutine instruction.
The shortest code generated to compile any word is 2 bytes (for a short relative branch). In most
cases 3 bytes will be compiled for a long relative branch to subroutine. Many of the primitive CODE
words take only 2 to 8 bytes of code to implement so a significant speed improvement can be had be
compiling inline code in these cases.

The VAR COMPLIMIT is used to determine whether or not a code word should be compiled in line.
The default setting (and minimum value) of COMPLIMIT is 2. By setting COMPLIMIT to 6 or 8, you
will case many of the primitive words to compile inline. E.G.:

8 TO COMPLIMIT

sets the limit to 8 bytes. In this case CODE words of 8 bytes or less will be compiled as inline
code (i.e. the machine instructions are copied in line). After compiling the words you need to speed
up, set COMPLIMIT back to a smaller value. Compiling words much larger than 6 or 8 bytes in line,
takes up an inordinate amount of memory without increasing the speed much.

The usual practice is to debug your code first. After it runs correctly, identify specific words that need
to be taster and optimize those.

Additional speed can be had by making use of Direct Page variables. The 6809 processor has the
ability to access data with an 8 bit (direct page) address instead of a 16 bit address. This allows a
shorter and faster instruction to access a 256 byte area with the upper 8 bits of the 16 bit address
coming from an internal "Direct Page" register. Each OS-9 process has its own direct page at the
start of its data area. Part of the FORTH09 direct page is used by predefined variables like BASE
and STATE. The remainder (about 190+ bytes) is available for user VARIABLEs, VARs and any
space assigned by RMB. To take full advantage of the speed offered by the direct page you will need
to use the special operators to access any direct page storage. These operators are: V! V@ ++ += -­

. See the glossary for details on these. These special operators also work with variables stored
outside the direct page, but the greatest speed increase and the most compact code results from
using them with variables in the direct page.

To define a direct page variable, you need only place it at the beginning of the program. The VAR
doff (note lower case) contains the data offset used for variable storage. If the value of doff is less

than 100 (hex) at the time the VAR or VARIABLE is defined, then that variable will occupy the direct
page storage area. Unless you are using the special operators mentioned above on the VARs or

(C) Copyright 1988 D.P. Johnson
1-9

VARIABLEs, there will be no advantage to a variable being in the direct page. If you are using these,
then give some planning to placement of variables in your program. You would not want to use a
statement like (500 RMB BIGBUFFER) at the beginning because this would allocate all of the direct
page as part of BIGBUFFER and not leave any for smaller variables. Generally you should define
your most accessed VARs or VARIABLEs at the beginning of your program.

Because of 6809 processor architectural reasons the word SWAP! is faster than the word ! (store).
SWAP! (swapstore) performs the same operation as the two words SWAP ! . So for fastest storage
to VARIABLEs (outside of using the operator V!) use SWAP! when possible instead of!.

E.G. VARIABLE COW
COW 7 SWAP! is faster than 7 COW !

BRANCH and ?BRANCH code which is used by the conditionals IF and WHILE and UNTIL
generates an inline test and a short relative branch whenever possible. This takes only 4 bytes for
each instance and is as short as or shorter than any other strategy. It also results in higher speed
than any other strategy. If the branch is out of range (further than 127 bytes away), then code to deal
with the long branch is generated instead. The long branch code used does not take up any more
space, but it is slower. Usually, about the only way to end up with a long branch is if you use string
literals inside the word which eat up the length of the string in bytes plus some.

If you find you need an IF statement to test for a FALSE condition only, (e.g. 0= IF), then use the
word IFF ("if-false") instead. This will save the compilation of 0= and the result will be faster.

SEARCH ORDER

The dictionary search order can be listed with the word ORDER. This also shows whether definitions
will be compiled to the PRIMARY or the SECONDARY area. The PRIMARY thread of the first
vocabulary in the list is searched first, then its SECONDARY thread. This process is repeated for
each successive vocabulary in the list. The word : automatically makes the compilation vocabulary
the first one in the search order, but certain immediate words used in the definition may change this.
For example the word [A executes ASSEMBLER making it the first vocabulary in the search order,
in which case the compilation vocabulary may not even be in the search order at all.

The vocabulary search list (pointed to by CONTEXT) consists of a stack of up to 7 vocabularies. The
word ONLY clears the list leaving only the ONLY vocabulary at the beginning of the order. Executing
a vocabulary name (e.g. FORTH) replaces the first name in the list with that vocabulary. Executing
ALSO shifts the list down one postion such that the first vocabulary is duplicated. Executing another
vocabulary name then places that vocabulary in the first postion, overwriting the duplicated first
name. The word SEAL removes all occurances of the ONLY vocabulary.

E.g. ONLY FORTH ALSO ASSEMBLER (use ORDER to view the order)

DEBUGGING

One of the strengths of Forth is that it is usually an easy process the quickly test each word as you
develop it. This is largely due to the use of the stack to receive arguments and pass resulting
operands. It is vital that each word handles the stack as you intended. A word taking too many or not
enough items from the stack, or leaving the wrong number, spells disaster. Make sure each word you
create uses the stack properly. The word .S provides a non-destructive way to view the stack
contents which is very valuable for debugging. For tough cases, the word BREAK may be inserted in
a definition. When BREAK is executed during execution of the word containing it, the words
execution is suspended at that point and you are returned to the interpreter. The message "-break-"
displays when the BREAK is executed. At this point you may examine the stacks and or execute
other words, and then resume execution after the BREAK by executing the word GO. If you do
anything to cause and error (so ABORT gets executed) then you will not be able to resume execution
of the word. BREAK is defined as a SECONDARY word, so any word you want to compile it to must

(C) Copyright 1988 D.P. Johnson
1-10

----------------------------------- -----

be secondary also (at least temporarily). When debugging is complete, you should of course remove
BREAK from the words definition.

The word .RS can be used to view the contents of the return stack during a break. You should keep
in mind however that much of what is on the return stack are the return addresses from various words
being executed and not parameters you placed there. Normally the only numbers on the return stack
other than return addresses are the index and limit parameters for DO loops, and anything you move
there with >R .

When using >R and R> within a definition you must be absolutely sure the return stack is balanced at
the end of the word definition. Whatever is on the top of the return stack at the end of the word is
used as the address of the next word to execute (return address for subroutine). If the return stack is
imbalanced at the end of the word (or when EXIT is executed), then execution will continue at what
ever address was on the stack. In this case you system will crash IF YOU ARE LUCKY.

DO loops use the return stack to hold the index and limit values so the return stack must be at the
same level at LOOP as it was at DO . If you use >R inside a do-loop then you must use R> before
the end of the loop to balance the return stack.

The word LOAD also makes use of the return stack to save the source of the previous input stream,
so LOAD can not be used inside a do-loop.

OS-9 INTERFACE

You should make a thorough study of the OS-9 technical manual to understand the use of the various
system calls. The 110 calls will probably be the most used. Make sure you understand the concepts
of pathnames, path numbers, standard paths, and redirection of paths.

FORTH09 with its interactive environment provides the quickest access to the complete power of OS-
9 of any language. If you look at the definition for >PRINTER and >SCREEN you will see how really
trivial of a chore something as useful as 1/0 redirection is under OS-9. These words were defined as
SECONDARY, but you may easily edit their screen and compile them as PRIMARY if you want to use
them in a SAVEd program.

You may run any OS-9 program from within the FORTH09 environment by using the word$.

e.g. i__QJ_8 (runs dir command)

To do the same from within a word definition, use the word SHELL.

e.g. : DIR CR" DIR" SHELL ;

Creates the Forth word DIR which executes the OS-9 dir command by calling the shell command.

Examples of OS-9 1/0:

VAR PATH# define a VARiable to hold path number

0" myfile" 3 I$0PEN TO PATH# DROP

attempts to open the existing file "myfile" in "update" mode (3), saves the path
number in PATH# for later use and DROPs the string address pointer returned that
we have no further use for.

80 RMB BUF defines an 80 byte data buffer for 1/0

80 BUF PATH# I$READLN DROP

Reads a line from the open path to BUF, then drop the actual count read. The
maximum read was 80 bytes, the actual number would be less if an ASCII carriage
return was encountered before 80 bytes were transferred. If you wanted the actual
number read, you could omit the DROP and do further processing.

ERROR# IF etc. could be added to test for errors after any 1$ or F$ word.

(C) Copyright 1988 D. P. Johnson
1-11

#0 PATH# I$SEEK rewinds the path to the beginning.

CR" Hello out there in the file" PATH# WRITELN

Writes the string with a carriage return on the end to the path. WRITELN functions
similar to I$WRITLN except for the order of input parameters and not returning any
actual count of bytes written.

PATH# !$CLOSE Closes the path. Any open paths will automatically
be closed by the F$EXIT system call which is executed when the FORTH09
Interpreter, or SAVEd program exit back to the system.

The attribute and permission numbers used by the OPEN and CREATE calls, correspond to the file
attribute bits on each file. E.g. 1 =read, 2=write, 3=update, etc. as shown in the OS-9 technical
manual.

For the !$CREATE call, the permission parameter will be the permission attributes attached to the
new file which determine future access modes allowed. I.e. user r/w public r/w etc. The access
mode parameter is the current mode in effect while the file is open. E.g. You may give the file read
and write permission (3), but access it after !$CREATE as write only (2).

Extended Memory Usage under OS-9 Level II

There are four LEVEL II only system calls that allow usage of memory beyond the process's 64K

allocation. These are F$ALLRAM F$DELRAM F$MAPBLK and F$CLRBLK . The OS-9 technical
manuals have indicated that these are system mode only calls, i.e. may only be used by a system
module (driver, etc.). This is incorrect. These calls are allowed in user mode in most if not all
systems.

The "block" referred to by these calls, is the memory block mapped by the system hardware MMU
(Memory Management Unit). The size of this block is 8k on the Color Computer 3, and 4K or 2K on
most other systems. The size is system dependent on the MMU design.

F$ALLRAM is used to reserve a number of consecutive blocks of free ram for future use. Unless you
actually need more than one block to be contiguous, it is best to use this call repeatedly, allocating
one block at a time. Keep a table of the block numbers allocated.

F$MAPBLK is used to map a specific block into the current process's memory map. The current
process must have space in its memory map first. If the process already has a full 64K map, then
there will be no room to map in the additional blocks. F$MAPBLK will return the address within the
requesting process's memory map, where the requested block was mapped. The memory may now
be accessed at that address.

F$CLRBLK is used to unmap a block from the current process's memory map. This is the reverse of
F$MAPBLK. A number of blocks can be reserved with F$ALLRAM, then mapped into the processes
memory with F$MAPBLK one at a time. To access a different block, unmap the first with F$CLRBLK
and map in the next with F$MAPBLK.

When finished with all external ram, use the F$DELRAM call to deallocate each block that was
reserved with the F$ALLRAM call. This returns that memory to OS-9's free memory pool.

OS-9 requires a certain amount of memory for file buffers and other uses. If you allocate every last
block, your process may not be able to run due to the system running out of memory to use for file
buffers etc.

(C) Copyright 1988 D.P. Johnson
1-12

FORTH-83 REQUIRED DOCUMENTATION

SYSTEM DICTIONARY SPACE USED

Varies depending on what is loaded. A good approximation can be made by doing a SAVESYS of
the system in question and looking at the file size of the saved file. This will be only slightly larger
than the actual space used.

APPLICATION DICTIONARY SPACE AVAILABLE

This can be determined by subtracting the value of HERE from the value of CURHEAD in each of the
PRIMARY and SECONDARY areas. The sum of the two numbers is the total dictionary (and code)
space available, although an actual SAVEable "application" has only the PRIMARY space available.

DATA STACK SPACE

The default data stack size is 256 bytes. This can be altered when loading the system with an option
to FLOAD .

RETURN STACK SPACE

The default return stack size is 256 bytes, and should be the minimum used. This can be altered
when loading the system with an option to FLOAD .

MASS STORAGE BLOCK RANGES

The BLOCKS file that contains the system source uses blocks 0 through 60+ (use INDEX to
determine the upper limit used). Any blank block numbers are available to the user, and the file may
be extended up to 32,768 blocks or the constraint of the media. It is recommended however that user
code be placed in separate files. See preceding section on block storage.

OPERATOR'S TERMINAL FACILITIES

In interpretation mode the normal OS-9 line editor functions are active on the console input. Word
definitions typed in may span more than one input line. However any word that takes the next word
from the input stream must find that word on the same input line. All Forth-83 standard 1/0 words are
available as well as l$xxxx OS-9 system calls.

BUFFER SIZES

PAD is 84 bytes long, TIB is 128 bytes.

ERROR ACTION TAKEN BY SYSTEM

1. Input stream exhausted before encountering a required <name> or delimiting
character.

If the <name> is being read by CREATE the abort message "--creating null word" will be
displayed. If a search is being made for a delimiting character, then the remainder of the
input stream is read as if the delimiter was at the end of the stream.

2. Insufficient stack space or Insufficient number of stack entries during text
Interpretation or compilation.

If you are lucky you will get an overflow or underflow error message and abort. If not you
may crash. (The underflowed word is processed before the error is detected).

3. A word not found and not a valid number, during text Interpretation or compilation;

The abort message "-not In dictionary" is displayed and ABORT is executed.

4. Compilation of Incorrectly nested control structures;

A message is printed indicating such and ABORT is executed.

(C) Copyright 1988 D. P. Johnson
2-1

5. Execution of words restricted to compilation only, when not In the compile state and
while not compiling a colon definition;

The message "--compilation only" is displayed and ABORT is executed.

6. FORGETing within the system to a point that removes a word required for correct
execution;

You will hang up or crash. Sorry!

7. Insufficient space remaining In the dictionary;

In most cases a message will be displayed. If the word definition the caused out of memory
condition was especially large, then something might have been clobbered before you see
the message.

8. A stack parameter out of range, e.g. a negative number when a +n was specified In the
glossary;

Action may be taken anyway, in which case something could be clobbered.

9. Correct mass storage read or write was not possible.

Other:

A message is displayed and ABORT will be executed. (Most common case is reading past
end of file with LIST or INDEX).

Divide by zero does not cause any error action. A dividend of -1 is returned.

(C) Copyright 1988 D.P. Johnson
2-2

FLO AD

FLOAD is the loader program for the saved FORTH09 system. FLOAD loads and runs the supplied
forth module that contains the FORTH09 core, or any Forth module saved with SAVESYS. The
FORTH09 system runs in the process data area of the FLOAD process.

Syntax: FLOAD [-opts] pathname [block_path] [-opts]

The options have the form: -An

Where the "A" is any of the recognized option letters as shown below and the "n" is a decimal
number. If "n" is omitted, zero is used.

OPTION

-Bn

-On

-Pn

-Rn

-sn

-Un

ACTION

Allocate n block .6_uffers, if n is less than 2, then 2 is used. The minimum of 2 is
required for EXCHANGE to function.
Allocate a minimum of n bytes of FORTH09 .Qata memory. This is the memory area
used for VARIABLE storage in the FORTH09 system. Any leftover memory after the
other allocations will be added to the data memory allocation.

Allocate n bytes for the .ERIMARY storage area. (Includes both PRIMARY code and
dictionary space.)
Allocate n bytes for the Beturn stack. (The default is 256 bytes).
Allocate n bytes for the .SECONDARY storage area. (Includes both SECONDARY
code and dictionary space).
Allocate n bytes for the FORTH09 data stack. (The default is 256 bytes).

None of the options for FLOAD add to the minimum process memory allocation as set up by shell. To
do this you need to use the shell # parameter, and then divide the memory up as you see fit with the
options.

E.g. fload Forth -b4p12000 #48k

Allocates four block buffers and 12,000 bytes of primary storage. Secondary and stack allocations will
be their default values and the remainder of the 48K will be data area.

NOTE: The options can also be specified separately,

i.e. -b4 -p12000

The pathname to be loaded by FLOAD is assumed to be in the current data directory unless an
explicit pathname (beginning with f) is given. The pathname module is a data module with a specific
structure as setup by the word SAVESYS. The "block_path" is an optional mass storage file name to
use instead of the default 'blocks" file.

The FLOAD module contains the code for the words SAVE and SAVESYS as well as most of the
block ilo words. These are accessed via a lbra table that starts 3 bytes after the module entry point.
The FORTH09 word FCALL allows entry to these functions from Forth. Placing this code in FLOAD
makes better use of memory allocation under OS-9 level II than if the code was in the FORTH09 code
area.

When running the Forth system all of FORTH09's dictionaries, code areas, data areas, stacks, and
block buffers occupy the FLOAD process data memory.

(C) Copyright 1988 D.P. Johnson
3-1

(C) Copyright 1988 D. P. Johnson
3-2

FORTH09 EDITOR

The "blocks" file with FORTH09 contains the source for several versions of the screen editor invoked
by the word EDIT. The initial system LOAD from screen 1 does not contain any screen editor, only
the primitive editing words L and R and LIST . After the initial LOAD you will need to use INDEX and
LIST to find the load block for the version of the editor you will be using. Versions are contained for
WYSE-50, WYSE-75, OUME OVT-102 terminals and Color Computer Ill 80 column screen. If you
are using one of these you will only need to determine the initial load screen and load it to have a
working screen editor. The version of the "blocks" file you receive may have other versions on it also,
so check before you start working up your own editor. If you look at the screens with INDEX (see
glossary) the first line of the screen to load will say "screen editor load" in it. This screen will load all
other necessary screens when it is loaded.

For each different terminal type there is a "load screen" and two or more other screens containing the
terminal specific words to move the cursor and interpret key strokes. If you are using a terminal type
other than those provided for, you will have to create these terminal specific screens to get the editor
up on that terminal. The quickest approach will probably be to select the terminal specific screens for
the terminal that most closely resembles yours in function. Copy these and modify them for your
terminal.

The WYSE-50 version supports editing the normal and shadow screens side-by-side in the 132
column screen format. This is a good starting point for other terminals using this feature. Most other
80 column terminals (adm-3 etc.) closely resemble the Oume OVT-102. The WYSE-75 is set up in
ANSI mode, but the function key interpretation is more lengthy on this type unless the keys are
manually reprogrammed at the terminal.

If the specific terminal you are using is not provided for, you will be left with only the crude line editing
words L and R to edit with until you can specialize the editor for your terminal. This should be your
first task. See: LIST L R in the glossary section of this manual.

The screen editor provides the following features:

- Type over editing (WYSIWIG)
- Cursor movement with cursor direction keys and tab
- Inserting blank lines or characters
- Deleting lines or characters
- Non destructive tab
- backspace to delete character before cursor
- blanking current line
- switching between editing normal screen and its shadow
- moving to previous or next screen

These features will be self explanatory as soon as you use the editor. What you see on the screen
will be what is stored in the block. (WYSIWYG)

TERMINAL SPECIFIC SCREEN EDITOR WORDS

In order to specialize the screen editor for a terminal other than those provided for, use the terminal
specific code for the Wyse-50 terminal as a guide line. You will need to set up a "load block", one or
more blocks containing the cursor control words, and one or more blocks containing the keystroke
interpretation words.

(C) Copyright 1988 D. P. Johnson
4-1

The "load block" must contain the constant definition of WIDE? . If the terminal you are working with
has a 132 column display mode, define WIDE? as TRUE (if you want shadow screens displayed side
by side with the normal screen in this mode), otherwise define WIDE? = FALSE. This should be
defined as a SECONDARY word in the FORTH vocabulary. After this will be a series of LOAD
statements (or +LOAD) to load the common portions of the editor and the terminal specific portions
you will be defining. Fill these LOAD screen numbers in after you complete the terminal specific
words.

The "cursor control" words usually fit in a single screen, if they take more, continue with a --> . The
words that must be defined here are:

CUP

CLS
cuu

CUF
CUD
CUB
132COLS

80COLS

LKEY

EL

row col -- positions the cursor at row col
(0,0 is upper left corner of screen)
clear the screen
move the cursor up one line
move the cursor forward (right) one character
move the cursor down one line
move the cursor back (left) one character
switch the screen to 132 column display mode (a
programmed delay may be necessary after switching
modes.) If WIDE? = FALSE then make this a
dummy definition ..
i.e. : 132COLS;
switch the screen to 80 column display mode (a
programmed delay may be necessary after switching
modes.) If WIDE? = FALSE then make this a
dummy definition ..
i.e. : 80COLS ;
display a label for the editing function keys on the
bottom line(s) of the screen.
Erase the lines displayed by LKEY

To facilitate the definition of these words any other words may be defined here. E.g. ESC. to send
an escape character and a value , or ESC[to send the escape and (characters for the ANSI control
sequence.

The key interpretation words usually fit in a single block, if more are necessary continue with the word
--> . The only word that must be defined is FINDCH . FINDCH reads a key from the keyboard,
decides what action to take, and executes the appropriate word for that action. If the editing is to
terminate, FINDCH leaves a flag with the value FALSE on the stack, otherwise it leaves a TRUE flag.

There will typically be other words defined with FINDCH to do the key interpretation job, e.g. FKEY to
interpret function key strokes, and ESCKEY to interpret keys that return an <ESCAPE> and other
characters. The number and form of other words depends on what keys you decide to use for editing
functions, and what character sequences they generate when pressed. The simplest case is where
all special keys return only a single byte (as for the COC0-3 editor, look at the COC0-3 key
interpretation screen).

FKEY for the WYSE-50 interprets the function keys f1 . .f4 which are returning the default sequence:
01 40 OD , etc. Since this is a three character sequence the other two characters must be read from
the keyboard after the 01 is decoded. At this point, only the second character in the sequence is
needed to determine which function key was pushed, so the other two may be dropped. The MAYBE
statement is used to select which word to execute for each function key.

(C) Copyright 1988 D. P. Johnson
4-2

ESCKEY for the WYSE-50 interprets the edit keys to insert/delete characters and lines. Each of
these keys returns an escape followed by one more character. The escape is dropped and the
second character read. A MAYBE statement is used to select the appropriate word for each edit
function.

The edit words that need to be matched to keys are given below with their function:

WORD:

IC
DC
IL
DL
GOL
GOR
GOU
GOD
NEWL
TAB
BSP
I\ X

<>SHADOW
+SCR
-SCR
ENDED

FUNCTION:

insert a blank character at cursor position
delete character at cursor (shift rest of line left)
insert a blank line at current cursor line
delete current line
cursor left (GO Left)
cursor right
cursor up
cursor down
go to next line (carriage return)
non destructive tab (tab stops every 4th character)
destructive backspace (usually matched to DEL key)
erase current line (usually controVx)
toggle between shadow screen and normal screen
edit next screen
edit previous screen
exit editor

Printable characters in the range 20 .. 7E hex are placed on the stack and the word STCH executed to
store the character in the screen buffer. Any other characters not decoded as editing functions are
ignored (DROPed).

EDITOR USAGE

When you exit the editor, the buffer containing the screen you just edited is marked by the word
UPDATE to be saved later when the buffer is needed. If you exit to the operating system immediately
after an edit, the buffer will NOT be written back to the block file unless you execute the word SAVE­
BUFFERS or FLUSH before going to the system. It may be a good idea to execute one of these after
each EDIT, just in case you cause your system to crash. This will ensure that the file is updated.

(C) Copyright 1988 D.P. Johnson
4-3

(C) Copyright 1988 D. P. Johnson
4-4

FORTH09 ASSEMBLER

FORTH09 contains a complete 6809 assembler under the ASSEMBLER vocabulary. All standard
assembly mnemonics are supported with the exception of the branch and branch subroutine
instructions. Branches are assembled by using the same conditional constructs as in the higher level
FORTH words. (i.e. IF ELSE ENDIF BEGIN UNTIL WHILE REPEAT). A branch subroutine can be
effected by switching to the normal compile state and referencing the word which will cause a bsrflbsr
to that word to be compiled.

Since all words in FORTH09 are actually compiled to machine language, (hi level words consist
mostly of bsr/lbsr calls to other words), it is an easy matter to switch back and Forth between high
level and assembler within a word definition. The words [A and F] switch to ASSEMBLER and back
to FORTH respectively.

The assembler in FORTH09 works in reverse notation rather than the notation used by the OS-9
system assemblers ASM and RMA (or C.ASM). All operands must be listed before the mnemonics.
When you start a code definition with the word CODE • the variable STATE remains set to execution.
The assembler vocabulary words are executed to compile the machine code. This allows you to
reference high level words to develop the operands (you may use arithmetic operators etc.). The
mnemonics used and the instruction mode modifiers are the same as in the familiar 6809 assemblers.
their order of usage to create a machine instruction is for the most part however reversed.

Any CODE word must preserve the values of the U and Y registers (as well as leave the S stack
balanced). These may be used temporarily in the definition if they are restored upon exiting. The U
register is the data stack pointer for FORTH09 and the Y register points to the base address of the
data area. The value contained in the Y register is also stored at direct page address 0, so to
preserve Y you have the option of either PSHing and PULing it from the S stack or just trashing it and
doing 0 LOY to load it from the direct page. If the CODE word definition is to use any parameters
from the data stack it should of course reference these by indexing from the U register, or using
PSHU PULU.

The assembler can produce extended absolute addressed mode instruction code, but for the most
part this should never be used in OS-9 except by device drivers. since it will render your code position
dependent and therefore illegal as an OS-9 module.

SAMPLE INSTRUCTIONS:

HEX
0 LOY
100 LDD
0 ,U LDD
4 ,U LDD
40 ,Y LDD
1000 ,S LOX
,U++ LDD
,--S LDD
-4 ,PC LDD
0 , X [] LOA
,--S [] LOU
5 ,PC [] LDD
A ,X LDD
B ,Y STA
D ,U LSR
D ,U [) ROL
ABX
INCA
SWI2

direct mode (load y from address 0)
extended mode (load d from address $1 00)
indexed no offset (the zero is necessary)
indexed 5 bit offset
indexed 8 bit offset
indexed 16 bit offset
indexed with auto increment
indexed with auto decrement
pc relative
0 offset indirect indexed
auto decrement indirect
indirect constant offset from PC
register offset from index
register offset from index
register offset from index
register offset indirect indexed
inherent
inherent
inherent

(C) Copyright 1988 D. P. Johnson
5-1

55 # LDA

A B CC DP PSHU

D XY U PC PULS

X Y TFR

A B EXG

immediate
push the a,b,cc,dp registers
pull the d,x,y,u,pc registers
transfer the X register to Y
exchange the A and B registers

NOTE: In the above sample instruction list the symbol[] might appear to be a square box because of
the character spacing. It is actually the left and right square bracket characters together ([]) and is
used to denote indirect addressing.

When working in HEX keep in mind that A B CC and D are defined as registers, so for a hex literal
value of for instance $0 use a 0 prefix, i.e. OD.

As stated before, the FORTH09 assembler does not include branch instructions. This is because of
the need of developing the branch address without labels. The branch instructions are generated by
the conditional statements, IF ENDIF, BEGIN UNTIL , etc. as in Forth. The ASSEMBLER vocabulary
contains different versions of these from the FORTH vocabulary. Since the ASSEMBLER vocabulary
will be the first in the search order when compiling a CODE word, the ASSEMBLER version of the
conditionals will be found first in the search and used. Let's compare the use of conditional branching
in the normal assembler and FORTH09 ASSEMBLER:

In normal Motorola assembler notation:

START

THERE

LOB #5
LSR ,S

ROR 1,S

DECB

BNE THERE

In FORTH09 ASSEMBLER:

5 # LDB

BEGIN

0 ,S LSR

1 ,S ROR

DECB

0=

UNTIL

The second code example produces identical object code to the first. Notice in the first example that
the BNE instruction branches as long as the flags indicate that the B register is "Not Equal" to zero.
In the second example " 0= UNTIL " indicates that the branch is to be taken until the B register equals
zero, i.e. branch whenever B <> zero. The condition you indicate in the FORTH09 assembler will
always be the opposite to what the branch opcode mnemonic indicates. I.E. 0<> will generate beq, 0<

will generate bpi, 0>= will generate bmi, etc. The synonyms .CS. for carry set, and .CC. for carry
clear are provided for U< and U>= respectively. If you find you have difficulty getting the branch
conditions correct, you may want to define similar synonyms for other conditions.

Refer to the words: ASSEMBLER ;CODE ;CODES CODE END-CODE [A and F] in the glossary.

(C) Copyright 1988 D.P. Johnson
5-2

GLOSSARY NOTATION

Portions of the glossary are copied from the FORTH-83 STANDARD, with perm1ss1on and are
Copyright 1983 by Forth Standards Team. (Specifically the content of standard word definitions and
this preceding section).

ORDER

The glossary definitions are listed in ASCII alphabetical order.

Stack Notation

The stack parameters input to and output from a definition are described using the notation:
before -- after

before
after

stack parameters before execution
stack parameters after execution

In this notation the top of the stack is to the right. Words may also be shown in context when
appropriate.

Unless otherwise noted, all stack notation describes execution time. If it applies at compile time, the
line is followed by: (compiling) .

Attributes

Capitalized symbols after the stack notation indicate attributes of the defined words:

83R The word is part of the Forth-83 Required word set
83D The word is part of the Forth-83 Double Number Extension word set
83A The word is part of the Forth-83 Assembler extension word set
83C The word is part of the Forth-83 Controlled reference word set
83S The word is part of the Forth-83 System Extension word set
83U The word is part of the Forth-83 Uncontrolled reference word set
83E The word is part of the Forth-83 Experimental Proposals
S The word is a SECONDARY word.
C The word may only be used during the Compilation of a colon definition.
I The word is IMMEDIATE and will execute during compilation, unless special action is

taken.
E The word may be Executed only (not compiled).

Pronunciation

The natural language pronunciation of word names is given in double quotes (") where it differs from
English Pronunciation.

STACK PARAMETERS

Unless otherwise stated, all references to numbers apply to 16-bit signed integers. The implied range
of values is shown as {from .. to}. The content of an address is shown by double braces, particularly
for the contents of variables, i.e. BASE {{2 .. 72}}.

The following are the stack parameter abbreviations and types of numbers used throughout the
glossary. These abbreviations may be suffixed with a digit to differentiate mutliple parameters of the
same type.

6-1

•

Stack.
Abbrv
flag
true
false
b
char
8b
16b
n
+n
u
w

addr
32b

d

+d
ud
wd

sys

Number
Type
boolean
boolean
boolean
bit
character

8 arbitrary bits (byte)
16 arbitrary bits
number (weighted bits)
positive number
unsigned number
unspecified weighted number

(n or u)
address (same as u)
32 arbitrary bits
double number

positive double number
unsigned double number
unspecified weighted double

number (d or ud)

0, 1, or more system
dependent stack entries

Range in Minimum
Decimal Field
O=false, else=true 16
-1 (as a result) 16
0 16
{0 .. 1} 1
{0 .. 127} 7

not applicable 8
not applicable 16
{-32, 768 .. 32767} 16
{0 .. 32,767} 16
{0 .. 65,536} 16

{-32,768 .. 65,535} 16
{0 .. 65,535} 16
not applicable 32
{-2, 147,483,648 ..

2,147,483,647} 32
{0 .. 2, 147,483,647} 32

{0 . .4,294,967,295} 32

{-2, 147,483,648 ..
4,294,967,295} 32

not applicable na

Any other symbol refers to an arbitrary signed 16-bit integer in the range {-32,768 .. 32,767}, unless
otherwise noted.

Because of the use of two's complement arithmetic, the signed 16-bit number (n) -1 has the same bit
representation as the unsigned number (u) 65,535. Both of these numbers are within the set of
unspecified weighted numbers (w).

INPUT TEXT

<name>

CCC

An arbitrary FORTH word accepted from the input stream. This notation refers to text from
the input stream, not to values on the data stack.

A sequence of arbitrary characters accepted from the input stream until the first occurrence of
the specified delimiting character. The delimiter is accepted from the input stream, but is not
one of the characters ccc and is therefore not otherwise processed. This notation refers to
text from the input stream, not to values on the data stack. Unless otherwise noted, the
number of characters accepted may be from 0 to 255.

6-2

16b addr -- 83R "store"
16b is stored at addr.

!V 16b -- S,C,I "store-v"
Used in the form: 16b !V <name>

#0

<name> can be the name of a PRIMARY VAR or VARIABLE . !V compiles fast inline
code to remove 16b from the stack and store it into the VAR or VARIABLE data
memory. If the variable data memory is in the direct page (i.e. doff < 100 hex when the
variable was defined) then the code will be even more compact and faster.

-- addr +n S,l "quote"
-- (compiling)
Used in the form " ccc" when compiling, a string literal ccc will be compiled such that
during execution the address addr and string length +n will be left on the stack. If in
execution mode, the string is moved to PAD.

+d1 -- +d2 83R "sharp"
The remainder of +d1 divided by the value of BASE is converted to an ASCII character
and appended to the output string toward lower memory addresses. +d2 is the quotient
and is maintained for further processing. Typically used between <# and #:. .

-- d "double-zero"
A double number constant, d is zero.

#> 32b -- addr +n 83R "sharp-greater"
Pictured numeric output conversion is ended dropping 32b. addr is the address of the
resulting output string. +n is the number of characters in the output string. addr and +n
together are suitable for TYPE.

#S +d -- 0 0 83R "sharp-s"
+d is converted appending each resultant character into the pictured numeric output
string until the quotient (see:#) is zero. A single zero is added to the output string if the
number was initially zero. Typically used between <# and #:. .

#TIB -- addr 83R,S "number-t-i-b"
The address of a variable containing the number of bytes in the text input buffer. #TIB is
accessed by WORD when BLK is zero.

$ S interpret only

'FREE

Used to invoke an OS-9 shell command from within the Forth execution environment.
The remainder of the input line after the space following$ is the shell line. E.g. $ dir

-- addr 83R,S "tick"
Used in the form: · <name>
addr is the compilation address of <name>. An error condition exists if <name> is not
found in the currently active search order.

-- addr "tick-free"
addr is the address of the first unused byte of process DATA memory. See: MEMLIMIT

GLOSSARY
6-3

(compiling)
Used in the form: (ccc)

83R,S,I "paren"

The characters ccc, delimited by) (closing parenthesis), are considered comments.
Comments are not otherwise processed. The blank following (is not part of ccc. (may
be freely used while interpreting or compiling. The number of characters in ccc may be
from zero to the number of characters remaining in the input stream up to the closing
parenthesis.

(.) n -- "sub-dot"
Displays a number in the current number BASE in the manner of . <dot>. but without the
trailing space.

(;) S "sub-semi"
Updates the permanent dictionary head pointer and code and data allocation pointers,
copying the temporary working values to the permanent pointers Used by ; at the end
of a word definition when the definition is completed correctly. (;) makes the dictionary
name entry made by CREATE appear in the dictionary and makes permanent memory
allocated with ALLOT or ALLOT_D.

(COMPILE} addr -- S "sub-compile"
Compiles the word whose header address "addr'' is on the stack. In FORTH09 the
compilation is accomplished by compiling a bsr or lbsr instruction to the word's code
field.

(CREATE} -- S,C "sub-create"

(FORGET}

*

*I

*/MOD

When executed will start a word definition by making a dictionary entry for the next word
in the input stream. In contrast to CREATE , words started by (CREATE} do not push
their parameter field address on the stack at runtime. (CREATE} does not affect the
current value of STATE . The action of :<:Colon> is to execute (CREATE} and change
the current STATE to compilation.

addr -- S "sub-forget"
addr is the address of a counted string (the byte at addr is the character count, and
addr+1 is the first string byte) of a word name to forget in the manner of FORGET. See:
FORGET

w1 w2 -- w3 83R "times"
w3 is the least-significant 16 bits of the arithmetic product of w1 times w2.

n1 n2 n3 -- n4 83R "times-divide"
n1 is first multiplied by n2 producing an intermediate 32-bit result. n4 is the floor of the
quotient of the intermediate 32-bit result divided by the divisor n3. The product of n1
times n2 is maintained as an intermediate 32-bit result for greater precision than the
otherwise equivalent sequence: n1 n2 • n3 I . An error condition results if the divisor is
zero or if the quotient falls outside of the range {-32,768 .. 32,767}.

n1 n2 n3 -- n4 n5 83R "times-divide-mod"
n1 is first multiplied by n2 producing an intermediate 32-bit result. n4 is the remainder
and n5 is the floor of the quotient of the intermediate 32-bit result divided by the divisor
n3. A 32-bit intermediate product is used as for */ . n4 has the same sign as n3 or is
zero. An error condition results if the divisor is zero or if the quotient falls outside of the
range {-32,768 .. 32,767}

GLOSSARY
6-4

+ w1 w2 -- w3 83R "plus"

w3 is the arithmetic sum of w1 plus w2.

+! w1 addr -- 83R "plus-store"

++

w1 is added to the w value at addr using the convention for + . This sum replaces the
original value at addr.

S,C,I "plus-plus"

Used in the form: ++<name>
<name> can be the name of a PRIMARY VAR or VARIABLE . ++compiles fast inline
code to increment the value of the variable by one. If the variable occupies the direct
page the code will be more compact and faster.

+- u n1 -- n "plus-minus"

+=

+BLK

+LOAD

+LOOP

+THRU

The sign of n1 is applied to u, leaving n. I.E. if n1 is negative then u is negated.

1 6b -- S,C,I "plus-equal"
Used in the form 16b += <name>

<name> is the name of a PRIMARY VAR or VARIABLE. Compiles inline code which at
runtime will remove 16b from the stack and add it to the value of <name> storing the
result at <name> . The most efficient code is produced when <name> occupies direct
page storage.

n1 -- n2 s "plus-b-1-k"
n2 is the sum of n1 plus the value of the variable BLK .

n -- S "plus-load"
Interpretation is continued at the current BLK number plus n .

n -- 83R,S,C,I "plus-loop"
sys -- (compiling)
n is added to the loop index. If the new index was incremented across the boundary
between limit-1 and limit then the loop is terminated and loop control parameters are
discarded. When the loop is not terminated, execution continues to just after the
corresponding DO. sys is balanced with its corresponding DO. See: DO

n1 n2 -- S "plus-thru"

The consecutive blocks beginning with the current value of BLK plus n1 through the
current value of BLK plus n2 are loaded.

16b -- 83R,S
ALLOT space for 16b then store 16b at HERE 2- .

w1 w2 -- w3 83R
w3 is the result of subtracting w2 from w1.

S,C,I
Used in the form: --<name>

"comma"

"minus"

"minus-minus"

<name> is the name of a PRIMARY VAR or VARIABLE . Code is compiled to
decrement the value of <name> by one. If <name> occupies the direct page the code
will be shorter and faster.

GLOSSARY

6-5

--> 83C,S,I "next-block"
-- (compiling)

Continue interpretation on the next sequential block. May be used within a colon
definition that crosses a block boundary.

-ROT 16b1 16b216b3 -- 16b316b1 16b2 "minus-rote"
The top three sixteen bit stack elements are rotated in the reverse direction from ROT,
i.e. the top element is moved below the next two.

-TRAILING addr +n1 -- addr +n2 83R "dash-trailing"

"

.(

. BASE

.R

.RS

The character count n1 of a text string beginning at addr is adjusted to exclude trailing
spaces. If +n1 is zero. then +n2 is also zero. If the entire string consists of spaces, then
+n2 is zero.

n -- 83R "dot"
The absolute value of n is displayed in a free field format with a leading minus sign if n is

negative. (A single space is displayed after the number).

(compiling)
Used in the form:

." ccc"

83R,S,I,C "dot-quote"

Later execution will display the characters ccc up to but not including the delimiting "
(close-quote). The blank following." is not part of ccc.

(compiling)
Used in the form:

.(CCC)

83R,S,I "dot-paren"

The characters ccc up to but not including the delimiting) (closing parenthesis) are
displayed. The blank following .(is not part of ccc.

addr -- S "dot-dot"
Sixteen bytes starting at addr are displayed as hex numbers.

addr -- S "dot-dot-dot"
48 bytes starting at addr are displayed as hex numbers, (3 lines of 16 bytes) .

S "dot-base"
The current value of the variable BASE is displayed in decimal.

n +n -- 83C "dot-r''
n is converted using BASE and then displayed right aligned in a field +n characters
wide. A leading minus sign is displayed if n is negative. If the number of characters
required to display n is greater than +n an error condition exists.

s "dot-r-s"
The elements on the return stack are displayed i the current number base, as unsigned
numbers. The display is in order with the deepest element displayed first. The last
three items on the return stack are not displayed (these are return address for the
interpreter to get to the code of .RS). If nothing is on the return stack (other than the
minimum three system addresses) then the message "empty" is displayed. The
contents of the return stack are left unchanged. This word is useful for debugging after
a word "BREAK" .

GLOSSARY

6-6

.S n1 .. nx -- n1 .. nx S,l "dot-s"

/MOD

0

0"

0=

The elements on the stack n1 through nx are displayed in the current number base. The
display is in order, i.e. the deepest number on the stack is displayed first. The contents
of the stack are left unchanged. If the stack is empty then "empty" is displayed. See: S.

n1 n2 -- n3 83R "divide"
n3 is the floor of the quotient of n1 divided by the divisor n2. An error condition results if
the divisor is zero or if the quotient falls outside of the range {-32,768 .. 32,767}.

n1 n2 -- n3 n4 83R "divide-mod"
n3 is the remainder and n4 the floor of the quotient of n1 divided by the divisor n2. An

error condition results if the divisor is zero or if the quotient falls outside of the range {-
32,768 .. 32,767}.

-- 0 "zero"
A 16b zero is left on the stack. (This word is implemented more efficiently than a

Constant 0 would be.

-- addr
Used in the form:

0" ccc"

s "zero-quote"

addr is the address of the null terminated string ccc. If compiling, a literal null terminated
string is compiled such that at execution the address of this string will be left on the
stack. If used in execution mode, the string will be placed in PAD.

n --flag 83R
flag is true if n is less than zero (negative).

w -- flag 83R
flag is true if w is zero.

n --flag 83R
flag is true if n is greater than zero.

"zero-less"

"zero-equals"

"zero-greater"

1 + w1 -- w2 83R "one-plus"
w2 is the result of adding one to w1 according to the operation of + .

1- w1 -- w2 83R "one-minus"
w2 is the result of subtracting one from w1 according to the operation of - .

132COL? -- flag S
A constant used as a flag to control whether SHOW will print shadow screen side by
side with normal screens. If 132COL? is set to TRUE this will happen.

2! 32b addr -- 830 "two-store"
32b is stored at addr.

2+ w1 --w2 83R "two-plus"
w2 is the result of adding two to w1 according to the operation of+ .

2- w1 -- w2 83R "two-minus"
w2 is the result of subtracting two from w1 according to the operation of - .

GLOSSARY

6-7

2/ n1 -- n2 83R "two-divide"

2@

n2 is the result of arithmetically shifting n1 right one bit. The sign is included in the shift
and remains unchanged.

addr -- 32b 830 "two-fetch"
32b is the value at addr.

2* w1 -- w2 83C "two-times"
w2 is the result of shifting w1 left one bit. A zero is shifted into the vacated bit position.

2CONSTANT 32b -- 83D,S "two-constant"

2DROP

2DUP

20VER

2ROT

2SWAP

2VARIABLE

A defining word executed in the form:
32b 2CONST ANT <name>

Creates a dictionary entry for <name> so that when <name> is later executed, 32b will
be left on the stack.

32b -- 830 "two-drop"
32b is removed from the stack.

32b -- 32b 32b 830 ''two-dupe"
Duplicate 32b.

32b1 32b2 -- 32b1 32b2 32b3 830 "two-over"
32b3 is a copy of 32b1 .

32b1 32b2 32b3 -- 32b2 32b3 32b1 830 "two-rote"
The top three double numbers on the stack are rotated, bringing the third double number
to the top of the stack.

32b1 32b2 -- 32b2 32b1 830 "two-swap"
The top two double numbers are exchanged.

83D,S "two-variable"
A defining word executed in the form:

2VARIABLE <name>
A dictionary entry for <name> is created and four bytes are ALLOTed in its parameter
field. This parameter field is to be used for contents of the variable. The application is
responsible for initializing the contents of the variable which it creates. When <name> is
later executed, the address of its parameter field is placed on the stack. NOTE: In

FORTH09 the variable parameter field is in process data memory.

-- sys 83R,S "colon"
A defining word executed in the form:

:<name> ... ;
Creates a word definition for <name> in the compilation vocabulary and sets compilation
state. The search order is changed so that the first vocabulary in the search order is
replaced by the compilation vocabulary. The compilation vocabulary is unchanged. The
text from the input stream is subsequently compiled. <name> is called a "colon
definition". The newly created word definition for <name> cannot be found in the
dictionary until the corresponding ; or ;CODE is successfully processed. An error
condition exists if a word is not found and cannot be converted to a number or if, during
compilation from mass storage, the input stream is exhausted before encountering ; or
;CODE . sys is balanced with its corresponding ; .

GLOSSARY

6-8

;CODE

;CODES

;S

<

<#

<>

<MARK

83R,S,C,I "semi-colon"
sys -- (compiling)
Stops compilation of a colon definition, allows the <name> of this colon definition to be
found in the dictionary, sets interpret state and compiles EXIT (or equivalent). sys is
balanced with its corresponding : .

83A,S,C,I "semi-colon-code"
sys1 -- sys2 (compiling)
Used in the form:

: <namex> ... <create> ... ;CODE ... END-CODE
Stops compilation, terminates the defining word <namex> and executes
ASSEMBLER. When <namex> is executed in the form:<namex> <name> to define the
new <name>, the execution address of <name> will be the address of the code
sequence following the ;CODE . Execution of any <name> will cause this machine code
sequence to be executed, this machine code sequence will reside in the primary code
area in FORTH09 even though the colon definition may be for a secondary word. syst
is balanced with its corresponding : . sys2 is balanced with its corresponding END­
CODE. See: CODE ;CODES DOES> DOES>S

S,C,I "semi-colon-code-s"
sys1 -- sys2 (compiling)
Used in the form:

: <namex> ... <Create> ... ;CODES ... END-CODE
Functions the same as ;CODE except the machine code defined between ;CODES and
END-CODE will reside in the SECONDARY code area. Used to make defining words
that will only be used by secondary code. See: ;CODE

S,E
Stop interpretation of a block

n1 n2 -- flag 83R
flag is true if n1 is less than n2.

Initialize pictured numeric output conversion
The words: # #> #S <# HOLD SIGN

83R

"semi-s"

"less-than"

"less-sharp"

can be used to specify the conversion of a double number into an ASCII text string
stored in right-to-left order. NOTE: see also the non-standard word _SIGN .

w1 w2 -- flag 83U
flag is true if w1 is not equal to w2.

-- addr 83S,S,C
Used at the destination of a backward branch.
<RESOLVE to compile a branch address.

"not-equal"

"backward-mark"
addr is typically only used by

<RESOLVE addr -- 83S,S,C "backward-resolve"

=

Used at the source of a backward branch after either BRANCH or ?BRANCH .
Compiles a branch address using addr as the destination address.

w1 w2 --flag
flag is true if w1 is equal to w2.

83R

GLOSSARY
6-9

"equals"

>

><

>BODY

n1 n2 -- flag 83R
flag is true if n1 is greater than n2. (signed comparison).

"greater-than"

16b1 -- 16b2 83U "byte-swap"
16b2 is the result of swapping the high and low bytes within 16b1.

addr1 -- addr2 83R,S "to-body"
addr2 is the parameter field address corresponding to the compilation address addr1.

>ERROR# n -- "to-error-number"
n is stored in the VAR ERROR# (which records the errors returned by OS-9 system call
words).

>IN -- addr 83R,S "to-in"

>IN'

The address of a variable which contains the present character offset within the input
stream {{O .. the number of characters in the input stream}}.

-- n s "to-in-prime"
or n --
>IN' is a VAR used to record the value of >IN before it is cleared by QUIT so that the
location of an error may be determined.

>MARK -- addr 83S,S,C "forward-mark"
Used at the source of a forward branch. Typically used after either BRANCH or
?BRANCH . Compiles space in the dictionary for a branch address which will later be
resolved by >RESOLVE .

>PATH addr -- S "to-path"
addr is the address of an OS-9 pathname string. All output to path 1 (normally the
screen) is redirected to the new path designated by >PATH . The new path is created
using the OS-9 !$CREATE system call. If an error occurs when attempting the create
the path, the output remains directed to the screen. See: >PATH+ >SCREEN
>PRINTER

>PATH+ addr -- S "to-path-plus"
addr is the address of an OS-9 pathname string. All output to path 1 (normally the
screen) is redirected and appended to the end of the designated path. The designated
path is opened with the OS-9 I$0PEN system call and must be accessible otherwise the
output remains directed to the screen. See: >PATH >SCREEN >PRINTER

>PRINTER -- S "to-printer"
The output of all Forth words which normally write to the screen (path 1) is redirected to
the printer. This remains in effect until output is again redirected with one of the words:
>SCREEN >PATH >PATH+ . NOTE: The default printer path for this word is set to
"/p 1 ", you must edit the source for this word and recompile it in order to use a different
printer path.

16b -- 83R,C "to-r''
Transfers 16b to the retum stack.

>RESOLVE addr -- 83S,S,C "forward-resolve"
Used at the destination of a forward branch. Calculates the branch address (to current
location in the dictionary) using addr and places this branch address into the space left
by >MARK.

GLOSSARY
6-10

>SCREEN S "to-screen"
Redirects the output of all Forth words that write to path 1 (the screen) back to the
screen. Used after redirecting screen output with >PRINTER >PATH or >PATH+ to
return output to the screen.

?BRANCH flag -- 83S,S,C "question-branch"
When used in the form: COMPILE ?BRANCH a conditional branch operation is
compiled. See BRANCH for further details. When executed, if flag is false the branch is
performed as with BRANCH . When flag is true execution continues at the compilation
address immediately following the branch address.

?BRANCH_ flag -- S,C
Equivalent to the sequence: COMPILE ?BRANCH . Causes the compilation of a
conditional branch operation. When executed, if flag is false the branch is performed as
with BRANCH . When flag is true execution continues at the compilation address
immediately following the branch address.

?T BRANCH_ flag -- S,C

?DUP

?EXEC

?LEAVE

?PAIR

@

@V

ABORT

Causes the compilation of a conditional branch with the opposite polarity of ?BRANCH.
I.e. when the branch code is executed the branch will be taken if the flag is TRUE.
When the flag is false execution will continue at the compilation address immediately
following the branch address.

16b -- 16b 16b
or 0 -- 0

Duplicate 16b if it is non-zero.

83R "question-dup"

S "q-exec"
An error message is displayed and ABORT executed if the current state is not
execution.

flag -- S,C "question-leave"
Causes termination of a do loop if flag is true. May only be used within a DO loop
construct.

u1 u2 -- s "q-pair"
Displays a message and ABORTs is u1 <> u2 .

addr -- 16b 83R "fetch"
16b is the value at addr.

-- 16b S,C,I "fetch-v"
Used in the form: @V <name>
<name> is the name of a PRIMARY VAR or VARIABLE. Compiles inline code to fetch
the value of the variable and place it on the stack. The most efficient code results when
the variable occupies the direct page.

83R,S "abort"
Clears the data stack and performs the function of QUIT . No message is displayed.

GLOSSARY
6-11

ABORT" flag -- 83R,S,C,I "abort-quote"
(compiling)

Used in the form:
flag ABORT' ccc"

When later executed, if flag is true the characters ccc, delimited by " (close-quote) are
displayed and then a system dependent error abort sequence, including the function of
ABORT , is performed. If flag is false, the flag is dropped and execution continues. The
blank following ABORr' is not part of ccc.

ABS n -- u 83R "absolute"
u is the absolute value of n. If n is -32,768 then u is the same value.

AGAIN 83U,S,C,I
sys -- (compiling)
Effect an unconditional jump back to the start of a BEGIN AGAIN loop. sys is balanced
with its corresponding BEGIN . See; BEGIN

ALLOT w -- 83R,S
Allocates w bytes in the dictionary. The address of the next available dictionary location
is updated accordingly. (NOTE: allot allocates space in the code area, See: ALLOT_D)

ALLOT _D w -- S "allot-data"
Allocates w bytes of process data space. NOTE: In the Forth-83 standard no distinction
is made between code space and data space, however this distinction is necessary for
processes running under OS-9, hence the distinction here.

ALSO 83E,S
The transient vocabulary becomes the first vocabulary in the resident portion of the
search order. Up to the last five resident vocabularies will also be reserved, in order,
forming the resident search order.

AND 16b1 16b2 -- 16b3 83R
16b3 is the bit-by-bit logical 'and' of 16b1 with 16b2.

ASCII -- +n 83U,S,I
Used in the form: ASCII c
+n is the ASCII character value of c which is the first (or only) letter of the next word in
the input stream after ASCII .

ASSEMBLER 83A,S
Execution replaces the first vocabulary in the search order with the ASSEMBLER
vocabulary. See: VOCABULARY

A[S,C,I ·a-left-bracket"

BASE

Invokes t he ASSEMBLER vocabulary without changing STATE . This is used to
compile assembler words in a definition such that when later executed the assembly
code will be compiled (at location HERE). The corresponding F[shifts back to the
FORTH vocabulary. Contrast this with [A which switches to assembler in the execute
mode resulting in compilation of the assembly words inline in the current definition.

-- addr 83R
The address of a variable containing the current numeric conversion radix. {{2 .. 72}}

GLOSSARY
6-12

BEGIN

BLANK

BLK

BLK'

83R,S,C,I
-- sys (compiling)
Used in the form:

BEGIN ... flag UNTIL
or

BEGIN ... flag WHILE ... REPEAT
BEGIN marks the start of a word sequence for repetitive execution. A BEGIN-UNTIL
loop will be repeated until flag is true. A BEGIN-WHILE-REPEAT loop will be repeated
until flag is false. The words after UNTIL or REPEAT will be executed when either loop
is finished. sys is balanced with its corresponding UNTIL or WHILE .

addr u -- 83C
u bytes of memory beginning at addr are set to the ASCII character value for space. No
action is taken if u is zero.

-- addr 83R,S "b-1-k"

The address of a variable containing the number of the mass storage block being
interpreted as the input stream. If the value of BLK is zero the input stream is taken
from the text input buffer. {{O .. the number of blocks available -1 }}

-- n S "b-1-k-prime"

n is the former value of BLK before it was set to zero by ABORT .

BLK-ERASE u -- S "b-1-k-erase"
Mass storage block u and its shadow block are erased (to all space characters).

BLKPTR -- addr S "block-pointer"
addr is the address of the oldest block buffer structure in the chain. BLKPTR is type
VAR. The value at addr is the link to the next buffer, actual buffer starts at addr +2.

BLOCK u -- addr 83R ,S
addr is the address of the assigned buffer of the first byte of block u. If the block
occupying that buffer is not block u and has been UPDATEd it is transferred to mass
storage before assigning the buffer. If block u is not already in memory, it is transferred
from mass storage into an assigned block buffer. A block may not be assigned to more
than one buffer. If u is not an available block number, an error condition exists. Only
data within the last buffer referenced by BLOCK or BUFFER is valid. The contents of a

block buffer must not be changed unless the change may be transferred to mass
storage.

BRANCH 83S,S,C
When used in the form: COMPILE BRANCH an unconditional branch operation is
compiled. A branch address must be compiled immediately following this compilation
address. The branch address is typically generated by following BRANCH with
<RESOLVE or >MARK .

BRANCH_ S,C
When executed, compiles an unconditional branch operation as in: COMPILE BRANCH
. See: BRANCH for more details.

GLOSSARY
6-13

BREAK s

When BREAK is compiled into a word definition, and later executed, it causes the
execution of that word to be suspended and the interpreter to be entered. Any words
can then be executed to aid in debugging, and then the execution of the original word
resumed by executing the word GO . If any error condition causes the words ABORT or
QUIT to executed then execution of the word with the BREAK can not be resumed.
See: GO .S .RS

BUFFER u -- addr 83R,S
Assigns a block buffer to block u. addr is the address of the first byte of the block within
its buffer. This function is fully specified by the definition for BLOCK except that if the
block is not already in memory it might not be transferred from mass storage. The
contents of the block buffer assigned to block u by BUFFER are unspecified.

C! 16b addr -- 83R "c-store"
The least-significant 8 bits of 16b are stored into the byte at addr.

C, 16b -- 83C,S "c-comma"
ALLOT one byte then store the least-significant 8 bits of 16b at HERE 1- .

C@ addr -- Sb 83R "c-fetch"
8b is the contents of the byte at addr. NOTE: a 16 bit word is actually put on the stack
with the upper 8 bits being zero.

CAPS -- flag S
CAPS is a VAR used as a flag by WORD. If caps is set to true (e.g. TRUE TO CAPS),
then word translates all characters from the input stream to uppercase. The effect is the
words in lowercase in the input stream will match uppercase only words in the dictionary.
While CAPS is set to TRUE it is not possible to match any word in the dictionary
containing one or more lowercase letters.

CMDLINE -- addr "command-line"

CMOVE

addr is the address of the shell command line parameters when the PRIMARY SAVEd
program was invoked. In the development environment it is the command line when
FLOAD was invoked. CMDLINE is type VAR so the value may be altered for testing.

addr1 addr2 u -- 83R "c-move"
Move u bytes beginning at address addr1 to addr2. The byte at addr1 is moved first,
proceeding toward high memory. If u is zero nothing is moved.

CMOVE> addr1 addr2 u -- 83R "c-move-up"

CODE

Move the u bytes at address addr1 to addr2. The move begins by moving the byte at
(addr1 plus u minus 1) to (addr2 plus u minus 1) and proceeds to successively lower
addresses for u bytes. If u is zero nothing is moved. (Useful for sliding a string towards
higher addresses).

-- sys 83A,S
A defining word executed in the form:

CODE <name> ... END-CODE
Creates a dictionary entry for <name> to be defined by a following sequence of
assembly language words. Words thus defined are called code definitions. This newly
created word definition for <name> cannot be found in the dictionary until the
corresponding END-CODE is successfully processed (see: END-CODE). Executes
ASSEMBLER . sys is balanced with its corresponding END-CODE .

GLOSSARY
6-14

COMP?

COMPILE

s "compiling-?"
Displays an error message and ABORTs if not compiling.

83R,S,C
Typically used in the form:

:<name> ... COMPILE <namex> ... ;
When <name> is executed, the compilation address compiled for <namex> is compiled
and not executed. <name> is typically immediate and <namex> is typically not
immediate.

COMPLIMIT -- n or TO n -- S "compile-limit"
A VAR containing the maximum number of bytes to compile as inline code rather than as
a subroutine call. If a CODE word's flag bits indicate that it may be compiled inline, and
the total code bytes are less than or equal to COMPLIMIT when that word is compiled
into a new word definition, then the code word is copied as inline code (less the rts)
rather than as a bsr or lbsr to the code.

COMPONL Y S "compilation-only"

CONSTANT

Sets a flag bit in the dictionary header of the last defined word to indicate that the word
may be compiled only, i.e. used within a colon definition. If an attempt is made to
execute the word directly, an error message will be displayed and a call to ABORT
executed.

16b --
A defining word executed in the form:

16b CONSTANT <name>

83R,S

creates a dictionary entry for <name> so that when <name> is later executed, 16b
will be left on the stack.

CONTEXT -- addr 83S,S
The address of a variable which determines the dictionary search order. In FORTH09
addr is the address of an array of 7 pointers pointing to the vocabulary tables of the
vocabularies in the search order.

CONVERT +d1 addr1 -- d2 addr2 83R
+d2 is the result of converting the characters within the text beginning at addr1 + 1 into
digits, using the value of BASE , and accumulating each into +d2 after multiplying +d1
by the value of BASE . Conversion continues until an unconvertible character is
encountered. addr2 is the location of the first unconvertible character.

CONVEY u1 u2 u3 -- s

COPY

COUNT

CR

The range of mass storage screens and their shadow screens from u1 through u2 is
exchanged with the range of screens beginning with u3 . See also: SLIDE EXCHANGE

u1 u2 -- S
The mass storage screen u1 and its shadow are copied to screen u2 (and its shadow).

addr1 -- addr2 +n 83R
addr2 is addr1 + 1 and +n is the length of the counted string at addr1. The byte at addr1
contains the byte count +n. Range of +n is {0 .. 255}

83R "c-r"

Displays a carriage-return and line-feed or equivalent operation.

GLOSSARY
6-15

CR" -- addr u S,l "c-r-quote"
(compiling)

Used in the form CR" ccc" . If compiling, compiles a literal string ccc terminated with an
ASCII cr, such that the address addr, and byte count u, of this string is placed on the
stack at runtime. The count u includes the appended CR character. If in execution
mode, this string is placed in PAD.

CREATE 83R,S
A defining word executed in the form:

CREATE <name>
creates a dictionary entry for <name>. After <name> is created, the next available
dictionary location is the first byte of <name>'s parameter field. When <name> is
subsequently executed, the address of the first byte of <name>'s parameter field is left
on the stack. CREATE does not allocate space in <name>'s parameter field.

CURHEAD -- addr S
addr is the address of the current dictionary head either PRIMARY or SECONDARY

depending upon the value of PST ATE. CURHEAD is type VAR.

CURRENT
-- addr 83S,S

D!

D*

The address of a variable specifying the vocabulary in which new word definitions are
appended.

32b addr --
32b is stored at addr. (This is a synonym for 2!).

wd1 wd2 -- wd3
wd3 is the result of multiplying wd1 by wd2.

wd1 wd2 -- wd3 83R
wd3 is the arithmetic sum of wd1 plus wd2.

"d-store"

"d-times"

"d-plus"

D+- ud n -- d "d-plus-minus"

D-

D.

D.R

d is the result of applying the sign of n to ud. I.e. if n is negative then ud is negated.

wd1 wd2 -- wd3 830
wd3 is the result of subtracting wd2 from wd1.

d -- 830

"d-minus"

"d-dot"
The absolute value of d is displayed in a free field format. A leading negative sign is
displayed if d is negative. (A single space is displayed after the number).

d +n -- 830 "d-dot-r''
d is converted using the value of BASE and then displayed right aligned in a field +n
characters wide. A leading minus sign is displayed if d is negative. If the number of
characters required to display d is greater than +n, an error condition exists.

Dl d1 d2 -- d3 "d-slash"

DO=

d3 is the floor of the quotient of d1 divided by d2. An error condition exists if the divisor is
zero.

wd -- flag
flag is true if wd is zero.

830

GLOSSARY

6-16

"d-zero-equals"

D2/ d1 -- d2 830 "d-two-divide"
d2 is the result of d1 arithmetically shifted right one bit. The sign is included in the shift
and remains unchanged.

D< d1 d2 -- flag 83R "d-less-than"

D=

D@

DABS

flag is true if d1 is less than d2 according to the operation of < except extended to 32
bits.

wd1 wd2 --flag 830 "d-equal"
flag is true if wd1 equals wd2.

addr -- 32b "d-fetch"
32b is the value at addr. (This is a synonym for 2@).

d -- ud 830 "d-absolute"
ud is the absolute value of d. If d is -2,147,483,648 then ud is the same value.

DCONSTANT 32b -- s "d-constant"

DDROP

DDUP

DECIMAL

A defining word executed in the form:
32b OCONST ANT <name>

Creates a dictionary entry for <name> so that when <name> is later executed, 32b will
be left on the stack. (This is a synonym for 2CONSTANT).

32b -- "d-drop"
32b is removed from the stack. (This is a synonym for 2DROP).

32b -- 32b 32b "d-dupe"
Duplicate 32b. (This is a synonym for 2DUP).

83R
Set the input-output numeric conversion base to ten.

DEFINITIONS 83R,S

DEPTH

The compilation vocabulary is changed to be the same as the first vocabulary in the
search order.

-- +n 83R
+n is the number of 16-bit values contained in the data stack before +n was placed on
the stack.

DIGIT c -- n flag or
c -- flag
Attempts to convert the ASCII character c to binary using the value of BASE. If
conversion is possible then n is the binary digit value and flag is true, else flag is false.

DLITERAL -- 32b S,C,I "d-literal"

DMAX

DMIN

32b -- (compiling)
Compiles a double literal such that when later executed 32b is left on the stack.

d1 d2 -- d3
d3 is the greater of d1 and d2.

d1 d2 -- d3
d3 is the lesser of d1 and d2.

830

830

GLOSSARY
6-17

"d-max"

"d-min"

DNEGATE d1 -- d2 83R "d-negate"

DO

DOES>

d2 is the two's complement of d1.

w1 w2 --
-- sys (compiling)

Used in the form:
DO ... LOOP

or
DO ... +LOOP

83R,S,C,I

Begins a loop which terminates based on control parameters. The loop index begins at

w2, and terminates based on the limit w1. See LOOP and +LOOP for details on how
the loop is terminated. The loop is always executed at least once. For example: w DUP
DO ... LOOP executes 65,536 times. sys is balanced with its corresponding LOOP or
+LOOP. An error condition exists if insufficient space is available for at least three
nesting levels.

-- addr 83R,S,C,I "does"
(compiling)

Defines the execution-time action of a word created by a high-level defining word. Used
in the form:

: <namex> ... <Create> ... DOES> ... ;
and then

where <Create> is CREATE or any user defined word which executes CREATE. Marks
the termination of the defining part of the defining word <namex> and then begins the
definition of the execution-time action for words that will later be defined by <namex>.
When <name> is later executed, the address of <name>'s parameter field is placed on
the stack and then the sequence of words between DOES> and ; are executed.
FORTH09: The code between DOES> and; will reside in the PRIMARY code area even

if namex is a SECONDARY word.

DOES>S -- addr S,C,I "does-s"

DOVER

DROP

(compiling)
Defines the execution-time action of a word created by a high-level defining word. Used
in the form:

: <namex> ... <Create> ... DOES>S ... ;
and then

where <Create> is CREATE or any user defined word which executes CREATE. Marks
the termination of the defining part of the defining word <namex> and then begins the
definition of the execution-time action for words that will later be defined by <namex>.
When <name> is later executed, the address of <name>'s parameter field is placed on
the stack and then the sequence of words between DOES> and ; are executed.
FORTH09: The code between DOES> and; will reside in the SECONDARY code area.

32b1 32b2 -- 32b1 32b2 32b3
32b3 is a copy of 32b1. (This is a synonym for 20VER).

16b --
16b is removed from the stack.

83R

GLOSSARY
6-18

"d-over"

DROT 32b1 32b2 32b3 -- 32b2 32b3 32b1 "d-rote"
The top three double numbers on the stack are rotated, bringing the third double number
to the top of the stack. (This is a synonym for 2ROT).

DSWAP 32b1 32b2 -- 32b2 32b1 "d-swap"
The top two double numbers are exchanged. (This is a synonym for 2SWAP).

DU/MOD 32b1 32b2 -- 32b3 32b4 "d-u-divide-mod"
32b3 is the quotient and 32b4 is the remainder of 32b1 divided by 32b2. An error
condition exists if the divisor is zero.

DU< ud1 ud2 -- flag 830 "d-u-less"
flag is true if ud1 is less than ud2. Both numbers are unsigned.

DUM* 32b1 16b -- 32b2 "dumb-star"
32b2 is the least significant 32 bits of the result of multiplying 32b1 by 16b .

DUP

DUMP

16b -- 16b 16b
Duplicate 16b.

83R

addr u -- 83C

"dupe"

List the contents of u addresses starting at addr. Each line of values may be preceded
by the address of the first value.

DVARIABLE s "d-variable"

ECHK

EDIT

A defining word executed in the form:
DVARIABLE <name>

A dictionary entry for <name> is created and four bytes are ALLOTed in its parameter
field. This parameter field is to be used for contents of the variable. The application is
responsible for initializing the contents of the variable which it creates. When <name> is
later executed, the address of its parameter field is placed on the stack. (This is a
synonym for 2VARIABLE). NOTE: In FORTH09 the variable parameter field is in
process data memory.

"e-check"
ECHK is used in OS-9 system call words immediately after the SWI2 to store the
returned error code from the call to ERROR# .

u -- s
Invoke the screen editor to edit block u.

EDIT ION u -- S
The edition number encoded in the module header of modules later saved with SAVE
XSAVE or SAVESVS will be set to u.

ELSE 83R,S,C,I
sys1 -- sys2 (compiling)
Used in the form:

flag IF ... ELSE . .. THEN
ELSE executes after the true part following IF . ELSE forces execution to continue at

just after THEN (or ENDIF) . sys1 is balanced with its corresponding IF . sys2 is
balanced with its corresponding THEN . See: IF THEN (and also ENDIF)

GLOSSARY
6-19

EMIT 16b -- 83R
The least-significant 7-bit ASCII character is displayed. NOTE: In FORTH09 the least

significant 8 bits are transmitted.

EMPTY-BUFFERS -- 83C,S "empty-buffers"
Unassign all block buffers. UPDATEd blocks are not written to mass storage.

END-CODE sys -- 83A,S "end-code"
Terminates a code definition and allows the <name> of the corresponding code
definition to be found in the dictionary. sys is balanced with its corresponding CODE or
;CODE. See: CODE

ENDIF S,C,I

EOF?

sys -- (compiling)
Used in the form:

flag IF ... ELSE ... ENDIF
or

flag IF ... ENDIF
ENDIF is the point where execution continues after ELSE , or IF when no ELSE is
present. sys is balanced with its corresponding IF or ELSE . See: IF ELSE . NOTE:
ENDIF is a synonym for THEN but is not a part of the FORTH-83 Standard.

u -- flag "e-o-f"
flag will be true if OS-9 path number u is currently positioned at end of file. An error
condition exists if u is not a valid open path number, in which case the ERROR# will be
non-zero.

EQU - - <name1 > <name2> S "equate"
A new entry is created in the dictionary for <name1 > and its code field and permission is
made the same as <name2>. EQU makes an alias name for an existing word definition,
both the new and old names point to the same code.

ERASE addr u -- 83C

u bytes of memory beginning at addr are set to zero. No action is taken if u is zero.

ERROR# -- n "error-number"

EXCHANGE

n is the error number returned by the last OS-9 system call word. If ERROR# equals
zero then no error occurred. Range of n is {0 .. 255}.

u1 u2 -- s

Mass storage screen u1 is exchange with screen u2, i.e. after execution of exchange, u2
will reside in the screen formerly occupied by u1 and visa versa.

EXECUTE addr -- 83R
The word definition indicated by addr is executed. An error condition exists if addr is not
a compilation address.

EXIT 83R,C
Compiled within q colon definition such that when executed, that colon definition returns
control to the definition that passed control to it by returning control to the return point on
the top of the return stack. An error condition exists if the top of the return stack does
not contain a valid return point. May not be used within a do-loop.

GLOSSARY

6-20

EXPECT addr +n -- 83R
Receive characters and store each into memory. The transfer begins at addr
proceeding towards higher addresses one byte per character until either a "return" is
received or until +n characters have been transferred. No more than +n characters will
be stored. The "return" is not stored into memory. No characters are received or
transferred if +n is zero. All characters actually received and stored into memory will be
displayed, with the "return" displaying as a space. See: SPAN

F$ALLRAM u1 -- u2 LEVEL II OS-9 ONLY
#of_blks -- starting_blk#
Request u1 memory blocks be allocated. u2 is the block number of the first block
allocated. Block size is system dependent on the MMU. Blocks allocated are from
unallocated memory pool outside of the process memory. The requested blocks are
NOT mapped into the process that issues this request, use F$MAPBLK to do this. See:
F$DELRAM F$MAPBLK F$CLRBLK

F$CHAIN addr1 u1 addr2 u2 u3 -- ''f-dollar-sign-chain"
param_addr param_size name_addr data_size lang_type
addr1 is the parameter field address, u1 is the parameter field size, addr2 is the name
string address, u2 is the optional data size {0 .. 255}, and u3 is the language-type byte for
an OS-9 F$CHAIN system call. See the OS-9 technical manual for further details.

F$CLRBLK addr u -- LEVEL II OS-9 ONLY

F$CRC

(addr_of_first #of_blks --)
Unmaps u blocks of ram beginning at addr (within the process's memory map) from the
process's memory map. This is the inverse of the F$MAPBLK function. addr should be
on a block boundary. Block size is system dependent on the system MMU. See:
F$MAPBLK F$ALLRAM F$DELRAM

addr1 u addr2 -- "f-dollar-sign-c-r-c"
(crc_accum byte_cnt beg_addr)
addr1 is the address of the 3 byte ere accumulator, u is the byte_ count, and addr2 is the
starting address for an OS-9 F$CRC system call.

F$DELRAM u1 u2 -- LEVEL II OS-9 ONLY
(starting_blk# #of_blks --)
Deallocates u2 blocks of memory beginning with block number u1. The blocks
deallocated return to the OS-9 free memory pool. Normally used to deallocate blocks
that were allocated by the F#ALLRAM call.

F$FORK addr1 u1 addr2 u2 u3 -- addr3 u4
(param_addr param_sz name_addr data_sz lang_type --

name_addr+ proc_ID)
addr1 is the parameter field address, u1 is the parameter field size, addr2 is the module
name string address, u2 is the optional data_size and u3 is the language/type byte for
an OS-9 F$FORK system call. On return addr3 is the module name ptr (addr2)
incremented past the name and u4 is the new process I D.

F$10
-- u1 u2

(-- user_ID process_ID)
u1 is the user_ID and u2 is the process_ID returned by an OS-9 F$1D system call.

GLOSSARY

6-21

I

F$LINK addr1 u1 -- addr2 addr3 addr4 u2 u3
(name_ptr type_lang --

mod_addr entry_addr name_ptr+ attr/rev type/lang)
addr1 is the module name string address, and u1 is the type/language byte of the
module to be linked by an OS-9 F$LINK call. On return addr2 will be the modules header
address, addr3 the entry address, addr4 will point past the name string, u2 the linked
module attribute/revision byte, and u3 the module type_language byte.

F$LOAD addr1 u1 -- addr2 addr3 addr4 u2 u3
(name_ptr type/lang--

mod_addr entry_addr name_ptr+ att/rev typ/lang)
addr is the module name string address, and u1 is the type/language byte of the module
to be loaded by an OS-9 F$LOAD call. On return addr2 will be the module's header
address, addr3 the module entry point, addr4 will point past the name string, u2 is the
attribute/revision byte, and u3 is the type/language byte.

F$MAPBLK u1 u2 -- addr LEVE L II OS-9 ONLY

F$MEM

(starting_blk# #of_blks -- addr_of_first)
Maps u2 blocks of memory, beginning with block number u1 into the process's memory
map. addr is the address of the first block within the process's memory map. This
address would be on a block boundary. Block size is dependent on the system MMU
(usually 2K, 4K, or 8K). S ee: F$ALLRAM F$DELRAM F$CLRBLK

u1 -- addr u2
(desired_mem_size -- upper_bound actual_size)
u1 is the new desired data memory size (0 returns actual memory size). addr is the
address of the last byte of the data memory and u2 is the actual new memory size.

F$PERR u --
u is the error code to be printed by the OS-9 F$PERR system call.

F$SEND u1 u2 --
(signal proc_id --)
u1 is the signal code that will be sent to process u2 by the OS-9 F$SE ND call.

F$SLEEP u1 -- u2

(tick_cnt -- updated_tick_cnt)
u1 is the tick count for an F$SLEEP system call, u2 will be the updated tick count on
return from the call.

F$TIME addr --
addr is the address of a 6 byte data area where the time packet will be returned by the
OS-9 F$TIME call.

F$UNLINK addr --
addr is the module header address of the module to be unlinked.

F$UNLOAD addr u -- L evel II OS-9 ONLY
(name_ptr type/lang --)
addr is the module name string pointer and u is the type/language byte of the module to
unload. NOTE: F$UNLOAD is a level 2 OS-9 call only.

GLOSSARY

6- 22

F$WAIT

FALSE

FCALL

-- u1 u2
(-- child's_status child's_ID)
u1 is the child's status code and u2 is the child's ID code. NOTE: F$WAIT is only used
after a F$FORK call.

-- 0
A constant with a value of 0 (i.e. flag false value).

8b -- s

A subroutine call is made into the FLOAD module to a jump table offset of 8b.

FCS" -- addr S,C,I "f-c-s-quote"
Used in the form: FCS" ccc"
generates a string literal of ccc with the most significant bit of the last character of the
string set. At runtime addr will be the address of this string. NOTE: This is useful for
various OS-9 system calls that use hi bit terminated strings.

FILELOAD -- nnn S
A LOAD operation is done from the OS-9 pathname nnn. If nnn is not found the
message ''file error" will be displayed and ABORT executed.

FILL addr u 8b -- 83R

u bytes of memory beginning at addr are set to Sb. No action is taken if u is zero.

FIND addr1 -- addr2 n 83R,S
addr1 is the address of a counted string. The string contains a word name to be located
in the currently active search order. If the word is not found, addr2 is the string address
addr1, and n is zero. If the word is found, addr2 is the compilation address and n is set
to one of two non-zero values. If the word found has the immediate attribute, n is set to
one. If the word is non-immediate, n is set to minus one (true).

FLUSH 83R,S
Performs the function of SAVE-BUFFERS then unassigns all block buffers. (This may
be useful for mounting or changing mass storage media).

FORGET 83R,S

FORTH

Used in the form:
FORGET <name>

If <name> is found in the compilation vocabulary, delete <name> from the dictionary and
all words added to the dictionary after <name> regardless of their vocabulary. Failure to
find <name> is an error condition. An error condition also exists if the compilation
vocabulary is deleted.

83R,S
The name of the primary vocabulary. Execution replaces the first vocabulary in the
search order with FORTH . FORTH is initially the compilation vocabulary and the first
vocabulary in the search order. New definitions become part of the FORTH vocabulary
until a different compilation vocabulary is established. See: VOCABULARY

GLOSSARY

6-23

FORTH-83 -- 83R,S
Assures that a FORTH-83 Standard System is available, otherwise an error condition
exists. NOTE: In FORTH09 this word doesn't do much except set the initial vocabulary
to FORTH and LOAD from block 1 if the word 21 is not found in the dictionary. If the
mass storage file you are USING is not the original blocks file then you may NOT
actually have a FORTH-83 standard system after executing FORTH-83.

F[S,C,I ''f-left-bracket"

F]

Executes FORTH, making it the first vocabulary in the search order. Usually used in
conjunction with A[. See: A[

s "f-right-bracket"
Resume compilation and execute the FORTH vocabulary.

GET.DEVNM addr u -- "get-dev-name"
(buffer_addr path# --)
The device name of open path number u is copied into the 32 byte buffer at addr.
NOTE: The device name is a high bit terminated string.

GET.OPT addr u -- "get-options"
(buffer_addr path# --)
The device options of path u are copied to the 32 byte buffer at addr.

GET.POS u -- ud
(path#-- file_position)
ud is the current file position of path u.

GET.SIZE u -- ud
(path# -- file_size)
ud is the current file size of path u

GETCH u -- c
(path# -- char)
c is the next input character from path u.

GLOBAL sys1 -- sys2 S,l

"get-position"

GLOBAL marks the end of the local word name section and the start of word names.
Must appear between LOCAL and MODULE. See also: LOCAL MODULE

GO S,E
Resumes execution of a word that was suspended by BREAK. See: BREAK

H' -- addr S "h-tick"
Used in the form: H' nnn
addr is the address of the first byte of the dictionary header for the next word in the input
stream (nnn).

H>CODE addr1 -- addr2 S "h-to-code"
addr1 is the header address of a word in the dictionary, and addr2 is its corresponding
code address. NOTE: addr2 is an absolute address.

GLOSSARY

6-24

HASH

HERE

HEX

HIDE

HOLD

addr1 -- addr1 16b S
addr1 is the counted string address of a word and 16b is its corresponding hash code.
In FORTH09 this hash code is part of the word's header and is used to speed up
dictionary searches.

-- addr 83R,S
The address of the next available dictionary location. NOTE: In FORTH09 HERE
returns a different value for each of the PRIMARY and SECONDARY code areas. (This
is not specified in the standard).

83C
Set the numeric input-output conversion base to sixteen.

S,l
Used in the form: HIDE nnn
Causes the header for the word nnn to be removed from the dictionary. The
corresponding code for nnn is unaffected (not removed), but the word can no longer be
found in the dictionary. The dictionary is packed, reducing its size by the size of the
header for nnn. IMPORTANT: HIDE can not be used if a definition has been compiled to
any vocabulary other than the vocabulary that nnn resides in, after the definition of nnn.

Doing so will mess up the dictionary links.

char -- 83R
char is inserted into a pictured numeric output string. Typically used between <# and #>

-- w 83R,C
w is a copy of the loop index. May only be used in the form:

DO ... I ... LOOP or

DO ... I ... +LOOP

I$CHDIR addr1 u -- addr2
(pathlist_ptr access_mode -- new_pathlist_ptr)
addr1 is the pathlist string address and u is the access mode of the new directory for an
I$CHDIR OS-9 system call. addr2 is the updated pathlist pointer.

I$CLOSE u -­

(path#--)
u is the path number of an open path that will be closed.

I$CREATE addr1 u1 u2 -- addr2 u3
(pathlist_ptr permission access_mode --

pathlist_ptr+ path#)
addr1 is the pathlist name string address, u1 the file permissions (attributes), and u2 the
access mode of a path to be created. addr2 is the updated pathlist pointer and u3 is the
path number of the newly created path. NOTE: As in all OS-9 system calls ERROR# will
be non-zero if an error occurred.

GLOSSARY

6-25

!$DELETE addr u --
(pathlist_ptr access_mode --)
The RBF file whose name string resides at addr will be deleted. NOTE: This call uses
the newer I$DELETX system call so the access_mode u is used to determine whether
the execution or data directory will be searched in the absence of an explicit pathname
(one starting with I).

I$DUP u1 -- u2
(path# -- new_path#)
u1 is the path number to duplicate, and u2 is the duplicate path number.

I$MAKDIR addr u --
(pathlist_ptr attributes --)
addr is the address of the pathlist string, and u are the new directory attributes of the
directory that will be created by the OS-9 I$MAKDIR call.

I$0PEN addr1 u1 -- addr2 u2
(pathlist_ptr access_mode -- pathlist_ptr+ path#)
addr1 is the address of the pathlist name string, and u1 is the access mode of the path
to be opened. addr2 is the updated pathlist pointer and u2 is the path#.

I$READ u1 addr u2 -- u3
(max_cnt buffer_addr path# -- actual_cnt)
u1 is the maximum number of bytes to read from path u2 into buffer at addr with the
OS-9 I$READ call. u3 is the actual number of bytes read.

I$READLN u1 addr u2 -- u3

I$SEEK

(max_cnt buffer_addr path#-- actual_cnt)
u1 is the maximum number of bytes to read from path u2 into buffer at addr with the
OS-9 I$READLN call. u3 is the actual number of bytes read.

d u -­

(byte_position path# --)
d is the 32bit byte position and u is the path number for the !$SEEK call. The file will be
positioned at d unless an error occurs.

I$WRITE u1 addr u2 -- u3
(max_cnt buffer_addr path#-- actual_cnt)
u1 is the maximum number of bytes to write to path u2 from buffer at addr with the OS-9
I$WRITE call. u3 is the actual number of bytes written.

I$WRITLN u1 addr u2 -- u3
(max_cnt buffer_addr path# -- actual_cnt)
u1 is the maximum number of bytes to write to path u2 from buffer at addr with the OS-9

I$WRITLN call. u3 is the actual number of bytes written.

GLOSSARY

6-26

IF

I FEND

IFF

IFTRUE

flag --
-- sys (compiling)

Used in the form:
flag IF ... ELSE ... THEN

or
flag IF ... THEN

83R,S,C,I

If flag is true, the words following IF are executed and the words following ELSE until
just after THEN are skipped. The ELSE part is optional. If flag is false, words from IF

through ELSE , or from IF through THEN (when no ELSE is used), are skipped. sys is
balanced with its corresponding ELSE or THEN . NOTE: FORTH09 provides the
synonym ENDIF which may be substituted for THEN, making things more readable
albeit non-standard.

83U,S,E "if-end"
Terminate a conditional interpretation sequence begun by IFTRUE . INTERPRET ONLY

flag --
-- sys (compiling)

Used in the form:
flag IFF ... ELSE ... ENDIF

or
flag IFF ... THEN

S,C,I "if-false"

Performs the same function as IF except the polarity of the flag test is inverted. I.e. If flag
is FALSE the code between IFF and ENDIF or ELSE will be executed. IFF replaces the
sequence; 0= IF with shorter and faster code.

flag -­

INTERPRET ONLY.
Begin an

IFTRUE ... OTHERWISE ... IFEND
conditional sequence.

83U,S,E "if-true"

These words operate like IF ELSE THEN except that they cannot be nested, and are to
be used only during interpretation. In conjunction with the words [and] they may be
used within a colon definition to control compilation, although they are not to be
compiled.

IMMEDIATE 83R,S

Marks the most recently created dictionary entry as a word which will be executed when
encountered during compilation rather than compiled.

INDEX u1 u2 -- 83U,S

Print the first line of each screen over the range {u1 .. u2}. This displays the first line of
each screen of source text which conventionally contains a title.

INLINE S
Used immediately after END-CODE to specify that the code of the preceding code word
is to always be compiled inline. I.e. The machine code of the word is copied into the new
word when it is compiled into a new word. The code definition should NOT end with an
RTS instruction. See: INLINEOK

GLOSSARY

6-27

INLINEOK -- S
Used immediately after END-CODE to specify that the code of the preceding CODE
word MAY be compiled inline, if the number of bytes of code is less than or equal to the
value of COMPLIMIT, when the code word is later compiled into a new definition. The
code definition MUST end with an RTS instruction, like all code definitions with the
exception of INLINE word (See: INLINE).

INTERPRET 83C,S
Begin text interpretation at the character indexed by the contents of >IN relative to the
block number contained in BLK , continuing until the input stream is exhausted If BLK
contains zero, interpret characters from the text input buffer.

J -- w 83R,C

KEY

KEY?

L

LABEL:

LCOPY

w is a copy of the index of the next outer loop. May only be used within a nested DO­
LOOP or DO-+LOOP in the form, for example:

DO ... DO ... J ... LOOP ... +LOOP

-- 16b 83R
The least-significant 8 bits of 16b is the next ASCII character received. All valid ASCII
characters can be received. Control characters are not processed by the system for any
editing purpose. Characters received by KEY will not be displayed. NOTE: Only the
least-significant 7-bits of a character may be used by a "standard program".

-- flag "key-question"
flag is true if a keyboard character (path 0) is waiting to be read.

n -- S
One of the two really primitive line editor words. L displays line n of the last screen that
was LISTed, or otherwise has its screen number residing in the variable SCR (which
shares storage with the VAR SCRN). Range of n is {0 .. 15) See: R

S ,C, I "label-colon"
Used in the form: LABEL: nnn
Creates a dictionary entry for the word nnn. Used within a colon definition to create an
entry point that can be referenced later as a word. The entry point cannot be placed
where the return stack will be imbalanced as inside a DO-LOOP or between >R and R>.
When LABEL: is encountered the dictionary entry for the original word being defined is
closed so that it will be found in dictionary searches after the LABEL: . If the original
word is to be Immediate or componly then the sequence: r IMMEDIATE 1 will have to
be placed just before LABEL: in the definition.

u1 u2 u3 u4 u5 -- S "L-copy"
(from_blk beg_line end_line dest_blk beg_line --)
LCOPY copies a range of lines from one screen to another. u1 is the source screen
number, u2 is the first and u3 is the last of the range of lines to copy to the source
screen to the destination screen u4 beginning at line u5 within the destination screen.
E.g. to copy lines 2 thru 5 from screen 40 to lines 8 thru 11 of screen 50, 40 2 5 50
8 LCOPY . LCOPY does not affect the shadow screens. To copy the same range in the
shadow screens you would also need to do: 40 SHADOW 2 5 50 SHADOW 8 LCOPY .

GLOSSARY
6-28

LEAVE 83R,S,C,I
-- (compiling)

Transfers execution to just beyond the next LOOP or +LOOP . The loop is
terminated and loop control parameters are discarded. May only be used in the form:

DO ... LEAVE ... LOOP
or

DO ... LEAVE ... +LOOP
LEAVE may appear within other control structures which are nested within the do-loop
structure. More than one LEAVE may appear within a do-loop. NOTE: This definition of
LEAVE differs from that in earlier FORTH dialects in that when LEAVE is encountered, a
jump is made immediately out of the loop, versus older usage of changing the loop index
so that the loop terminates the next time LOOP or +LOOP is encountered.

LIST u -- 83C,S
The contents of screen u are displayed. The variable SCR (and VAR SCRN) are set to
u.

LITERAL -- 16b 83R,S,C,I
16b -- (compiling)

Typically used in the form:
[16b 1 LITERAL

Compiles a system dependent operation so that when later executed, 16b will be left on
the stack.

LOAD u -- 83R,S
The contents of >IN and BLK , which locate the current input stream, are saved. The
input stream is then redirected to the beginning of screen u by setting >IN to zero and
BLK to u. The screen is then interpreted. If interpretation from screen u is not
terminated explicitly it will be terminated when the input stream is exhausted and then
the contents of >IN and BLK will be restored. An error condition exists if u is zero. See:
>IN BLK BLOCK

LOCAL -- sys S,I,E
Used in the form:

LOCAL definitions GLOBAL definitions MODULE
marks the beginning of a local word name section of definitions. The header code for all
words defined between LOCAL and GLOBAL will be removed from the dictionary when
MODULE is executed. All definitions between LOCAL and MODULE must reside in the
same vocabulary. See: GLOBAL MODULE

LOOP 83R,S,C,I
sys -- (compiling)
Increments the DO-LOOP index by one. If the new index was incremented across the
boundary between limit-1 and limit the loop is terminated and loop control parameters
are discarded. When the loop is not terminated, execution continues just after the
corresponding DO. sys is balanced with its corresponding DO. See: DO

GLOSSARY

6-29

MAX

MAYBE

n1 n2 -- n3 83R
n3 is the greater of n1 and n2 according to the operation of > .

8b --
-- sys (compiling)

Used in the form:

S , C,I

c MAYBE c1 word1 .. cn wordn MAYBENOT

or
c MAYBE c1 word1 ... en wordn

THENAGAIN ... MAYBENOT

"max"

MAYBE constructs a very fast and code efficient form of case statement. The 8b

character c (least significant 8 bits of 16 bit word) are the case match criteria. A table of
case characters c and word execution vectors is built. If c matches one of the case
characters c1 .. en then the associated word will be executed after which execution will
continue after MAYBENOT . If there is no match then execution will continue after
MAYBENOT unless the optional THENAGAIN clause is present in which case the words
between THENAGAIN and MAYBENOT will be executed. MAYBE itself compiles the
code between MAYBE and THENAGAIN or MAYBENOT, so there are restrictions on
what may be used between these words. You may not comment in this area with () or\

The words between MAYBE and THENAGAIN must be matched pairs in the form:

n word where in is a numeric literal and word is a word name in the dictionary, or

ASCII c word where word is a word name in the dictionary.

MAYBENOT sys -- (compiling) S,C,I

marks the end of a MAYBE .. MAYBENOT construct, see MAYBE .

MEMLIMIT -- addr

MIN

MOD

addr is the address of the last byte of available data memory

n1 n2 -- n3 83R "min"
n3 is the lesser of n1 and n2 according to the operation of< .

n1 n2 -- n3 83R
n3 is the remainder after dividing n1 by the divisor n2. n3 has the same sign as n2 or

is zero. An error condition results if the divisor is zero or if the quotient falls outside of
the range {-32,768 .. 32,767}.

MODULE sys -- (compiling) S,I,E
Used in the form:

LOCAL worddefs GLOBAL worddefs MODULE

Execution of MODULE causes the dictionary entries for all words defined between
LOCAL and GLOBAL to be removed from the dictionary. Only the dictionary headers
are removed, the actual code for all entries is unaffected. All words defined between
LOCAL and MODULE must reside in the same vocabulary otherwise an error condition
exists. See: LOCAL GLOBAL

MOREBLOCK u -- S

NEGATE

The current block storage path and its associated shadow block path are extended by u
screens of spaces.

n1 -- n2 83R
n2 is the two's complement of n1, i.e., the difference of zero less n1.

GLOSSARY

6-30

NIP 16b 1 1 6b2 -- 16b2
16b1 is remove from the stack. Equivalent to SWAP DROP, but shorter and faster.

NOT 16b1 -- 16b2 83R
16b2 is the one's complement of 16b1.

NUMBER? addr -- d tf

or addr -- ff

addr is the address of a counted string. If the string can be converted to a number in the
current number BASE then d will be the converted value and tf will be a flag with
value= TRUE, otherwise ff will be a flag with value=FALSE.

ONLY 83E,S
Select just the ONLY vocabulary as both the transient vocabulary and resident
vocabulary in the search order. NOTE: In FORTH09 the ONLY vocabulary is a subset
of the FORTH vocabulary, i.e. the ONLY words will be in the search order any time
FORTH is in the search order even if SEAL is used to remove ONLY.

CPO S "op-zero"

OR

ORDER

Used in defining words, CPO sets a flag to instruct the compiler that the last compiled
code was neither a bsr or lbsr instruction. The compiler uses this information when
optimizing and if this is not done by a word that has compiling action (ending with , or C,

) then invalid code may be produced, which may crash.

16b1 16b2 -- 16b3 83R
16b3 is the bit-by-bit inclusive-or of 16b1 with 16b2.

83E,S
Displays the vocabulary names forming the search order in their present search order
sequence. Then shows the vocabulary into which new definitions will be placed.

OTHERWISE 83U,S,E

OVER

PAD

An interpreter-level conditional word. See: IFTRUE

16b1 16b2 -- 16b1 16b2 16b3
16b3 is a copy of 16b1.

-- addr

83R

83R
The lower address of a scratch area used to hold data for intermediate processing. The
address or contents of PAD may change and the data may be lost if the address of the
next available dictionary location is changed. The minimum capacity of PAD is 84
characters. NOTE: The above italicized statement does NOT apply to FORTH09.

PICK +n -- 16b 83R
16b is a copy of the +nth stack value, not counting +n itself. {0 . .the number of elements
on stack-1}. 0 PICK is equivalent to DUP,
1 PICK is equivalent to OVER .

PRIMARY -- S
Changes the value of the VAR PST ATE so that subsequent definitions will be compiled
to the PRIMARY (application) area of the memory map. These can later be saved as
independent executable modules with SAVE. See: SECONDARY

GLOSSARY

6-31

PSTATE -- n S
A VAR whose value of zero indicates the PRIMARY state, and system dependent non­
zero value indicates SECONDARY state. See discussion of special FORTH09 features
elsewhere in this document.

PUTCH u1 u2 --
(char path# --)
The least significant 8 bits of u1 is written to path number u2.

QUIT 83R,S
Clears the return stack, sets interpret state, accepts new input from the current input
device and begins text interpretation. No message is displayed.

R +n -- S

RO

Used in the form:
n R text

A really primitive line editor word which replaces line +n of that most recently LISTed
screen with text. The remainder of the input line following the first space after R is
considered the text, and is padded to 64 characters with spaces.

-- 16b s "s-zero"
16b is the initial value of the return stack pointer. (I.e. the value when the return stack is
empty}

R> -- 16b 83R,C "r-from"

R@

RDROP

16b is removed from the return stack and transferred to the data stack.

-- 1 6b 83R,C
16b is a copy of the top of the return stack.

c

(return stack} 16b --

"r-fetch"

"r-drop"

16b is dropped from the return stack, equivalent to: R> DROP but much shorter.

READ addr u 1 u2 --
(buffer_addr count path# --)
u1 bytes are read from path number u2 and transferred to buffer at addr. NOTE: The
OS-9 I$READ call is used for this read. The actual number of bytes read is stored in the
variable SPAN.

READLN addr u1 u2 -- "read-line"
(buffer_addr count path# --)
u1 bytes are read from path number u2 and transferred to buffer at addr. The OS-9
I$READLN call is used for this read, so less than count bytes may be read if a carriage
return is encountered. The actual number of bytes read is stored in the variable SPAN.

READLNO addr u -- "read-line-zero"
(buffer_addr count --)
u bytes are read from path 0 using the OS-9 I$READLN call and stored into the buffer at
addr. Less than u bytes may be read if a carriage return is encountered. The actual
number of bytes read will be stored into the variable SPAN . This is equivalent to
EXPECT with the exception that a carriage return is echoed as a carriage return instead
of a space.

GLOSSARY

6-32

READY? u -- flag "ready-question"

(path# -- flag)
flag will be true if the open SCF path number u has a character waiting to be read.

RECURSE -- 83C,S,C,I
-- (compiling)

Compile the compilation address of the definition being compiled to cause the definition
to later be executed recursively.

REMEMBER 83U,S

REPEAT

A defining word executed in the form:
REMEMBER <name>

Defines a word which when executed, will cause <name> and all subsequently defined
words to be deleted from the dictionary. <name> may be compiled into and executed
from a colon definition. The sequence DISCARD REMEMBER DISCARD provides a
standardized preface to any group of transient word definitions.

sys -- (compiling)
Used in the form:

BEGIN ... flag WHILE ... REPEAT

83R,S,C,I

At execution time, REPEAT continues execution to just after the corresponding BEGIN .
sys is balanced with its corresponding WHILE . See: BEGIN

REV n -- S

RMB

ROLL

ROT

RP!

RP@

The module rev1s1on number of the next module saved by SAVE , XSAVE , or
SAVESYS will be set to n.

-- addr s "r-m-b"
A defining word used in the form:

u RMB <name>

creates a new word definition <name> that when later executed will leave addr on the
stack which will be the address of u bytes of variable data storage. This is equivalent to
the RMB 6809 assembler directive. The sequence 2 RMB is equivalent to VARIABLE,

and 4 RMB is equivalent to 2VARIABLE. The addr of storage left on the stack will be
the absolute data storage address. This is calculated at runtime from an offset into the
data area.

+n -- 83R
The +nth stack value not counting +n itself is first removed and then transferred to the
top of the stack, moving the remaining values into the vacated position. {O .. the number
of elements on the stack-1}

2 ROLL is equivalent to ROT

0 ROLL is a null operation

16b1 16b2 16b3 -- 16b2 16b3 16b1 83R "rote"

The top three stack entries are rotated, bringing the deepest to the top.

16b -- S "r-p-store"
16b becomes the new return stack pointer value. Use with extreme caution!

-- 16b s

16b is the return stack pointer value.

GLOSSARY
6-33

"r-p-fetch"

S. n1 n2 ... nx -- S,l "s-dot"

so

SAVE

All elements on the stack are removed and displayed in the current number base. The
deepest element is displayed first. All items on the stack are assumed to be 16 bits. If
the stack is empty then the message "empty" is displayed. See: .S

-- addr "s-zero"
addr is the address of the bottom of the stack.

n -- d "s-to-d"
d is the result of sign extending n.

-<Mmb S

The P RIMARY application code up through the word <name> will be saved as an OS-9
executable module with the pathname also equal to <name>. The word <name> will be
the execution entry point. Any user variables will be uninitialized when the program is
run. BASE will have the value it contained at the time the SAVE was done. See:
XSAVE EDITION REV

SAVE-BUFFERS -- 83R,S "save-buffers"
The contents of all block buffers marked as UPDATEed are written to their
corresponding mass storage blocks. All buffers are marked as no longer being modified
but may remain assigned.

SAVESYS --<name> S
The FORTH09 development system including all LOADed definitions will be saved to
the pathname <name> in the current directory. This complete system can later be
loaded with the OS-9 command FLOAD <name> which saves the time that would
otherwise be required to LOAD all the word definitions. SAVESYS cannot however be
run after any new vocabulary has been defined, only the predefined vocabularies.
FORTH, ONLY, and ASSEMBLER may be present.

SCOPY u1 -- u2 S "s-copy''
The SHADOW screen for block u1 is copied to the SHADOW screen for block u2.

SCR -- addr 83C,S "s-c-r"
The address of a variable containing the number of the screen most recently LISTed.
See: SCRN

SCRN -- u S "s-c-r-n"
SCRN is a VAR which holds the number of the last screen displayed by LIST. It shares
storage with the variable SCR so writing to one affects the contents of the other.

SCRWIDTH -- +n S "screen-width"
SCRWIDTH is a VAR whose contents, +n describe the width of the display screen. This
information is used by the word WORDS to determine how long of a line it may display.
This is a SECONDARY V AR so its contents will be preserved by SAVESYS.

SEAL 83E,S

Delete all occurrences of ONLY from the search order. The effect is that only specified
application vocabularies will be searched.

GLOSSARY
6-34

SECONDARY s
After executing SECONDARY, subsequent word definitions will be made to the
secondary (non-application) code area and their headers chained to the SECONDARY
thread of the current vocabulary.

SET.OPT addr u -- "set-options"
(buffer_addr path# --)
Sets the path options in the 32 byte buffer at addr to path number u. Uses the OS-9
I$SETSTT call of SS.OPT .

SHADOW u1 -- u2 s

SHELL

SHIFT

SHOW

SHOWS

SIGN

SIGN_

SLIDE

SP@

u2 is the shadow screen number corresponding to normal screen u1. NOTE: Shadow
screens occupy a separate file from the normal screens, u2 = u1 ORed with 8000 (hex),
which flags the various block words to access the shadow file.

addr u --
addr is the address and u is the size of the parameter field that is forked to the program
shell. The parameter string at addr must be terminated with a carriage return character.
See: CR"

16b1 n -- 16b2 83U
Logical shift 16b1 left n bits if n is positive, right n bits if n is negative. Zeros are shifted
into vacated bit positions.

u1 u2 -- s
The screens beginning with u1 and ending with u2 in the current block storage file are
displayed to the printer. The VAR 132COL? determines if shadow screens will be
displayed along side of normal screens. If 132COL? is FALSE only the normal screens
will be displayed. The pathname for the printer may need to be edited by the user for
system dependencies.

u1 u2 -- s "show-s"
The SHADOW screens only beginning with u1 and ending with u2 in the current block
storage file will be listed to the printer. See: SHOW

n -- 83R
If n is negative, an ASCII "-" (minus sign) is appended to the pictured numeric output
string. Typically used between<# and#> .

"sign-underscore"
If the number whose conversion was started by <# is negative then an ASCII "-" is
appended to the pictured numeric output string. Similar to SIGN except the sign bits of
the number being converted need not be on the stack, since they are stored in an
internal variable.

u1 u2 n -- S
The range of mass storage blocks u1 thru u2 is exchanged with the range of blocks
u1+n thru u2+n. No blocks are erased by this process. The associated shadow blocks
are also exchanged.

-- addr 83C "s-p-fetch"
addr is the address of the top of the stack just before SP@ was executed.

GLOSSARY
6-35

SPACE 83R
Displays an ASCII space.

SPACES +n -- 83R
Displays +n ASCII spaces. Nothing is displayed if +n is zero.

SPAN -- addr 83R
The address of a variable containing the count of characters actually received and
stored by the last execution of EXPECT. See: EXPECT

STATE -- addr 83R,S

SWAP

SWAP!

THEN

The address of a variable containing the compilation state. A non-zero content indicates
compilation is occurring, but the value itself is system dependent. A Standard Program
may not modify this variable.

16b1 16b2 -- 16b2 16b1 83R
The top two stack entries are exchanged.

addr 16b -- "swap-store"
16b is stored at addr. This is equivalent in function to the separate operations: SWAP !

but because of 6809 architectural reasons is faster than doing either SWAP or a !

operation by itself.

sys -- (compiling)
Used in the form:

flag IF ... ELSE ... THEN
or

flag IF ... THEN

83R,S,C,I

THEN is the point where execution continues after ELSE, or IF when no ELSE is
present. sys is balanced with its corresponding IF or ELSE . See: IF ELSE (and non­
standard synonym ENDIF).

THENAGAIN sys -- sys (compiling) S,C,I

THRICE

THRU

TIB

Used in the form:
MAYBE ... THENAGAIN ... MAYBENOT

marks the end of the conditional case table and the beginning of the alternate case
words. Words between THENAGAIN and MAYBENOT will be executed only if none of
the cases between MAYBE and THENAGAIN matched. See: MAYBE MAYBENOT

S,C,I
Used in the form:
: <name> ... THRICE ... :
Causes the words between THRICE and ; to be executed a total of 3 times. This is a
controlled form of recursion. See: TWICE

u1 u2 -- 83C,S
Load consecutively the blocks from u1 through u2.

-- addr 83R,S "t-i-b"
The address of the text input buffer. This buffer is used to hold characters when the
input stream is coming from the current input device. The minimum capacity of TIB is 80
characters.

GLOSSARY
6-36

TO

Used in the form:
TO <Varname>

Ca use the VAR <varname> to have the action of removing a 16 bit n umber from the
stack and storing it in its variable storage rather than fetching it.

TOFLAG -- n S "to-flag"

TRUE

TUCK

TWICE

TYPE

n is the val ue of the VAR TOFLAG which determines whether a VAR will fetch or store
its val ue when referenced.

-- -1

A constant with a value of -1, or true when used as a flag.

16b1 16b2 -- 16b2 16b1 16b2
Eq uivalent in operation to SWAP OVER b ut faster than SWAP alone.

S,C,I
Used in the form:

: <name> ... TWICE ... ;
ca uses the words between TWICE and ; to be exec uted twice. More efficient that
creating a separate word definition and referencing it twice. See: THRICE

addr+n -- 83R
+n characters are displayed from memory beginning with the character at addr and
continuing through consec utive addresses. Nothing is displayed if +n is zero.

U. u -- 83R " u-dot"
u is displayed as an unsigned n umber in a free-field format.

U.R u +n -- 83C " u-dot-r"
u is converted using the value of BASE and then displayed as an unsigned n umber right
aligned in a field +n characters wide. If the n umber of characters req uired to display u is
greater than +n an error condition exists.

u1 u2 --flag 83R " u-less-than"
flag is true is u1 is less than u2.

U>= u1 u2 --flag " u-greater-or-eq ual"
flag is tr ue if u1 is greater than or eq ual to u2.

UM* u1 u2 -- ud 83R " u-rn-times"
ud is the unsigned product of u1 times u2. All val ues and arithmetic are unsigned.

UM/MOD ud u1 -- u2 u3 83R " u-m-divide-mod"
u2 is the remainder and u3 is the floor of the q uotient after dividing ud by the divisor u1.
All val ues and arithmetic are unsigned. An error condition results if the divisor is zero or
if the q uotient lies o utside the range {0 .. 65,535}.

GLOSSARY

6-37

UNTIL flag--
sys -- (compiling)

Used in the form:
BEGIN ... flag UNTIL

83R,S,C,I

Marks the end of a BEGIN-UNTIL loop which will terminate based on flag. If flag is true
the loop is terminated. If flag is false execution continues to just after the corresponding
BEGIN. sys is balanced with its corresponding BEGIN. See: BEGIN

UPDATE 83R,S
The currently valid block buffer is marked as modified. Blocks marked as modified will
subsequently be automatically transferred to mass storage should its memory buffer be
needed for storage of a different block or upon execution of FLUSH or SAVE­

BUFFERS.

USING S

VAR

VARIABLE

Used in the form:
USING <pathname>

Closes the current mass storage path and attempts to open <pathname> as the new
path. Also attempts to open pathname.s as the shadow path.

s
Used in the form:

VAR <name>
creates a new dictionary entry for <name>. Later execution of name will either fetch a
16 bit variable to the stack or remove a 16 bit variable from the stack and store it in its
allocated data space depending on the contents of the system var TOFLAG. If
TOFLAG is zero then executing <name> will fetch the variable contents. If TOFLAG is

non-zero then the variable contents will be stored. TOFLAG is set non-zero by
preceding the <name> with the word TO . TOFLAG is automatically cleared when the
var value is stored.

83R,S
A defining word executed in the form:

VARIABLE <name>
A dictionary entry for <name> is created and two bytes are ALLOTed in its parameter
field. This parameter field is to be used for contents of the variable. The application is
responsible for initializing the contents of the variable which it creates. When <name> is
later executed, the address of its parameter field is placed on the stack. NOTE: In
FORTH09 the variable parameter field is in the process data memory, not in the code
memory.

VOCABULARY 83R,S

WHERE

A defining word executed in the form:
VOCABULARY <name>

A dictionary entry for <name> is created which specifies a new ordered list of word
definitions. Subsequent execution of <name> replaces the first vocabulary in the search
order with <name>. When <name> becomes the compilation vocabulary new definitions
will be appended to <name>'S list.

s
After an error abort is taken during a LOAD operation, WHERE will display the block
number where the error occurred (in the current number base) and display the portion of
the block that was processed up to the point where the error was detected.

GLOSSARY

6-38

WHILE

WIDTH

WLIST

WORD

flag-- 83R,S,C,I
sys1 -- sys2 (compiling)

Used in the form:
BEGIN ... flag WHILE ... REPEAT

Selects conditional execution based on flag. When flag is true, execution continues to
just after the WHILE through to the REPEAT which then continues execution back to
just after the BEGIN . When flag is false, execution continues to just after the REPEAT ,

exiting the control structure. sys1 is balanced with its corresponding BEGIN . sys2 is
balanced with its corresponding REPEAT. See: BEGIN

-- n S
or TO n --
WIDTH is a VAR which contains the count of the maximum number of word name
characters to store in the dictionary for subsequent word definitions. E.g. if WIDTH is set
to 3 then only the first 3 characters of word names will be stored in future definitions.
Duplicate word names will be extremely rare even for a WIDTH of 1 however because of
the hash code that is used during searching.

u -- s

Displays screen u side by side with its shadow screen in 132 column screen mode.
Strike any key after the display is finished to return to 80 column screen mode. NOTE:
This word is only defined if you load a version of EDIT for a terminal supporting 132
column displays.

char-- addr 83R,S
Generates a counted string by non-destructively accepting characters from the input
stream until the delimiting character char is encountered or the input stream is
exhausted. Leading delimiters are ignored. The entire character string is stored in
memory beginning at addr as a sequence of bytes. The string is followed by a blank
which is not included in the count. The first byte of the string is the number of characters
{0 .. 255}. If the string is longer than 255 characters, the count is unspecified. If the input
stream is already exhausted as WORD is called, then a zero length character string will
result.

If the delimiter is not found the value of >IN is the size of the input stream. If the
delimiter is found >IN is adjusted to indicate the offset to the character following the
delimiter. #TIB is unmodified.

The counted string returned by WORD resides in the "free" dictionary area at HERE .
Note that the text interpreter may also use this area.

WORDFIND -- addr flag S

or -- addr u flag
Used in the form:

WORDFIND <name>
Reads the next word (delimited by a space) from the input stream and searches the
dictionary for it. If the word is not found then flag is false, addr is the counted string
address of the word name, and u is its hash code. If the word is found then flag is true
and addr is the header address of the word. (See: H')

WORDS 83E,S
List the word names in the first vocabulary of the currently active search order.

GLOSSARY

6-39

WRITE addr u1 u2 --
(buffer_addr count path# --)
u1 bytes are written to path u2 from the buffer at memory address addr using the OS-9
I$WRITE system call. After the call the var ERROR# will be non-zero if any error
occurred.

WRITELN addr u1 u2 -- "write-line"

XOR

XSAVE

(buffer_addr count path# --)
u1 bytes are written to path u2 from the buffer at memory address addr using the OS-9
I$WRITLN system call. After the call the var ERROR# will be non-zero if any error
occurred.

16b1 16b2 -- 16b3 83R "x-or"
16b3 is the bit-by-bit exclusive-or of 16b1 with 16b2.

u -- S "x-save"
Used in the form:

u XSAVE <name1 > <name2>
Performs the function of SAVE with the added features that extra data memory can be
specified for the saved module and the module name can differ from the word name
saved. name1 is the word name to be saved, and name2 is the pathname where it will
be saved (defaults to execution directory). u bytes will be added to the current data
memory allocation and the total used as the minimum data memory for the saved
module. See: SAVE

-- addr 83R,S,I "left-bracket"
(compiling)

Sets interpret state. The text from the input stream is subsequently interpreted. See:]

['] -- addr 83R,S,C,I "bracket-tick"
(compiling)

Used in the form:
[']<name>

Compiles the compilation address addr of <name> as a literal. When the colon definition
is later executed addr is left on the stack. An error condition exists if <name> is not
found in the currently active search order.

[A S,l "left-bracket-a"

[COMPILE]

\

Switches state to execution and executes ASSEMBLER making it the first vocabulary in
the search order. Using [A within a definition effectively switches from hi level word
compilation to inline code compilation. The associated word F] switches back.

-- (compiling)
Used in the form:

[COMPILE] <name>

83R,C,I "bracket-compile"

Forces compilation of the following word <name>. This allows compilation of an
immediate word when it would otherwise have been executed.

S,l "backslash"
Used in a mass storag e screen, \ makes the remainder of the line a comment by
incrementing the value of >IN to the start of the next line.

GLOSSARY
6-40

const_

83R,S "right-bracket"
Sets compilation state. The text from the input stream is subsequently compiled. See: [

-- 16b
The runtime routine for CONSTANT. Moves the 16b word stored immediately after the
compiled canst_ by , (comma) to the stack.

doff -- 16b S "data-offset"

edition

A V AR that contains the offset from the start of the data area to the next free byte of
data memory. The value of doff is altered by ALLOT_D . doff is a temporary working
variable whose value will go into effect after executing ; or(;) . It will be reset by ABORT

when a definition fails.

-- 16b s

16b is the edition number of the FORTH09 system. This is not the same as the release
number which represents the number of the current commercial release. edition gets
changed with each edit of the Forth module code, so do not be alarmed if it is a rather
high number.

maybe_ 8b --
This is the runtime routine for MA VBE.

pfpush -- addr "parameter-field-push"
This is the runtime that gets called by DOES> . It moves the retum address from the call
to pfpush from the return stack to the data stack.

prompt$ -- addr "prompt-string"
prompt$ is a variable that contains the address of a counted string that is used as the
interpreter prompt for keyboard input. The default prompt is ">" . addr is the variable
storage address. The value at this address is the address of a byte containing the
character count of the string, with the first character of the string starting at address+ 1.

rmb_ -- addr
The runtime used by RMB . Used in the form:

COMPILE rmb_,
the word compiled by , immediately after rmb_ is a data offset into the data memory
area. rmb_'s runtime action is to compute the absolute memory address of the
beginning of the data area plus the offset and push this on the stack.

strlit_ -- addr u
String literal runtime routine. A counted string is compiled immediately after strlit_ . At
runtime strllt_ reads the count byte of the string and pushes it's address addr and count
u on the stack.

var_ -- 16b or
16b -- (if TOFLAG set)
The runtime for VARs. The variable data offset is compiled immediately after the
compilation of var_.

GLOSSARY
6-41

GLOSSARY

6-42

FORTH LANGUAGE OVERVIEW

This section will introduce you to the operation of the Forth language in general. This is not meant to
be a complete instructional text on Forth, but rather a brief outline of how Forth operates. This may
be enough for an experienced programmer to get a start with Forth, but a novice will almost surely
require an additional beginning text as suggested in chapter one. References to features specific to
FORTH09 and not commonly found in other Forth-83 languages will be italicized. Sequences of
Forth code will be underlined. Forth words will be highlighted. Since the best way to learn a new
language is with the system running in front of you, so you can immediately try examples, you should

install FORTH09 on your system as described in chapter 1 before proceeding too far here.

WORDS

The fundamental programming unit in Forth is the "word". A Word can be thought of as a subroutine,
but it also encompasses what are normally considered operators in other languages. Most other
languages have a set of operators (such as+ - * etc.) and programming keywords, which are finite
in number. Outside of these you program by using groups of these operators and keywords in
subroutines or functions. In Forth you actually extend the language as you program.

A "word name" in Forth is composed of a one or more ASCII characters delimited by spaces. There
are no restrictions on what characters can be used.

Examples of words: SWAP DROP + @ 1+

The glossary section of this manual defines the action of each Forth word provided with the system.
You program by defining new words in terms of those that already exist. You can in turn define new
words in terms of the ones you have defined, building up your code pyramid fashion until a complex
function is defined as a single word.

STACKS

Most programmers are familiar with the concept of a "stack". A stack is an area in memory, that has
a pointer called a "stack pointer'' associated with it. The stack pointer, points to the next available
data location on the stack. You place data on the stack with a special "push" operation that
automatically places your data item in the next available location and then advances the stack pointer
to point to the next location. To remove the data there is a corresponding "pull" (sometimes called
"pop") operation which first "backs up" the stack pointer to the last used location and removes the
data at that location. From this it can be seen that if you "push" several items onto the stack and then
remove them, the last item pushed will be the first item pulled. (i.e. we have a LIFO "Last In First
Out" stack). The advantage of this over a simple array to hold data is that you never need to know
exactly where in memory (e.g. what array subscript) the data is. The stack pointer takes care of
locating the data automatically.

Forth uses TWO stacks. The customary "return stack· is used as in other systems to hold the return
address for subroutine calls. The data stack holds data or parameters to be operated on by Forth
words. When we refer to "the stack" in Forth we are talking about the Data Stack unless we
specifically refer to the Return Stack.

All Forth words that operate on data take their operands from the stack (data stack) and return their
results on the stack. For example the word + ("plus") performs the addition function, adding two
numbers together. When + ("plus") executes it removes two numbers from the stack, adds them
together, and places the resulting sum back on the stack. The word . ("dot" the ASCII period)
removes one number from the stack and displays its value on the console screen.

Enter FORTH09 as described on the first page of chapter one and try typing the following.
(End each line by typing the "return" key).

L (Forth responds with 3)

(This places the number 3 on the stack and then displays it).

(C) Copyright 1988 D. P. Johnson
7-1

2 5 + . (Forth responds with 7)

(Place the number 2 and then 5 on the stack, add them together, and display the result).

You can see from these examples that Forth uses what is known as "reverse polish" or "postfix"
notation, similar to HP calculators. That is, rather that writing "2 + 5" you enter "2 5 +". The
operands precede the operator.

The math words • * I operate in a similar fashion to + , i.e. each gets its two operands from the
stack, performs the operation and places its single result on the stack. All of these operators deal
with 16-bit integer numbers, which is the default word size in Forth. Try some experiments with
these:

20 4 - 3 *

This is equivalent to (20 - 4) * 3 in more familiar mathematical notation. Note that the use of
postfix notation eliminates the need for parenthesis in the expression. Print the result from
the stack with • ("dot"). Forth should display 48.

The FORTH09 word .S ("dot-s") displays the contents of the stack in the order in which the elements
were placed there, without removing anything from the stack. Experiment with this word.

What happens if you attempt a "dot" operation and nothing is on the stack? Answer: You underflow
the stack and get a warning message stating such. Every number you put on the stack should come
off at some point. It is important to keep the stack "balanced" at all times. If you were in a loop that
always put one number more on the stack than it took off, you would soon overflow the limits of the
stack and in fact would probably overwrite all of memory and crash the system requiring a reboot.

INPUT STREAM

The "input stream" is a term in Forth that refers to the stream of characters being input to the system
by you from the keyboard. The input stream may be redirected at times to mass storage (disk file) or
other sources. As you have been typing into Forth, the Forth interpreter is picking a word at a time
from the input stream and then deciding what to do with it. The Forth interpreter does not look at the
line until after you type the "return" at the end. Forth then skips over any leading ASCII space
characters and considers a "word" to be any string of non-space characters. After Forth has found a
word in the input stream it then looks in its dictionary to see if the word is defined.

DICTIONARIES

Forth keeps a list of all previously defined "words" in a dictionary. The dictionary contains that word
name and other information defining the action of the word. Every time Forth picks a word out of the
input stream it searches the dictionary to see if the word is there. If it finds the word in the dictionary,
Forth executes the word (i.e. performs the word's function by running the code associated with that
word). If the word is not found in the dictionary, then Forth attempts to interpret the word as a
number. If the word was the ASCII representation of a number, then the conversion will be
successful, and Forth will place the value of the number on the stack. If the number conversion was
not successful, then a message is displayed indicating that the word was not found in the dictionary.

So you can now see what has been happening when you type. For instance, if you typed �
Forth would first pick up the "word" 123 which it would not find in the dictionary. It would then try to
convert 123 to a number, which succeeds, and then place it on the stack. Next Forth picks up the
word . ("dot"), which is found in the dictionary, so the code for "dot" gets executed. The code for
"dot" removes the number 123 from the stack and displays it on your terminal screen.

STATES

If what we have just described was all that Forth did, then it would be little more than a calculator.
This is not quite the whole picture though. Forth has two "states". Forth is always in one of these
states (or modes). What we described previously was exactly what happens in the "interpret" state.
The other state is the "compile" state. There is a word named STATE which is a variable which flags

(C) Copyright1988 D. P.Johnson
7-2

the system whether it should be interpreting or compiling. The "compile" state is used in creating new
word definitions. When Forth picks a word out of the input stream and finds it in the dictionary, it then
checks the value of STATE. If Forth is interpreting it executes the word as explained previously, but
if Forth is compiling, it then "compiles" the word into the new definition. If the word was not in the
dictionary, but converted as a number, and Forth is compiling, then a "literal" number is compiled into
the definition. When the new word is later executed, the "literal" number is placed on the stack at that
time.

COLON DEFINITIONS

The Forth word : ("colon") is used to create new word definitions. You program in Forth by defining
new words with "colon", which are called "colon definitions".

Example: : HI ." HELLO OUT THERE":

Defines the new word HI . When you execute HI (by typing HI on the keyboard followed by a
return-key), HI will display the message "HELLO OUT THERE" on the screen. This example
uses two additional words that we haven't discussed yet, ." ("dot-quote"), and ; ("semi­
colon").

When the word : ("colon") executes, it takes the next word from the input stream, which in our
example is the word "HI" and begins a definition for that word. A dictionary entry for HI is made and
Forth is switched to the compilation state. The words in the input stream are compiled into the
definition for HI until the ; ("semi-colon") is encountered.

PRECEDENCE

Actually there is one more exception to Forth's action in the compile state. (This is the last one we
swear!). Each word has a bit of information in its dictionary entry, called the "precedence bit". If this
bit is set, the word is said to be an IMMEDIATE word. If Forth is in the compile state, and it finds a
word in the dictionary that is an IMMEDIATE word, Forth executes that word Immediately Instead
of compiling lt.

In our last example, you may have wondered how the text message "HELLO OUT THERE" was
compiled by Forth. The First word the compiler encountered in the definition was ." ("dot-quote").
Notice the space after �dot-quote" distinguishing it from the text message. Dot-quote is an immediate
word, so instead of compiling, Forth executes it ("immediately"). The action of dot-quote is to read
characters from the input stream up until a " ("closing quote") is found, and compile those
characters as a string literal in the current definition, such that when that definition is executed those
characters will be displayed.

The "semi-colon" is also an immediate word. Its action is to stop compiling, make the word just
compiled accessible in the dictionary, and switch Forth back to the interpret state. The interpret state
is also referred to as the "execute" or "executing" state).

If you tried to type in .� something" outside of a new colon definition, you will have noticed that
FORTH09 displays the message "--compilation only". This indicates that the word dot-quote is only
allowed within a colon definitions, i.e. when Forth is in the compile state. There are a number of Forth
words that are only allowed to be used in the compilation state. Most of the IMMEDIATE words are
also COMPILATION ONLY words. If you look in the glossary section of the manual, you will notice a
code on the first line of each word definition. An I indicates the word is IMMEDIATE, and an C
indicates it is Compilation only. If you want Forth to echo back a message while you are in the
interpret state, there is a word similar to dot-quote, namely "dot-paren".

Example: .(something)

Displays the message we tried earlier. Note the space after .(which is not a part of the
actual message. The message characters begin after the first space following .(and end
with the character just before the) ("closing-paren").

(C) Copyright 1988 D. P. Johnson
7-3

DEFINING WORDS

"Colon" is a defining word. A defining word is a word that defines other words. That is, it creates a
dictionary entry for a new word that can later be found in the dictionary and executed or compiled. In
Forth you can create new defining words that can later be used to create new words.

VARIABLES

The word VARIABLE , is a Forth defining word used to create integer variables.

VARIABLE MYNUMBER

Creates a new word "MYNUMBER". When you later execute the word MYNUMBER, it leaves an
address on the stack which points to 2 bytes of variable storage that may be written or read.

MYNUMBER @

The word @ ("fetch"), takes an address from the stack, reads or "fetches" the value (2-bytes) at that
address, and places that value on the stack. Note that Forth variables are uninitialized, i.e. their initial
value is not specified.

To write a value to the variable, the word ! ("store") is used. "Store" takes two numbers off the
stack. The first is the value to be written, and the second is the address of where to write the first
value.

347 MYNUMBER !

Sets the value of MYNUMBER to 347. We have assumed so far that numbers are input in decimal
(base 1 0), but Forth allows the use of any number base between 2 and 72 for input and output of
numbers. The VARIABLE B ASE contains the value of the number base in current use. If the value
of B ASE is 10, then input is in decimal, 16 indicates hexadecimal input, etc.

Great care should be exercised when using the word ! and any other words that alter (write to)
memory. If the top most element on the stack is not a valid address to store to, the operation will still
take place using what ever value was on the stack as an address. Something will always be written
somewhere!. It is quite possible (easy) to crash your system with improper use of this word. Any
time you suspect you have done so, your system should be rebooted to avoid possible improper
operations due to some code somewhere being clobbered.

CONTROL STRUCTURES

Forth contains a set of words to implement looping, and conditional execution. The word IF which is
common to most computer languages, implements conditional execution of words. IF is an
IMMEDIATE word that can only be used within a colon definition. The word IF removes a single data
word from the stack which it interprets as a flag. If the flag value was zero, it is considered a FALSE
value, and execution of the words between IF and ENDIF is skipped. If the flag value was non-zero,
then it is considered TRUE, and execution continues with the words following IF. The optional word
ELSE may appear between IF and ENDIF and implements its universally assumed function.

e.g. : WHAT IF ."ITS TRUE" ELSE ."ITS FALSE" ENDIF;

0 WHAT

1 WHAT

Forth responds ITS FALSE

Forth responds ITS TRUE

Actually the standard word for the ENDIF function is THEN , which you may use, but we prefer to use
the word ENDIF, which has the same function, since it looks less confusing.

Looping is implemented with the words DO and LOOP or +LOOP, for a loop structure similar to the
FOR-NEXT loop in basic. A loop with a test at the end is constructed with BEGIN and UNTIL. A loop
with a test at the beginning can be constructed with BEGIN WHILE and REPEAT. Refer to the
glossary or a text book for details on these.

(C)Copyright1988 D.P.Johnson
7-4

MASS STORAGE

The only form of mass storage defined in the Forth-83 standard is the BLOCK storage. A block is a
1 K (1 024 byte) section of mass storage (disk sector{s)) that can contain Forth program code or data.
Blocks are numbered zero through n (n being the number of blocks available minus one). The word

LOAD redirects the input stream to a specific block. The contents of the block are then handled by
Forth exactly as if they were typed in on the console as one big (1 024 byte) line. Forth usually
provides some form of editor to edit the contents of the storage blocks. In general you edit a number
of blocks to contain new Forth words, and LOAD them in for testing and execution. They can be
erased from memory with the word FORGET and reloaded as testing and program development
proceed.

OPERATING SYSTEM INTERFACE

FORTH09 goes beyond the Forth-83 standard in providing an interface to the OS-9 operating system.
Forth systems are often implemented without any operating system. In these cases Forth itself
provides all control of the computer and peripherals, and mass storage consists entirely of the
BLOCK storage without any file system. FORTH09 runs as a process under the OS-9 operating
system, and BLOCK storage in FORTH09 is directed to OS-9 RBF files.

FORTH09 provides words implementing most of the OS-9 system calls. Any additional calls the user
desires to use can be user implemented with little difficulty. A thorough study of the OS-9 technical
manual should be undertaken to understand the power available through the system calls. A good
place to start is with the 1/0 calls, for opening and creating "paths" and performing input and output.

(C) Copyright 1988 D. P. Johnson
7-5

(C) Copyright 1988 D. P. Johnson
7-6

FORTH09 SYSTEM MEMORY MAP

(occupies FLOAD process data memory)

HIGH MEMORY

CMDLINE FLOAD CMDLINE parameters

Return Stack
so

Data Stack

BLOCK Buffers

PRIMARY Dictionary
(grows downward)

PRIMARY grow space
(for code and dictionary)

PRIMARY code
(grows upward)

initial Forth system
SECONDARY code (static)

SECONDARY dictionary
(grows downward)

SECONDARY grow space
(code and dictionary)

SECONDARY code (grows upward)
(compiled after initial sys)

system LOAD offset constants
MEMLIMIT

'FREE doff

LOW MEMORY

FORTH09 DATA memory

PAD, TIB, long bra code

(C) Copyright 1988 D.P. Johnson
A-1

s

u

Y,DP

Application Runtime Data Memory Map

(of modules saved by SAVE)

HIGH MEMORY
CMDLINE CMDLINE parameters

Return Stack

Data Stack
MEMLIMIT

Unallocated data memory

(if any)

'FREE
Allocated FORTH09 variables
(VAR VARIABLE RMB etc.)

PAD, TIB, long bra code
LOW MEMORY

DICTIONARY HEADER STRUCTURE

csect

d.link rmb 2
d.hash rmb 2
d.prec rmb 1
d.complen rmb 1
d.code rmb 2
d.chars rmb 1
d.name rmb 1 .. n

end sect

link address of next header in thread
name hash code
precedence and flag bits
code compilation length for inline
code offset from base address
number of characters in name
name chars, n= lesser of d.chars or WIDTH

s

u

Y,DP

The last name character stored has the high bit set. d.chars may be greater than the number of
characters stored.

immed
componly
secode
sec base
inlineok
inline

csect
equ $80
equ $01
equ $02
equ $04
equ $08
equ $10
end sect

D.PREC DEFINITIONS

immediate word
word is compilation only word
word is SECONDARY word
d.code offset is from secondary base area
may be compiled inline (code words only)
must be compiled inline ONLY

Other bits are reserved for future optimization features.

(C) Copyright 1988 D. P. Johnson
A-2

Code Words and the number of bytes of code
that will compile inline when COMPLIMIT is >=
the listed number.

WORD Bvtes

! 6

#0 6

'FREE 6

35
+ 6

+! 8

8

-ROT 9

0 4

1+ 6

1- 7

2! 10

2* 4
2+ 7

2- 7

21 4

2@ 8

2DROP 2

2DUP 6

20VER 6

2ROT 29

2SWAP 16

< 17

>< 6

?DUP 6

@ 4
ABS 14
AND 8

BLANK 21

C! 6

C@ 5
CMOVE 33
CMOVE> 37
COUNT 7

D! 10

D+ 16
D2/ 8

D@ 8

DABS 24
DDROP 2

DDUP 6
DECIMAL 5
DNEGATE 20

DOVER 6

DROP 2
DROT 29

DSWAP 16
DUP 4

ERASE 24

EXECUTE 2
FALSE 4

FILL 17

NEGATE 10

NIP 4
NOT 4

OR 8

OVER 4

PICK 11

ROLL 22

ROT 9

so 4

S>D 10

SHIFT 22

SP@ 4

SWAP 6

SWAP! 4

TO 2

TRUE 5
TUCK 6

XOR 8

The following words are always compiled
inline regardless of what value is in
COMPLIMIT.

WORD Bvtes
>R 4

EXIT 1

I 4

J 4

A> 4

A@ 4

A DROP 2

(C) Copyright 1988 D.P. Johnson
A-3

(C) Copyright 1988 D.P. Johnson
A-4

FORTH09 ERROR MESSAGES

All of the error messages listed cause the word ABORT to be executed unless otherwise noted.
ABORT will clear the data and return stacks, and reset the input stream to the console, by setting the
value of BLK to zero.

··0 MAYBE args
is detected by THENAGAIN.

··bad Instruction mode

··can't forget this deep
original system be FLOAD.

--can't SAVE secondary
SAVE or XSAVE.

There were no pairs of arguments supplied after MAYBE. This error

An invalid addressing mode for an ASSEMBLER word was specified.

An attempt was made to FORGET a word that was loaded with the
NOTE: This applies to systems save with SAVESYS also.

You tried to save a secondary word as an application module using

··Code Imbalance END-CODE was executed without CODE or ;CODE or else the stack
has been altered since those words executed.

--code space overflow The word ALLOT was called with an argument that exceeded the
remaining code space in the current code area (PRIMARY or SECONDARY).

··compilation only An attempt was made to execute a word in the interpret state that
may only be used within a colon definition.

-- compiling secondary word to primary An attempt was made to compile a SECONDARY
word into a PRIMARY word definition. This is not allowed because if the PRIMARY word is SAVEd
as an application, the SECONDARY code will no longer be accessible to it.

··creating null word CREATE or (CREATE) have been executed with the input stream
exhausted. If input is from the console, the new name must be on the same line as the word that
makes the dictionary entry. E.g. : on a line by itself will cause this error.

-·data memory overflow The word ALLOT _D was called with an argument that exceeded the
remaining data memory. Caused by VARIABLE or RMB or another word that uses ALLOT _D .

··Illegal addr for >RESOLVE or <RESOLVE The stack contents were probably altered in between
control words using >MARK <MARK >RESOLVE <RESOLVE .

··Incomplete .. forget me The word being defined was added to the dictionary, but the
definition is incomplete and should not be executed. Use FORGET to remove the word from the
dictionary. This may happen when defining a word using CREATE and DOES> and an error is
encountered after the DOES> .

--Invalid MAYBE structure The argument list for MAYBE was incorrect. (Should be pairs of
arguments, a byte value literal followed by a word to be executed).

·-memory full during compilation A colon definition was started with the current code
memory area (PRIMARY or SECONDARY) nearly full. You may need to reload FORTH09 with
FLOAD and reapportion memory.

--missing BEGIN UNTIL or AGAIN was encountered without BEGIN or else something
has tampered with the stack.

-·missing DO LOOP or +LOOP have been executed without executing DO , or else the stack
contents have been altered since DO .

--missing GLOBAL The word MODULE was executed without GLOBAL or else
something has tampered with the stack.

-·missing IF ELSE ENDIF or THEN were executed without the IF statement, or else the stack
contents have been altered since IF .

(C) Copyright 1988 D.P. Johnson
8-1

--missing LOCAL GLOBAL was encountered without LOCAL or else something has
tampered with the stack.

--missing MAYBE THENAGAIN was encountered without MAYBE or else something
has tampered with the stack.

--missing WHILE REPEAT was encountered without WHILE or else something has
tampered with the stack.

--missing keyword? ; has been executed with an unexpected sys word on the stack,
usually indicating improper usage of some IMMEDIATE word that manipulates the stack during
compilation, or a missing control word such as UNTIL ENDIF LOOP etc.

--missing operand An ASSEMBLER word was missing an operand.

--not executing A word was used inside a colon definition that is allowed only in the
execute state.

--range error An ASSEMBLER conditional required a branch out of range for the short relative
branch.

--redefined THIS IS A WARNING ONLY that the last word added to the dictionary already
existed in the search order.

-· stack overflow
stacks designated size).

-· stack underflow

The stack has been over filled. (Items added to within 4 bytes of the

More items were removed from the stack than were there.

--unmatched conditional One of the ASSEMBLER control words required in pairs was
missing. e.g. BEGIN without UNTIL.

(C) Copyright 1988 D. P. Johnson
8-2

ALLOT 1-7
Application code 1-4
Application Memory Map A-2
ASSEMBLER 5-1

Branch Instructions 5-2
Notation 5-1
SAMPLE INSTRUCTIONS 5-1

BLOCK STORAGE 1-3
BREAK 1-10
BUFFER SIZES 2-1
Code Compiled Lengths A-3
Colon definitions 7-3
Compiled code 1-3
COMPLIMIT 1-3, 1-9
Constant tables 1-8
DATA STACK SPACE 2-1
DEBUGGING 1-10
DEFINING WORDS 1-7, 1-8
DICTIONARY STRUCTURE A-2
DICTIONARY SPACE 2-1
Direct Page variables 1-9
EDITOR 1-1,4-1

crude line editing 4-1
cursor control 4-2
key interpretation 4-2
SCREEN EDITOR WORDS 4-1
Usage 4-3

ERROR ACTION 2-1
ERROR MESSAGES 1-8, B-1
ERROR# 1-5
EXTENDED MEMORY 1-12
FLOAD 3-1
FORTH LANGUAGE

COLON DEFINITIONS 7-3
CONTROL STRUCTURES 7-4
DEFINING WORDS 7-4
DICTIONARIES 7-2
INPUT STREAM 7-2
MASS STORAGE 7-5
OVERVIEW 7-1
PRECEDENCE 7-3
STACKS 7-1
STATES 7-2
SYSTEM INTERFACE 7-5
VARIABLES 7-4
WORDS 7-1

Forth-83 1-1
FORTH09 MEMORY MAP A-1
GLOSSARY NOTATION 1

Attributes 1
INPUT TEXT 2
Pronunciation 1
Stack 1
STACK PARAMETERS 1

1/0 redirection 1-11
Initialization code 1-5
INPUT/OUTPUT 1-5
Literal values 1-3
LOCAL WORD NAMES 1-7
MASS STORAGE BLOCK RANGES 2-1
Memory allocation 1-7
Memory map 1-7
MOREBLOCKS 1-3
Moving screens 1-4
Numbers 1-6

base 1-6
double number 1-6
internal format 1-6
literal 1-6

NUMERIC INPUT 1-6
OPERATOR'S TERMINAL FACILITIES 2-1
OPTIMIZING FOR SPEED 1-9
OS-9 110 1-11
OS-91NTERFACE 1-11
OS-9 system calls 1-5
PRIMARY 1-2, 1-4, 1-5
PROGRAMMING MODEL 1-2
PSTATE 1-2
RETURN STACK SPACE 2-1
SAVESYS 1-3
Saving Application modules 1-4
Saving System Modules 1-4
SEARCH ORDER 1-10
SECONDARY 1-2
Shadow screen 1-3
SHELL 1-11
SHOW 1-2
String operations 1-6
String words 1-5
STRINGS 1-5
SYSTEM INSTALLATION 1-1
VAR 1-3
Variable arrays 1-8
WORD SYNONYMS 1-7
WORD WIDTH 1-7

	Cover
	Forth09
	Contents
	Chapter 1. FORTH09
	Introduction
	System Installation
	Programming Model
	Block Storage
	Saving Forth Application and System Modules
	Input/Output
	Strings
	Numeric Input
	Local Word Names
	Word Width
	Word Synonyms
	Special Considerations for Defining Words
	Compiler Error Messages
	Optimizing for Speed
	Search Order
	Debugging
	OS-9 Interface

	Chapter 2. FORTH-83 Required Documentation
	Chapter 3. FLOAD
	Chapter 4. FORTH09 Editor
	Terminal Specific Screen Editor Words
	Editor Usage

	Chapter 5. FORTH09 Assembler
	Chapter 6. Glossary Notation
	Order
	Stack Notation
	Attributes
	Pronunciation

	Stack Parameters
	Input Text
	Alphabetical View
	Char
	0-2
	Punctuation
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Chapter 7. Forth Language Overview
	Words
	Stacks
	Input Stream
	Dictionaries
	States
	Color Definitions
	Precedence
	Defining Words
	Variables
	Control Structures
	Mass Storage
	Operating System Interface

	Appendix A. (Memory Maps)
	Forth09 System Memory Map
	Application Runtime Data Memory Map
	Dictionary Header Structure
	D.PREC Definitions

	Appendix B. (Error Messages)
	Index

