0S-9 User Notes

Volume One

By: Peter C. Dibble

Copyright 2 Peter C. Dibble and The Computer Publishing Center

Peter Dibble

0S-9 User Notes Volume I

April 1985

ii. O0S$-9 User Notes Volume I

CONTENTS

Part 1: Coiumns

Prs

Introductions N
Column One . . Coe
Opening Remarks -
GIMIX-III O0S-8 . . ,
A Null Device e e e e
Documentation for Nu11 Device Descriptor
Null Program
Column Two
05-9 Level Two VerS1on 1
Generating a New Bootstrap
Building a New System Disk e e e e e e e e e e e
Using Multiple Processes « . « « 4 « « « .+ « . 10
Column Three . e e e e e e e Co e
The FORK Superviser Service Request e e e e e e e e e 11
Communications Via the Parameter Area . P 11
Assembly Language Procedures for FORKing Processes C e e e i1
StrtTask-One+ « .« .« + 13
Driver Dne « « . . v e e e e e e e e e e e e 14
Column, Four . e e e e e e e e e e e e e e e e e e e 15
Basic/Bas1c09 o e -
Interprocess Communicat1on RN e e e e e e e e e e e 15
Communication via the Parameter Area S |-
Data Modules . . . G e e e e e e e e e e e e e e 16
Locking Data Moou?es e e e e e e e e e e e e e e e e 16
Locker Program o . a0 e e e e e e e 18
Calc Program e e e e e e e e e e s 21
Driver Program« . o . e oo . 22
Column Five . TS 3.
More About Lock1ng TS 3.
Getting a Good "Mix" 25
An Assembly Language Pro’ram whuch Sets Printer Options Lo o 27
The 0S-9 User’s Group - = |
The Future of this Column - 3.
POpt Program « s v v v v e e e e e el e s .. B0
Column Six . O < 1]
New Release of Microware Pasca1 P | <
05-9 Directories . . <]]
Standard Terminal Support for 05 9 < 1<
Column Seven . . Y B |
A Letter . . . ¥4
Letter from Bengt Al]an Bergvall e e e e e e e e
Parammod P 2
Help_. B« v a5
Column Eight . . ¥4
The 0S-9 User Seminar e e e e e e e e e e e e
Shell Commands . . . 2 -
A Logical Device Driver O 2 -
VCIA Device Driver « o« < v v e v o . .. 51
Column Nine O - 1 -1
Protection . . . - 1}
The "Suspend State SO - 4
Column Ten . . e e e e e e e e e e e e e e ... bS8
More About Computers at School . -1 <
Pipes .. -1
A More Advanced Approach to P1pes O 1)
Installation . . -
Operation and Modification T -
welcome COCO + « « o « v v i e e e s e e e e s e . B2
The Users Group T - 13
Bword T - 1<]
CharCt « v v v e e e e e e e e e e e e e e e e .. B4
Grapher O -1
StrtTask . . . v« . v e . e e e e e e e e e e e e e e 8T
Rast . . . Y £)
Column fleven -- The OS 9 1/0 System <
The Unified Input/Output System O <
Changing 0S~-8’s Device Support e £
Column Twelve -- The CoCo .. O A4
Notes on Complserve e A4
Thank You GIMIX O £ -
A Handy Shortcut +« . . . s v 4 e e e, 18
Column Thirteen P S - A
Big System Hardware T - B |
Big System Software S -2
The Compuserve 0S~9 SIG T -2 |

WOOWOILNNOOHTLOW

Contents iii

0S-8 on the Color Computer
Installation of Beep/Beeper
Applications for /Beep
The Users Group
Sound .. Coe e e
Beeper
TestBeep
Column Fourteen .
More About the CoCo D1sk Dr1ver
where Next? .
More Noise from the CoCo
This Month's Driver
The Users Group
Beeper2
TBeep2
Column Fifteen .
The 0S-9 Sem1nar
OF 1ex RN .
New Manuals
C Functions
The Butterfly
Dynaspel .
A Nice Exper1ence
Tricks for Level Two
TstSSig - . .
FRexp
Modf .
Column Sixteen
Standards .
Standards that are the USer s Responsab111ty
The Users Group . .o
Column Seventeen -~ The F1rst Step Into DS 9 .o
Format . o R
Backup
Dir e e e e e e e e e
Chx and Chd ce e e e e e e e
Oops e e e
Column Eighteen
My Life P
Non-standard Hardware .
Directories as Files
OL1st Program
DList2 Program
1d Program .
DFormat Program
Column Nineteen .
More Games with D1rector1es
Dr Program
DirSqz Program

Part 2: Reviews

iv

A Review of D-~F PN PR
Genera)l System Descr1pt1on
Limitations e e e e
Operation . e m v e e e e
Evaluation
Summary .
Review of 0S-9 CIS CDBDL
Overview . . . -
Enhancements
Limitations e e e e
Benchmarks
Summary . . s e e e e
COBOL Test Program C e e e e e e
COBOL Sieve . e e e e e e e e e
COBOL Benchmark program . e e e e e e
Review of Sofiware by Clearbrook Sof tware Group
DEd1t e e e e e e e e
Dverview Ce e e e e
Details e e e e e e
Limitations e e e e
Summary e e e e
BTS e e e e e e e e
Overview . . .
Details .
Limitations
Summary

O-Series Utilities -- DDIR. DDEL, DCOPY and DATTR

Overview

0S-9 User Notes Volume I

107
109
{10
111
112
113
113
115
118

118

121
121
121
121
121
122
123
123
123
124
125
125
126
i28
129
131
131
131
131
131
131
131
131
131
132
132
132
132

Details

Problems and L1m1tat1ons

Summary . .
Recons1derat1on .

A Review of DynaCalc for 0S- 9
Overview .. .
Some Details
Limitations and Problems
Summary .

Review of Dynam1te
Overview .

Some Details
Operation
Limitations
Summary

A Review of RMS

Overview .
Some Details
Flaws

Summary .

Review of RMA and RLINK
Overview .

Some Details

The Separate Assemb1y Fa
Some Internals .
Limitations
Summary

Index

FIGURES

Execution Sequence for Lockout
Output of DIR Command

Sample Startup file

Password File Entry

Sample Input for rast program
Hex dump of a directory
Dynacalc Terminal Support
Sample RMS Definition

RMA Macro

Definitions files routinely included in assemblies

Dynamite Label! Classes

Dynamite Addressing Modes

c111ty

TABLES

Contents

132
132
133
133
135
135
135
136
136
137
137
137
138
138
138
141
141
141
142
142
145
145
145
146
146
147
147

148

25
55
56
57
62
108
135
141

145

27
137

137

v

vi 0S-9 User Notes Volume 1

Part 1 COLUMNS

Columns 1

2 0OS~-9 User Notes Volume I

INTRODUCTIONS

This book is an anthology of all I have
written for 68 Micro Journal since I start-
ed writing the 05-9 User Notes column in
february 1883. Some errors in spelling ang
grammar have teen removed {1 imagine others
have crept in to take their place.), but I
forced myseif to leave in mistakes that 1
made. The most glaring have footnotes
pointing out the truth.

This document was prepared using Water-
loo Script and a Xerox 8700 Laser Printer.
This let me add footnotes, figures, boxes,
and an index to the columns. A1l the foot-
notes are additions I made while preparing
this anthology. The figures and boxes are

features 1 wished for when I was preparing
the original column. The contents are from
the column, but the presentation is differ-
ent,

The people at the University of Roches-
ter Computing Center deserve special thanks

for their help with this document. This
book pushed some of the limits of the sys-
tem. They were always friendly and help-
ful.

The index is an attempt to make the
helter-skelter arrangement of the columns
bearable. Each month 1 write about what
takes my fancy. Sometimes I write about
several things. Columns written like that
don‘t combine into a cohesive book very
well. 1 hope the index will guide you to
the information you need wherever it hides.

Introductions 3

0S-9 User Notes Volume I

COLUMN ONE

OPENING REMARKS

This is the first of what I hope will be a
long series of columns about 0S-9 Level
Two. I plan on discussing some interesting
aspect of programming in each column. 1
also intend to use this as a soap box for
my radical ideas about computing in hopes
of stirring up some controversy. My comput-
er was financed largely by teaching comput-
er science. Please bear with me when I have
a fit of teaching.

First, by way of introduction, I work
as a systems programmer on a variety of
machines. I teach computer science courses
at a local technical college, and take com-
puter science courses at the local univer-
sity. I worked my way up to my job as a
systems programmer through years of work on
payroll, student systems, and other busi-
ness programming type things - you might
say 1 paid my dues. I got started on micro-
computers by building SWTPC’s 6808 computer
kit. I now own two mongrel computers, one
small, running only FLEX, and seldom used,
the other large and frequently used. My
large computer has a GIMIX DMA disk con-
troller, and a GIMIX 6808 CPU board, two
eight inch disk drives, 344K of useful mem-
ory, and assorted 1/0 boards. It can run
0S-9 Level Two or FLEX.

I have a collection of strong opinions
about computing in general, and microcom-
puting in particular. The most relevant
opinion is that I think the staggering sum
I spent to buy 0S-9 Level Two together with
languages and utilities was money that
could not have been better spent though I
do wish the prices were tlower. I think
everyone should get to watch their computer
seem to come alive, not just those people
who are willing to work two jobs and 1ive
on pasta to save enough money. I belong to
the school of radicals who believe that
Basic is bad for your brain. I like Pas-
cal, but find it a little dull. Assembly
language is lots of fun, but slow going. I

am looking forward to getting C: it sounds
promising.

I think it is practically immoral to
force even two people to attempt to use a
6808 at the same time. The fact that it
sometimes does a passable job with several
users is not a sign that there is plenty of
power for several users. The 6809 only runs
just so fast. No operating system can make
it run faster. Digital Equipment Corp.
seems to think its small VAX is probably a
good single user machine. I have noticed
that the Xerox Star 1s very slow when it’'s
editing. Both of those computers can run
circles around any 6809 machine (and cost
far more). Both of them run software writ-
ten by top quality programmers. The differ-
ence is that those computers are expected
to make things as easy as possible for
their users at any reasonable expense. Peo-
ple who use and program microcomputers
don’t expect that much out of their
machines. Our machines are microcomputers.
Wwe expect them to do the same kinds of
things other microcomputers do. Our
machines are small, but they are part of a
new generation. They can do the work of
several of last generation’s micros. We can

use that power to give several users the
same poor service, but I would rather see
one user well pleased by a computer than
several somewhat dissatisfied users.

There is some truly excellent software
available for the 6809. I would rate Micro-
ware’s Pascal as one of the best Pascals 1
have used on any machine. A 1ot of features
are missing from 0S-9 Level Two, but what
is there is up to the highest Standards and
it should be easy to add most of what’'s
missing. From my reading of the manual,
BasicOS seems to be an excellent language
(as Basic goes). I own a great deal oOf
software for FLEX and 0S-9, but I can’t
think of any other programs in that league.
I am open to suggestions. The challenge is
to be at least As good as any similar pro-
gram on ANY MACHINE. For example, I would
love to find an editor that qQualifies. My
life would be much easier if I could run an
editor comparable to EMACS, XEDIT, SPF, or
SED on my micro. DYNACALC seems, from its
advertisements, to be as good as any of the
vVisiclones, maybe the best of them. I am
holding a grudge against that program
because it only supports 3000 cells (under
0S-9 Level Two) That’'s as good as most
vVisiclones, but I have enough memory for
much more than that. The chance to be the
first spread sheet program to support
almost a megabyte of storage (maybe 30000
cells) in memory on a micro was only a few
hundred instructions away, and they didn’t
do it. I would 1ike to propose some pro-
gramming challenges to the 6809 community.

I have used spelling checkers that can
be asked for a 1ist of suggestions for the
spelling of a qQquestionable word. The good
ones will provide synonyms on demand too.
Doing this at a decent clip, and fitting
the dictionary on a floppy disk should be
an interesting challenge.

I don‘t know of any high level language
for the 6809 that can use more than 64K
even with restrictions. No, I take that
back. Microware’'s Pascal can use a sort of
virtual storage scheme to deal with more
than 64K of coode, but there is no easy way
to use more than 64K of data. What I had in
mind was a language that could make use of
extended addressing. There are lots of use-
ful tricks, playing with the OAT, using
software interrupts cleverly, or simply
running all procedures (subroutines if you
1ike that term better) as FORKed tasks.
Minicomputers used to be 1imited to a 64K
address space. Some of the tricks used to
fit big programs 1nto them can probably be
adapted to our problems.

A state-of-the-art editor would go a
long way toward promoting the 6€809. As
basic requirements, such an editor should
be a screen editor capable of using any
available memory. It should include the
abitity to edit multiple files of arbitrary
size without resorting to the "new" or
"more” kludge. It should include the best
of Wylbur, EMACS, and the other common edi-
tors.

If I seem 2 l1ittle shrill about soft-
ware, it is because I see my beloved 6808
machine being squeezed out by the flood of
high qQuality microcomputers on the market.
From my point of view, the best feature of
the 6809 is its elegant architecture. It is

Column One 5

o easy to program that it should be pull-
'ng ahead of the field with a flood of
superb software. 1 see only a trickle.

GIMIX-II1 OS-9

Ok, now 1’11 get off the soap box and
down to business. I am thinking of selling
both my computers. I positively 1lust after
the new GIMIX CPU board and "level Three'
operating system. If there is another
microcomputer en the market that does what
it does, I nhaven’t heard of it. Large com-
puters such as IBM 370 architecture, and
large DECs can cause a*tempts to write into
"protected storage" or execute invalid
instructions to fail. Special code is exe-
cuted whenever a program attempts either of
these activities. Usually the program that
did it is stopped. Microcomputers don‘t do
that kind of thing. The computer will do
something (maybe something ridiculous such
as "halt and catch fire") with any data its
program counter 1{s pointed at. This can
cause a faulty program to go out of control
in unpredictable ways. There 1is no way for
the microprocessor to know that it
shouldn‘t write 1into some part of memory.
1f you want you can write your name all
over the Basic09 interpreter. The results
of that kind of thing are disastrous, par-
ticularly {f you are sharing the interpret-
er with someone. You just have to make
very sure programs you write never try to
execute, or write into anything they
shouldn’t. Of course that is just good pro-
gramming.

The new board from GIMIX was designed
to work with 0S-8. It is alleged to support
protected storage and to prevent invalid
operations from being presented to the
microprocessor. This 8hould prevent any
program from interfering with any other
program, even, in many cases, itself. For
those of you who try to support several
users, if you use the new GIMIX hard/
software no user should be able to cause
the system, or another user’'s program to
fail. Even people like me who don‘t share
time with anyone can gain a 1ot from this
kind of safety net. Sometimes when I am
debugging a program everything just comes
to a stop and 1 have to re-toot in order to
continue. It is even worse when there is a
long pause then the disk starts seeking. I
haven‘t had any data destroyed that way
yet, but I worry. This new hardware should
give everyons who can safford it a lot of
peace of mind. GIMIX has also bgeen able to
remove every trace of the opsrating system
from each task’'s address space. Programs
can be run with up to 64K. The board and
accompanying software have 1lots of other
features, but the other one that excites me
a 1ot 15 the memory-to-memory DMA. A 1ot of
time is spent moving data from one address
space to another in 05-3 Llevel Two. This
involves several operations for each byte
and slows 1/0 operations and other inter-
task communications down quite a lot. The
special hardware on this new CPU board can
move blocks of data at 2 cycles per byte.
At two megahertz that comes to one million
bytes per second. I understand that, all
things taken together, the new system runs
0S-9 substantially faster than what I have
now. I want to find out for myself. If you
see an advertisement from me in the classi-

6 0S~9 User Notes Volume 1

fied section you will know I broke down and
got a new, faster, better 6808 computer.

A NULL DEVICE

One of the nicest features of 0S-9
(both 1levels) is the relative ease with
which it can be adapted to new hardware.
For example, there 1is a module included
with the operating system called ACIA which
is responsible for interfacing the rest of
the system with ACIAs (Asynchronous Commu-
nications Interface Controllers, or serial
ports). There is another module called PIA
which does a similar job for parallel
ports. and another module which deals with
whatever type of disk controller you have -
more modules if you have more than one type
of disk controller. If you feel the need
you can add more Device Drivers (the name
of this type of module) any time you like.
If you want to write your own driver, it is
good to have an example to work from. The
source for ACIA and PIA (available from
Microware) are both good starting places
though I found ACIA more useful.

There 1is a rather odd sort of device
which is available with most operating sys-
tems, but not 0S-9. 1 have seen {t called
DUMMY and NULL. This device makes anything
written to i{t disappear, and returns an
endfile if 1t is read from. It is surpris-
ing how often it is nice to have any easy
way to throw data away.

The Null Device Driver that I am going
to present here is a SCF (Sequential Char-
acter File) type device. The requirements
for this kind of driver are given in the
0S-8 System Programmer’s Manual, but in
general there are six entry points: Ini-
tialize device, read, write, get device
status, set Odevice status, and terminate
the device. This driver is so simple that
of those six, five just clear the carry bit
and return. Read is the only operation
requiring more than two 1ines of code. Read
is supposed to return with the character
read in accumulator A. If an error takes
piace, the carry bit should be turned on,
and the error code placed in accumulator B.
we want to return end-of-file, which is an
error, and I have found that is a good idea
to return null (Chr(0)) as the character
read even {f it i{s end-of-file. I return
the end-of-file from the driver though it
is usually generated by the SCF file manag-
er. If you want to modify the program such
that the file manager i{s the module that
generates the end-of-file, load accumulator
A with the end-file character which can be
found in the path descriptor (pointed to by
Y) and return with carry clear.

A Device Driver may be used for several
devices provided that they use the same
hardware. Each individual device is
described by a "Device Descriptor" which
includes everything unique to a particular
device such ag the address of the device.
The NL device descriptor is at the bottom
of the program. It will be loaded into mem-
ory at the same time as the Driver although
it will show up as a separate module in the
module directory.

DOCUMENTATION FOR NULL DEVICE
DESCRIPTOR

If the file Null is loaded and the module
NL is linked a new device called /NL will
become available for input and output.

0S9 Load Null
0S9 Link NL

The device NL will accept input in any
guantity and simply make it disappear. If a
read is directed at it, it will reply <end
of file>. Other than eating data without a
sign it acts like a perfectly normal SCF

NULL PROGRAM

type device. .. a very fast and efficient
one!

Example:
0S9: asm MyProg o #48k >/nl &

wWould assemble MyProg 1in background and
make all its (non-error path) oufput disap-
pear.

Note: Be careful when using /NL for
input. Some programs (such as debug) don’t
respond to <End of FfFile> - these programs
will act very oddly 1f /NL is used as the
input device for them.

Microware 05-9 Assembler 2.1 08/05/84 22:40:30 Page 001
Dummy I/0 driver - Definitions

00001 NA Dummy I/0 driver

00002 TTL Definitions

00003 * -— e e *
00004 * Dummy) 1July82 Peter Dibble *
00005 * return end of file to ang,read *
00006 * Put any output down the bit bucket. *
00007 * No error returns *
00008 * Public Domain software as of 19Feb83. *
0000 o *
00010 IFP1 use /DO/DEFS/Defslist
00012 ENDC

00013 00El Type set DRIVR+OBJCT

00014 0082 Revs set REENT+2

00015 0000 87CDO02E MOD Dummgl,DumNam,Type,Revs,EntrE,Hemsize
00016 D 001D . ORG V.SC leave space for SUFman overhea
00017 D 001D Memsize equ .

00018 000D 07 fcb READ.+WRITE.+EXEC. driver mode
00019 TTL Dummy I/0 Driver

00020 OO0QE 446DF9 DumNam fcs /Dmy o

00021 0011 O1 feb 1 Edition number
00022 0012 Entry .

00023 w 0012 16000F lbra Init

00024 w 0015 16000E lbra Read

00025 w 0018 160009 lbra Write

00026 W 001B 160006 lbra GetStat

00027 w 001E 160003 lbra PutStat

00028 w 0021 160000 lbra Term

00029 0024 Init

00030 0024 Write

00031 0024 GetStat

00032 0024 PutStat

00033 0024 Term

00034 0024 5F clrb Zero return code
00035 0025 39 rts Do nothing

00036 0026 Read

00037 0026 4F clra

00038 0027 53 comb set carry flag
00039 0028 C6D3 1db #ESEOF return end of file
00040 002A 39 rts return

00041 002B 848D35 emod

00042 002E Dummy 1 egu x

00043 TTL Device Descriptor

00044 * - - *
00045 * NL device descriptor *
00046 * ~ ~ *
00047 00F] T pe set DEVIC+OBJCT

00048 0000 87CDOO1E mod DDend,DDNam,TEEe Revs, FMNam,DRVNam
00049 000D 07 feb READ.+WRITE.+EXEC. modes

00050 QO0OE FF0000 feb §FF,0,0 PORT ADDRESS OF O
00051 0011 0100 £cb 1,DI.SCF Options

00052 0013 4ECC DDNam fcs /NL/ device name

00053 0015 5343C6 FMNam fcs /SCF/ File Manager Name
00054 0018 446DF9 DRVNam fes /Dmy/

00055 001B BD5979 emod

00056 O0OlE DDend equ

Column One

8

0S-9 User Notes Volume I

COLUMN TWO

0S-2 LEVEL TWO VERSION 1.1

I just installed 0S-9 Level Two Version
i1.1. Fimally it‘s not ‘preliminary” any
more. Since 0S-9 never was very unreliable
it is hard to tell whether it is more reli-
able, but it is very easy to appreciate the
new utilities. 1 spent months writing a PWD
program. It prints the name of the current
data or execution directory. 1 hoped some-
day maybe 1 could sell that program. Well,
Microware beat me to it. The new versions
of 0S~8 include PWD and PXD, Print Working
Directory and Print eXecution Directory.
They also added a DELDIR command which
deletes a directory witr all the files in
it, a command called IDENT which displays
information about modules {in files, a file
comparison utility called CMP, and two com-
mands called BINEX and EXBIN which convert
a file to and from Motorola standard
S-Record format. DCHECK, the program which
checks disk structure. now seems to work
correctly, and DSAVE, the command which
constructs a procedure file to copy groups
of files, has been substantially enhanced,
but Level Two users will have to continue
to live with numeric error messages. A com-
mand called PRINTERR, which is supposed to
instruct the operating system to use text

error messages, wasn’'t on my distribution
disk.

An important new feature 1in 0S-9 is
support for XON/XOFF. The ASCII character
set includes 32 special codes such as back-
space ($08) and escape {($1B) which don’t
generally represent printable characters,
but still have defined meanings. XON and
XOFF are among the more useful of these
special codes. If, for instance, you have a
terminal which usually runs at 19.2KB., but
can only accept input at about 200 charac-
ters per second when it is in insert mode,
it would be nice to be able to constantly
adjust the speed at which the computer is
transmitting to match the speed at which
the terminal can receive. In general you
can‘t do that, but often it is sufficient
to be able to tell the computer to "hold
it,* and “go ahead." If the computer can
deal with XOn/X0ff protocol, it will *hold
it" whenever it receives an XOff, and "go
ahead" whenever it receives an XOn. There
are guite a few terminals and printers
around which run much better when they are
attached to a computer which supports XDn/
XO0ff. It is 1interesting to note that XOff
(often called DC3) is entered as <CTRL>S,
and XOn (DC1i) 1s <CTRL>Q. In order to use
this protocol you’ve got to find some char-
acter other than <CTRL>Q to use as the
“gquit" character. 1 wonder whether Frank
Hogg is going to be able to adjust DynaStar
so it can live without <CTRL>Q and <CTRL>S.

GENERATING A NEW BOOTSTRAP

One of the first things I do with a new
version of 0S~-2 is put together a new boot-
strap. There is nothing really wrong with
the bootstrap that comes with the system,
but I have my own Device Descriptors and
Drivers, and even if I didn‘’t need to, 1
probably would want to re-generate the

bootstrap just on the principle of the
thing. The modules in the bootstrap are
automatically 1loaded when the system 1is
booted, packed efficiently into memory, and
made permanent. It sounds as though, if you
have enough memory, it would be a good idea
to include in the bootstrap file all the
modules you would like permanently in memo-
ry. Don’t do it! Modules in the boot file
are not only permanently in storage, they
are also permanently attached to the other
programs in the boot. Say you put a P-Code
interpreter in the bootstrap - when you
1ink to that module in order to use it, you
drag everything else in the bootstrap along
with it. If you have a 48K bootstrap you
would only be able to run programs which
use up to about 12K total. Modules Yyou
expect to 1ink to should not be included in
the bootstrap. If you include a utility
command such as COPY, you may find that you
can only use a relatively small amount of
memory with COPY. The best way to handle
commonly used commands 1is to merge just
less than some small! multiple of 4K of them
into a utilities file and load it using a
LOAD command in the startup file. Since my
system allocates memory in blocks of 4K,
small programs l1ike COPY and PWD only waste
memory if they are toaded by themselves. By
collecting groups of programs together you
use memory more efficiently, essentially
keeping two or more programs {in the space
normally allocated to one. If your version
of 05-9 allocates memory in different sized
hunks, the size of the group of programs
should be changad to reflect the new con-
straints. Users of Level One systems don‘t
have to worry about any of this stuff.

The first time I generated a new boot-
strap was a little bit intimigcating. It is
important to realize that, provided you are
marginally careful (don’t spill chocolate
milk on an important disk, etc.,), the worst
you can do is waste your time. If you don’t
have a 1ot of memory the chance to remove
unused device descriptors from the boot-
strap may be worth the trouble tnvolved in
running OSBGEN. If wyou want to change any
modules which are in the bootstrap
{addresses in Device Descriptors for
instance), the cleanest way to do it is to
modify them them with DEBUG, save the modi~
fied modules, fix their CRC with VERIFY,
and build a new bootstrap with the modified
modules. A module must be saved on disk in
order to be included in the bootstrap. You
should use the SAVE command to create files
containing each module you might want in
the new bootstrap. Build a file with the
names of those files you want to combine
into the new bootstrap, and use that 1ist
of files as input to OSSGEN. Finally use
OCOPY to copy all the other files on your
system disk over to the new one.

BUILDING A NEW SYSTEM DISK

1 have many files on my system disk <that
are not part of the 0S-9 operating system.
An important part of installing a new ver-
sion of 0S-9 which is not mentioned in the
manuals 1i& copying all the non-05-9 files
you need onto your new system disk. I have
discovered an easy way to do this. I imag-
ine most of you 0S~-9 users already know
this trick, but I wish someone had told me
about it & year ago. By running DSAVE on

Column Two 9

vour old system disk you can create a file
containing a copy command for each of the
files on your old system disk. If you add a
"-x" as one of the first few lines in that
filte 1t won't quit if one of the commands
fails. The copy commands for files that are
already on the new disk will fail, but the
procedure will precede to the next command
instead of quitting. The result is a disk
with all the files you want on it.

USING MULTIPLE PROCESSES

Most of the programming I do is on machines
with far more than 64K available to each
program. It is easy to get used to having
effectively unlimited memory. The 68B0S can
only use 64K, but with the help of 0S-9
Level Two (not Level One) it is possible to
use more memory than most people can
afford. Over the next few months [expect
to spend some time discussing various ways
of doing this.:

One of tne basic facilities in 0S-9
(and most other sophisticated operating
systems) is called FORK. The effect of FORK
is to set a program up and start it running
without interfering with the program which
FORKed 1t. Each FORKed program is called a
Process or a Task. A process can run for
all practical purposes at the same time as
the program that FORKed it. Part cf setting
a process up is finding enough memory for
it to run. In 0S-8 Level Two each process
runs 1n its own "address space"... that is,
no user process shares any memory with any
other process except by special arrange-
ment. If you have enough memory, each pro-
cess can occupy all of its 64K address
space except a shred reserved for 0S-9.

I have been spending a 1ot of time
writing a program which I call a "smart
terminal* program. It started out as a pro-
gram to allow me to communicate with a
variety of computers without having to
unhook my terminal from my computer, and
fuss with half/full duplex. It just keeps
growing. One thing 1 decided to do was
inciude a way of printing a screen full of
data. You can‘t just stop everything and
print the screen; it would take so long to
print that the input buffer from the modem
would overflow, and at best data would be
lost. A solution is to use a FORKed process
to print the screen. Once I realized that I
could start a process to print the screen,
1 carried it a step farther and fixed
things so I can ask to have lots of screens
printeo. start a process for each screen,
and let them Queue up for a chance at the
printer while the process ooing the smart
terminal bit runs heerfully along. At
about 4K per process (the minimum alloca-
tion on my Level Two system) 1 can gueue up
about 20 screens in the 200K I usually have
availabte. Using the more effictient alloca-
tion of storage available under Level One 1
could probably have Queued up about 10
screens in a 56K system. I agmit this is a
trivial example of the use of extended
storage, but the point 1is that this is a
simple example of the kind of thing you can
do with extended storage. It is easiest to

1
The module 1is reentrant, so only the

variable storage needs to be allocated
for each process beyond the first.

10 0S-9 User Notes Volume I

use multimle processes tc get at lots of
storage wnen you can spin off a task that
can run 1n isolat:orn. Communicating between
processes is a harder problem than running
them in isolation. Several method for com-
munication will be developed in later col-
umns .

COLUMN THREE

THE FORK SUPERVISER SERVICE
REQUEST

A large number of the exciting things that
can be done with 0S~-8 involve processes.
Every program running under 0S-9 is a pro-
cess. Each process runs as if it had the
machine to itself (except for speed). When
a new process is started, 0S-89 1loads the
Program module for the process if it isn’t
already in core, creates a Process Descrip-
~tor for it, allocates the necessary amount
of memory, gives it standard input and out-
put files, and 1lets the new process go.
One of the ongoing tasks of the operating
system is to divide processor time between
all processes s0 that the system’s resourc-
es are used as efficiently as possible, and
all the processes run without too many
noticeable jerks. You can tell 0S$-9 to
favor a process by giving it a high priori-
ty (with the SETPR command}, or you can
give a process a low priority if you don’t
much care how guickly it runs.

A new process is created with the 0S-9
service request F$Fork. Before issuing
this service request you must set up the
registers as follows:

X Address of the name of the
module you want to FORK or the
file that contains the module.

Y The size of the parameter
area.
1] The beginning address of the

parameter area.

A The Language/Type code. That
is, the type of module Yyou
want to fork. Basic0O8 has to
be treated differently from
object code.

B The amount of optional storage
to give the new process.

COMMUNICATIONS VIA THE PARAMETER
AREA

vhen the FORK Service renuest is used to
start a new process 0S-8 is able to send a
block of data to the new process using the
parameter area. The new process will be
started with X pointing to the start of a
copy of the parameter area and O containing
the length of the parameter area. In lan-
guages other than assembler, the parameter
area can be found by noting that the param-
eter area 1is the place where the shell
places the command line parameters for a
program. The shell usually starts programs
by FORKing them, so in any language, if you
can get to the command 1ine parameters, you
can get at parameters passed through Fork
in the same way.

By using the parameter area you can
pass a 1ot of information to a new process,
but you can’‘t get anything back through the
parameter area. Remember that the parame-
ter area gets copied into the new process’s
address space. It is 1ike a Pascal pass-

by~value parameter ~- changes don’t get
back to the invoking process. Stil1, for
many jobs, the one time, one way communica-
tion afforded by the parameter area is suf-
ficient.

ASSEMBLY LANGUAGE PROCEDURES FOR
FORKING PROCESSES

Neither BasicO9 nor Pascal has all the nec-
essary functions for dealing with forked
processes, but they can be reached through
assembly language subroutines. I have
included two short assembly language sub-
routines which should help. StrtTask, and
WaitTask are meant to be called from
Basic09, though modified versions could be
called from Pascal or any other normal lan-
guage. StrtTask starts execution of a pro-
cess, and WaitTask waits until a chilg of
the calling process completes before
returning to the caller. These aren‘t
examples of elegant coding, but they are
good enough to play around with from
BasicOS. The BasicO9 programs Oriver, and
BTest are respectively a driver for the
assembly language moduies and a stub for
testing them.

StrtTask 1is an interface between a
Basic09 program and the 0S-9 Fork service
reguest. Normally, a fork is done with the
SHELL statement 1in BasicOS. By wusing
StrtTask instead of SHELL to start ®"child"
processes, a program can gain better con-
trol of the parameters. StrtTask allows
full control of the F$fork system service
request.

The first parameter which StrtTask
expects is the name of the module to be
started. It Should be passed as a charac-
ter string with a terminator., 8Such as a
space or carriage return, after the last
character of the module name. If the mod-
ule might not be in memory, the name of the
file which should be loaded to get the mod-
ule should be the first parameter instead
of just the module’'s name. The F$Fork sys-
tem service regquest cgescription in the 0S-9
System Programmer‘s Manual has more details
about this, and all the other parameters
for StrtTask,

The second parameter 1is the process
number of the new task. It is a byte field
which need not be initialized. StrtTask
will place the process number of the newly
started process in this byte. This is the
only parameter which s returned from
StrtTask. The process number is useful if
you want to communicate with the new pro-
cess, or to wait for a particular process
to complete.

The third parameter 1is the language/
type byte which describes the module you
want to run as a child process. The easi-
est way to discover the proper value for
this byte is by checking the module you
want to fork. You can see the)anguage/
type byte for a module by loading it and
doing a MOIR E command, or by doing a IDENT
command on the file the module is 1in.
Remember that this byte is displayed in
hex. Object code programs (generated from
assembly language) generally have a
language/type byte of $i1, or decimal 17.

Column Three 11

The fourth and fifth parameters are the
gngth of the parameter area to be passed
"0 the forked process, and the parameter
Trea itself. The parameter area can be any
~ype of data you want to pass to the new
process. The length of the parameter area
is passed as an integer. If you invoke a
module which is usually started from the
shell, the parameters should be a character
string terminated with a carriage return.
1f you want to invoke a module which runs
under Basic08., it is particularly important
to include the carriage return at the end
of the parameter area (which contains the
name of the Basic09 I-code module to run
and any parameters for it). Strange things
happen if you don‘t.

The last parameter 1is the amount of
optional storage space you want to give the

new process. This 1s the number usually
placed after the "#" on a shell command
line. The number can range from 2zero to

255 (it is a byte field), and may only be
in units of pages, not Kbytes.

If the fork service request itself gets
a bad return code. it will be returned to
the calling program as an error. In gener-
al the new process will still be running
when StrtTask returns to the calling pro-
gram, so there is no way to know what the
completion code of the new proccess is
(going to be).

Sometimes you may want to start a pro-
cess going and continue without waiting for
the new process to complete. but you may
need to wait for {1t to complete at some
point. This 1s where WaitTask comes in.
WaitTask will wait (just sit there) unti)
one of its children (a child of the program
that called WaitTask) completes. If there
are several children, the first one to com-
plete will let waitTask return to its call-
er. If there are no children, WwaitTask
will return with an error. If a child pro-
cess terminates before it i1s waited for,
its process descriptor will 1linger around
in memory until a wait {8 done by the
parent process.

waitTask has two parameters, both of
which are set by WwaitTask. The first
parameter is a byte containing the process
number of the process whose completion let
wWaitTask return. The second parameter is
the completion code of that process. if
there are several children that might ter-
minate, the process number parameter can be
used to cause the calling program to keep
calling waitTask until the necessary pro-
cess completes.

To use this package of modules
{StrtTask, waitTask, Driver, and BTest):

Assemble a file containing StrtTask
and wWaitTask

asm StrtTask o #24k
Save the packed form of BTest

BASICOS

in BTest

save

pack

12 0S-9 User Notes Volume I

load StrtTask and WaitTask
load StrtTask

or if you are still in BasicO9
$1oad StrtTask

Type 1in Driver
program}

{the basic driver

run Driver

There are a lot of interesting things
that can be done with these modules. You
can fork any program you want, not just
packed Basic09 modules, but the special
features of the shell, such as 1/0 redirec-
tion, aren’t provided by StrtTask. You
don’‘’t need to wait for the new process to
complete, but if the new process does 1/0
to standard paths, it can be very hard to
tell what is going on on the screen. 1f
you haven’t made a mistake that causes sev-
eral processes to use the terminal for 1/0
at the same time yet, you should. It is
educational.

The thing about new processes that par-
ticularly excites me is that under Level
Two each new process gets a new address
space with up to 64K, The main problem
with the modules included with this column
is that there is only one-way communication
with forked processes. The parameter area
goes from the parent to the child, but the
child only sends a completion code back to
the parent. There are easier ways to com-
municate. Wwe’ll get to them later.

A version of StrtTask with support for
pipes appears in Column Ten.

STRTTASK-ONE

ttl Start a subtask (called from Basic09)
nam StrtTask

StrtTask is a subroutine for Basic(09.
Start a named module as a subtask.
Let the new task run as nchronously.
return the new tasks grocess number, and the
condition code from the Fork.
Calling sequence:
run StrtTask (Name, Process Num, Lang_Type,
. Param L, Param, Opt size
Name is any length, but has a valid terminator
(high bit set on last byte, or delimiter after it)

Process Num byte field, process number of new task.
Lang Type byte field, language/type byte for
forKed module.

Param_L, integer field, length of parameter area.

Param field of any type, parameter area to be
passed to forked process.

Opt_Size byte field, optional data area size in
pages.

Process_Num, and Return_Code are altered by
StrtTask, no other parameters are.

[PREVRETRETAN IR B 3 O B S 3 o
PR R R R R I I I S

IFP1
use /HO/DEFS/defslist
ENDC

Type set SBRTIN+OBJCT
Revs set REENT+1
mod TLen,StrtTask,Tyge,Revs,SEntry,O
StrtTask fcs /StrtTask/
fcb 1 version
SEntr
1dd S get garam count
cmpd #6 are there 6 params?
bne BadExit no; leave now.
ldx S address of module name
ldy 16,5 length of parameters
l1da [12,S] type of module to invoke
1db [24 optional data area size
l1du 20,§ pointer to parameters
0S9 FSFork start the new process
bcs ?adE it2
sta 8,ST save new process number
clrb clear carry
rts return
BadExit
coma set carry
BadExit2
rts return
EMOD
TLen equ *)
ttl Wait for a (child) process to complete
nam WaitTask

Column Three 13

R e e e r—— e —————— - o — — *

* WaitTask is a subroutine for Basic09 *
™ Wait for the a child process to complete. *
w Return the process ID of the process that completed*
* in parameter one. *
* Return the competion code of the process *
* in parameter two. *
* This subroutine will wait using no CPU time until *
* a child process completes. . *
* If a child cgmgleted just before WaitTask was *
* called, it will return almost immediatly. *
¥ If there are no children, an error will be returned*
* with a process number of O. *
* Calling sequence: *
* RUN WaitTask (Process_No, Comp_Code)) *
: both process_no and Comp_éode aTe BYTE variables. I
Type set SBRTN+OBJCT
Revs set REENT+1

mod Wlen Wa1tTask,Ty£e,Revs,WEntry,O
WaitTask fcs /WaitTask/

fcb 1 edition
WEntry

clr 54 S] zero the process ID

ldd 2,§ param- count

cmpd #2 if not exactly 2 params then .

bne WBExit2 the caller is making a bad mistake

0S9 FSWait wait for a child

bcs WBExjt

sta 14,51 return the process ID

stb [8,S] return the completion code

rts return
WBExit2

coma set carry
WBExit

rts return

EMOD
WLen equ *

end
DRIVER ONE
PROCEDURE Driver _
DIM process No,Comp Code,Opt Size,Lang Type:BYTE
DIM Parm L:TINTEGER ~ - -
DIM name®TSTRING
DIN Parms:STRING[20] N

* Set up to call StrtTask which will fork the named *

I module, passing it the parameter string in Parms. :

name="Basic(09 "

rocess _No=0

pt_Size=0 .

Lang Tyge‘Sll \ (¥ attributes of forked module (obgect code, grogram)
Parms="BTegt"+CHRS(13) \(* The parms must end with <CR> for Basic(Q9
girm_L=LEN(Parms) \(* The length of the parameters must be correct

{* Call assembler subroutines to Fork and wait for the started
;z process

tUN StrtTaskEname,process No,Lang Type,Parm L,Parms,Opt Size)
ZUN WaitTask process_No,Comp_Code) - -
\

;: Acknowledge that everything is done

PRINT "Forked task complete"
PRINT "Completion code for process "; process_No; " was "; Comp_Code

’

14 0S-9 User Notes Volume I

COLUMN FOUR

BASIC/BASICO9

A month ago I installed BasicO9 on my
machine. I have been proud of not having a
Basic on my computer, but OF (An 0S-9/Flex
copy program) requires BasicO9, so] swal-
lowed my pride and installed Basic. I have
spent too many hours breaking students of
the bad habits they learned in elementary
computing courses taught using Basic to
have any affection at all for that lan-
guage, but 1 think I could learn to 1love

‘Basic09. It 18 able to masquerade as
Basic, but 1t feels just 1ike a modern
structured programming language to me. I

am sure that there were valid marketing
reasons for 1including ®"basic" in the name
of BasicO8, but I wish they had named 1t
Advanced Programming Language or something:
I would feel much more comfortable learning
to love the language if it had a different
name.

INTERPROCESS COMMUNICATION

Last Column I promised to continue
wrestling with the problem of communication
between processes writing about pro-
cesses without using technical terms is
getting to be too much for me. I am going
to give 1loose definitions of some of the
important terms here.

Process or Task

A module (Program, subroutine,
or whatever) which the oper-
ating system views as an
independent piece of work. A
program 1is usually a process
though sometimes a program is
divided into several process-
es.

Concurrent processes

Strictly speaking concurrent
processes must actually run at
the same time. This requires
a separate processor for each
process. The term i{is some-
times loosely applied to pro-
cesses (1ike 0S-9‘s) that are
actually using one processor
in turns, but seem to be run-
ning at the same time.

Dispatch Give a process access to the
processor. The operating
system will dispatch each
active process in turn. Only
one process can be running at
any time., so the operating
system must have a way of
interrupting a process as well
as dispatching 1t.

Schadule Closely related to dispatch.
If the operating system shows
any intelligence at all about
which process to dispatch
next, it can be said to
schedule them.

Spawn Create a new process. This is

a more general term than FORK
because not all operating

systems call the operation
which spawns a new process
FORK.

Parent/Child The process that spawns a new
process {is called the Parent
(used to be father) of the new
process. The new process is
said to be the child (used to
be son) of the process which
spawned 1it. The family tree
analogy can be taken as far as

you like; processes can have
siblings, ancestors, descen-
dants. ..

Asynchronous Not depending on the same
clock.

Don‘t take these definitions as gospel.
They are superficial -- barely enough to be
useful in the context of this column.

COMMUNICATION VIA THE PARAMETER
AREA

Passing a parameter area to a FORKED
process is simple, but of 1imited useful-
ness. The limitations associated with com-
munication with processes via the parameter
area are that the communication is general-
ly one way, and that, since a copy of the
parameter area is made for the new process,
large parameter areas will use a 1ot of
memory, and increase the length of time the
FORK operation takes. Under 0S-9 Level
One, all processes share one 64K address
space along with all the assorted system
overhead (0S-9 itself, memory mapped I1/0,
etc). Spawning a new process with a 20K
parameter area will cost 40K just for the
parameter area (20K for the original and
20K for the new process’s copy). That kind
of thing can chew up a 1ot of memory in
short order. wWith Level Two, the memory
problem isn‘t so important, but, unless you
have the Gimix III1 wversion of 0S-9, it is
time consuming to copy a large parameter
area into a new address Sspace.

Some of the characteristics of the
parameter area make it possible for new
families of bugs to creep into programs
that use them for i{inter-process communica-
tions. Under 0S-9 Level Two, each new pro-
cess gets i1ts own address space. There is
no sign of any other process i{in that
address space except a copy of the parame-
ter area passed from the parent process.
If the parameter area includes any address-
es, they will be pointing to places that
were significant in the parent’s address
space. In the new process’'s address space
those addresses may be empty or contain
something unexpected. The tricky thing
about this 1is that, under Level One,
addresses in the parameter area are mean-
ingful. Since there 1s only one address
space, the addresses just reach out 1into
the parent’s memory and grab, or change,
the data the parent pointed them at. Being
able to read and change data in the parent
process‘'s memory is a mixed blessing.

Let’'s say you want to print the con-
tents of an array without stopping to wait
for the printer. A very good way to do
this is to spawn a task to do it. If you
pass the array to the new task as a parame-

Column Four 15

ter, everything will be fine except that,
if the array is large, you may run out of
memory . If you conserve memory by passing
only the address of the array, everything
will still be fine (under Level One) pro-
vided that neither process changes the
array while the child 1is running. If the
child changes the array, it is very likely
to be a surprise for the parent. If the
parent changes the array (e.g.. by starting
to work on new data) the child will see the
changes, and print an array that is part
the old one and part the new one.

It would nCt be too hard to track down
the reason for that kind of garbled print-
ing, but there i{s an especially virulent
form of that bug which not only is hard to
find once you set out to look for it, but
also sometimes doesn’t Show up under most
forms of testing and 1ooks suspiciously
1ike a hardware glitch. The operating sys-
tem lets each process run for a fraction of
a second, then interrupts it and dispatches
another process. If you read some of
another process’s data, then change it and

put it back (something 1ike A = A + 1,

which reads A, adds 1 to it, and stores the
result in A), you can’‘t be sure that the
other process hasn‘t changed the data
between the time you read it and the time
you wrote it unless you have masked inter-
rupts for the duration of the operation. If
some process changed the value of A in the
middle of the add, the new value of A will
be wiped out when the result of the addi-
tion is put into A. Every process 100ks
entirely innocent when viewed alone, but,
taken together, they are chaos. If you
change a program with this kind of error,
even to add diagnostics, the probiem may
seem to disappear. The timing has to be
very precise for this kind of error to show
up, and (Murphy’'s Law being what it is) the
timing 1s never what you want 1t to be.
Finding and fixing this kind of bug is the
kind of thing that makes a programmer want
to join a commune and raise corn.

0S~8 Level Two prevents this kind of
trouble with the parameter area by making
addresses in the parameter area unusable.
Some programmers working 1n 0S-S Level One
without a crystal ball to predict the
nature of Level Two passed address to other
processes. Their programs (1 bel ieve
DYNASTAR/DYNAFORM is an example) have
restrictions when they are used under 05§-9
Level Two because under Level Two those
addresses are not meaningful.

If addresses are included in the param-
eter area, and you are using Level Dne, a
process can send data to its perent by
changing the parent’s variables. If you
prudently don’t use that questionable
trick, this type of communication is 1ike
heredity: strictly from parent to child.

DATA MODULES

The parameter area 1is certainly the
simplest path for inter-process communica-
tion, but there are are several other meth-
ods. The most powerful tool for inter-
process communication is the "data module.®
The data module is a rather mysterious mod-
ule type intended to be used to store col-
lections of constant data. The usefulness

16 0S-9 User Notes Volume I

of data modules stems from the way 05-8's
LINK system service reguest works,

The LINK request returns the address of
the module you 1ink to. Level One simply
returns the address, but Level Two must put
the module in question into the address
space of the process that does the LINK in
order to be able to provide a meaningful
address. If the module is marked “reent-
rant ., " the system memory map will be
adjusted so the memory containing the mod-
ule being linked to will appear in the
address space of each process which is
LINKed to it. This 1is a way to make a
block of memory accessible to several pro-
cesses. By making a module reentrant you
assure the operating system that several
processes can use the module without inter-
fering with one another. Usually that
means nobody changes the module. In the
case of a shared data module it 1is some-
times a good idea to lie to 0S5-9. If you
let a single process change a reentrant
data module while other processes only read
what‘s there, there is not much chance of
getting into trouble. Data modules can be
written into by many processes, but this
requires careful management. The problems
which can plague Level One users playing
with two way communications through the
parameter area all apply to shared data
modules which are written into by more than
one process.

A rather annoying problem with data
modules 1is that they must be loaded from
disk 1ike any other module. It is possible
to build a module in memory, but the system
service request which forces 0S-9 to
include the module in its directory of mod-
ules in memory i{s a supervisor state
request. It is possible to circumvent that
restriction, but the method is too involved
to tackle this month.

LOCKING DATA MODULES

It is practical to have a data module
with two or more *“writers" because there
are ways to ®"lock" a data module. A lock
is a system for checking that a resource is
free, then, if it is free, marking it *“in
use." Every program that uses a shared
resource must check and respect the lock in
order for it to be effective., but there is
no way to enforce the locking in such a way
that no program ¢an get at the shared mod-
ule without going through the locking pro-
tocol (GIMIX IIl1 might provide a way to do
this). The easiest way to lock a module
(or anything else} is to write a pair of
operating system services to 1ock and
unliock any specified resource. These ser-
vices are usually called ENQ/DEQ after the
sensible English words enqueue and dequeue,
or P/V after two Dutch words. Dijkstra is
responsible for the P/Vv terminology: IBM
may have thought up ENQ/DEQ. Perhaps 111
write the 0S-9 function handlers for P and
V someday, but until those services are
available, modules can be 1locked quite
effectively {in any assembly language pro-
gram.

There are several instructions in the
6808 1instruction set which can read and
write memory all in one instruction.
Altering a byte by reading and writing it

in one instruction prevents any other pro-
cess from accessing the byte in the middle
of the alteration. The machine instruc-
tions that read and write in one instruc-

tion are: shift instructions, rotate
instructions, increment, decrement, comple-
ment, and negate. The 1instructions which

are usually used for "locking” & module are
increment and decrement. The basic idea is
that you set aside a locking byte in the
data module with an 1initial value of -i.
TJo lock the module, increment the byte,
and, i{if increment returns with the zero
fiag set, continue; the module is locked.
If the zero flag is not set some other pro-
cess has the module locked, so decrement
the locking byte, and sleep for a while. ..
then try again. See the assembly 1anguage
modules Lock, and UnLock, for examples of
this procedure.

The LINK service request is only abile
to find modules that are already in memory.
If the module is not in memory it must be
loaded from disk using the LOAD service
request. This problem could be dealt with
by writing two assembly 1anguage subrou-
tines, one to do LINKs, the other to do
LOADs. This offers the most flexibility,
but requires the calling program to know
more about 0S-9 than I 1ike. The assembly
language program that accompanies this col-
umn attempts to load a module from the exe-
cution directory if it can’t be found in
memory . The problem with this approach is
that the file which contains the data mod-
ule must have the same name as the module.

Tne data module 1tself is created by
the assembler. The main difference between
a data module and a program module is that
a data module has no permanent storage size
in the module header, and no execdtable
code . I use the execution offset field in
the module header to point to the beginning
of the shareable data. By convention, I
use the first byte in the shareable data as
a8 locking byte. For 0S-9 Level DOne users,
i1t is good to keep the module to a multiple
of 256 bytes. Under Level Two, a module
loaded by itself will use a multiple of the
page size (usually 4096 or 2048 bytes}, but
a module loaded from a file containing sev-
eral modules will share a page with other
modules from that file if it can.

Together, the assembly language modules
SLink, SUNlink, lock, and Unlock, provide
the tools necessary for a BasicO9 program
to use shareable data modules. Before a
data module can be used, it must be 1inked
to; SLink returns the address at which 0S$-8
placed the data module. This address will
be wusable until the module is UnLinked.
Before any data in the module is used or
changed, the module should be locked by
calling Lock. Lock will not return control
to the calling program until it has control
of the data module. It would be possible
to rewrite lock so it would return with an
error code if some other process had con-
trol of the data module, allowing the call-
ing program to choose to do something other
than wait if the module is not available.
AS soon as possible after locking the data
module, it should be unlocked to release
other processes waiting for the data mod-
ule. Before stopping, a program that 1inks
a module should unlink it. ©0S-9 maintains
a counter of how many times a module has
been linked to, and deletes the module from
memory when its 1ink count goes to zero.

I have included two trivial Basic08
programs to demonstrate module locking.
Calc only calculates the sum of the squares
of a 1ist of numbers, but it could be the
mainstay of &8 mail system, a matrix manipu-
lation routine. or a print spooler (to name
a few possibilities). Oriver2 is a program
who’'s greatest virtue 1is that it calls
Calc. There are two forms of locking going
on in the Driver-DataMod-Calc system: the
first byte of data in DataMod is used by
Lock. The second byte of data in DataMod
is used for communication between Driver2
and Calc. Each process waits for this byte
to take on a value set by the other process
before it accesses the rest of DataMod.
This is a very simple protocol which can
only be used in trivial cases such as sig-
nal ing between two modules. In this case,
the main lock is used to prevent several
modules from trying to change the communi-
cations byte at the same time. Once a pro-
cess gets the lock, -no other process can
get it until the process holding the 1lock
releases 1it. The process which has the
lock can use the communications byte, and
the rest of the data module. to call for
the services of Calc in an organized fash-
ion.

I use a module from last month‘s column
called StrtTask in this set of programs.
If you are especially interested in memory
efficiency, merge the file containing the
StrtTask module with the file containing
this month’s assembly 1anguage modules.
Calc must be packed in order to work (at
any rate, I can‘t puzzle out any reasonable
way to use it in source form). To make the
contraption go, load the file containing
SLink, SUnLink, Lock, and UnLock. 1f
StrtTask is in a separate file you might
want to l1oad that too; then start up
Basic08 and run Driver2. Driver2 will pause
for a while, starting up Calc, then ask for
a numper five times. Give it small numbers
-- they have to fit into byte variables.
wWhen all five numbers are enterad, Calc
will calculate the sum of their sqguares
which will be displayed by Driver2. 1If you
want to try it again, reply Y to the next
prompt. The last thing Driver2 will do
pefore ending 18 ask whether you want to
shut down Calc. VYou do. In a system with
several processes using Calc you would want
to leave it running, but, with only one
process using Calc, it will just be a nui-
sance if it is not cleaned up when its one
user terminates.

Column Four 17

LOCKER PROGRAM
NAM SLink

SLink .
Attempt to link to a module. .
If it isn't found attempt to load it.
Return the address of the module header, and the
entry address.
Errors:
1 ?go?g number of arguments in parameter
i1st.
other Return code from FSLink, or FSLoad.

Calling sequence (from Basic09) is:
RUN Link (Module Name, Module Type,
Header Addr, Entry Addr) o

Module_Name is a character string containing the
“name of the module which should be linked

to. It should be terminated with a <CR>,

Module Type 1s a byte conta1n1n% the language/
"gzge of the module. A data module would be

Header_Addr is the address of the module header of
the linked module. It is returned from
Link, Integer field. . .

Entry Addr 1s an integer field which is used to
return the address of the entry point of
linked module.

- ———— -— - —

B P I R R R R R R R R
R R R Y S R R R L R N

ifpl .
use /h0/defs/defslist
endc . .
TTL Subroutine callable from Basic09 to do Link SSR
MOD LinkEnd,LinkNam,SBRIN+OBJCT,REENT+1,LinkEnt,LnkMemS
LinkNam fcs }Sank/
fcb 1 version
LnkMemS equ .
LinkEnt
1dd 2,S get parameter count
cmpd #4 must be four
bne LinkErrl

l1dd 14,5 get length of entry address field

bne LinkErr2 .
1de 18,S get length of header address field
cmpd #2
bne LinkErr2
1dx ? S ?odule name's address
1da 18,8 Type/Language
shs U
S9 FSLink
becc LinkRtn Carry clear; clean return

puls U
cmpb #ESNEMod Non-existent module?
bra LinkErr2 no; bad error was bne
1dx ? S ?odule name's address
1da (8,5) Type/Language
shs U
S9 F$lLoad
bcc LinkRtn
puls U
LinkErr2
coma
rts return with error code in B and carry set
LinkErrl
1db #SFE error code of 1
comb set carry

rts

LinkRtn
stu 14,5] Header address
st 18,S] data address
puls U

clrb clear carry
rts return
EMOD

18 Q0S-9 User Notes Volume I

LinkEnd egqu *

*NAK SUnLink

* SUnlink Unlink_a Linked Module.

* Callxns sequence (from Basic09).

* RUN Onlink (Header_Addr)

* Errors:)

: 1 ?go¥g number of arguments in parameter
ist.

: other Error code from FSUnlink.

* Header_Addr is the integer address of the header

* returned from the link request for the

: module you want to unlink.

|
|
% ok o b oF 3 ok o % N

TTL Subroutine callable from Basic09 to do Unlink SSR

MOD UnlkEnd,UnlkNam,SBRTN+OBJCT,REENT+1,UnlkEnt,ULkMemS
UnlkNam fcs)

fcb 1

vers

SUnLink/

ion

ULkMemS equ .
UnlkEnt
ldd 2,S get parameter count
cmpd #! must be one

bne ULnkErrl not one; error

*

shs U
gdu [6,S] get module header's address
0S9 FSUnlink unlink the module

pPu

1s U recover U

return code and carry set by F$Unlink
rts return

ULnkErrl
1db {#SFE
comb
rts
EMOD
UnlkEnd equ *
NAM Lock
lock Lock protocol
Wait for a "lock" byte to indicate unlocked, then
lock the byte.
Callxnﬁ sequence:
RUN Unlock (Lock_Addr)

S ok % O s % ok Ok o %N

Errors:

1 Wrong nu ber of arguments in para eter list.

Lock Addr is the inte%er address of the byte used

for th

e locking protocol.

S ok oF % Ok N % ok F F * ¥

TTL Subroutine callable from Basic09 to

MOD LockEnd, LockNam, SBRTN+OBJCT,REENT+1,LockEnt ,LokMemS
LockNam fcs)

fcb 1

Lock/

version

LokMemS equ .
LockEnt

l1dd 2,S get parameter count
cmpd #1 must be one
bne LockErrl not one; error exit
LockLoop
1dx %4,8] et address of lock byte
inc ,X test and set it
beq Locked .
dec ,X can't get it .
ldx #2 interval for brief sleep (tunable)
0S9 FS$Sleep
bra LockLoop
Locked

*

* % *

clrb turn off carry
rts return
LockErrl

ldb

fISFE

comb

rts return
EMOD
LockEnd equ *
NAM UnLock

UnLock
Restor
state.

*
Perform the Unlock protocol ¥
e the "lock" byte to the unlocked :

erform "lock" protocol

Column Four

19

RUN UnLock (Lock Addr)

1’:

x Lock_Addr is the ifiteger address of the byte ;

used for the locking protocol.

TTL Subroutine callable from Basic(09 to
MOD ULokEnd,UlokNam, SBRTN+OBJCT,REENT+1,

ULokNam fcs }UnLock/
feb 1 version
ULokMemS egqu .
ULokEnt
ldd 2.S get parameter count
cmpd #1 must be one
bne Y okErrl not one; error exit
ldx 14,S8] get address of lock byte
dec ,x release the lock
clrb set carry bit off
rts return
ULokErrl
1db #SFE error code of 1
comb set carry
rts
EMOD
ULokEnd equ *

NAM DataMod
TTL A Lockable data module

5 e e

erform UnLock
LokEnt ,ULokMenS

This a generic data module.

bytes of unspecified da

*«

*

It contains a locking b{te and up to 232 :
*

MOD ModEnd,ModNam,DATA,REENT+1, LockByte,0

ModNam fcs }Datahod
fcb 1 ed1txon
LockByte fc

UnSpec fcc /1234567890123456789012345678901234567890/ 40
fcc /1234567890123456789012345678901234567890/ 80

fcc /12345678901234567890
fcc /12345678901234567890
fcc /12345678901234567890
fcc /12345678901234567890
ENOD

ModEnd equ *

20 05-9 User Notes Volume I

123456789 01234567890/ 120
%2345678901234
1

90/ 160

234567890123456789 / 200
23456789012/ 232

CALC PROGRAM
P&OCEDURE Calc

Calculate the sum of the squares of the numbers

stored in DataMod. .

A process signals that it wants service by storing a

hex 0l in the byte one off the start of data in DataMod.

When Calc sees a 1 in that byte, it calculates the sum of

the squares and guts it at 7 and B off the start of data in
DataMod, then sets the status byte (1 off the start) to hex 00
indicating that calculation is done.

DIM Module_Name: STRING
DIM Module Type:BYTE
DIM Header Addr,Data Addr:INTEGER

DIM Status_Addr, Array_Addr,Return_Addr: INTEGER
D%M sum, 1 :INTEGER - -

S o o 3

: Setup

Module Type=S$40

Modul e"Name=""DataMod"+CHRS (13)

RUN SLTnk(Module_Name,Hodule Type,Header Addr,Data Addr)
Status Addr=Data Addr+l - - -
Array Addr=Data_ ZAddr+2

Returfi_Addr=Data_Addr+7 .

POKE STatus_Addr;0 \(* set idle (ready for work)

* Wait for the status byte in DataMod to
: indicate that an operation is waiting to be done.

WHILE PEEK(Status Addr)<>1 DO

SHELL "'SLEEP 2% ~—

ENDWHILE

WHILE PEEK(Status_Addr)=1 DO

sum=0

FOR i=0 TO 4 . ,
;Em;spm+PEEK(Array_Addr+1)*PEEK(Array_Addr+1)

i

(* The calculation is done. Save the result
POKE Return Addr,sum/256

POKE Return_Addr+1,MOD(sum, 256)

(* and inditate that the results are ready
POKE Status Addr,0

WHILE PEEK(Status Addr)=0 DO

SHELL '"SLEEP 2" ~

ENDWHILE

ENDWHILE

POKE Status_Addr,0 \(* we're dead

%gﬁ SUnLinkTHeader_Addr)

Column Four 21

DRIVER PROGRAM
PROCEDURE Driver2

Driver for "Locker"
Demonstates simple Module lock/unlock

Operation:
Link to DataMod

Fork Calc (a simple Brncess for demonstration purposes)
Wait for the second Data byte in datamod to become $00
1ndxcatzn§ that Calc is running.

Start of Loo

Lock DataHod

Store data into bytes 2, 3, 4, 5, and 6 off the start of

data in DataMod

-Change the b te at 1 off the start of data in DataMod to $Ol
indicatin at there is data in the module to be operated on
Wait for he second data byte to change $00

Get the result of the calulation (an 1nteger) at 7 and 8

off the start of data in DataMod.

UnLock DataMod |

Loop until end 1s called for

Lock DataMod

Change the the first data byte to $02 (which tells calc to stop)

Wait for the first data byte in DataMod to change to a $00
UnLock DataMod

UnLink DataMod
All done

#*}}ﬁ-ﬂ-}}:’r:{-}ﬂ-*%*#**H’ﬂ-*ﬂ-}:’rr’c:{-i

DIM Header Addr,i:INTEGER

DIM Process Num,Module T¥Be +BYTE
DIM Param Len, Data Addf:INTEGER
DIM Opt Szze,o :BYTE

DIM Num?TINTEGE

DIM Params:STRING

DIM Module Name:STRING

DIM NY:STRING

Module Type=$40

Header”Addr=0

Data_Addr=0

ModuTe Name="DataMo'+CHRS ($80+ASC("d"))

RUN SLTnk (Module Name,Module Type,Header_Addr,Data_Addr)
* Set up for FORK ogeratlon

Module Type= ubroutxne/ObJect code
Params=" alc"+CHR

Param Len-LEN(Params)
Opt_Size=10
Modile Name='"Basic09'"+CHRS (13)

RUN StTtTask (Module_Name,Process Num,Module_Type,Param Len,Paramsv,Opt_Size)
Calc is starting now

* Wait for the first data byte in DataMod to become zero
: the first data byte is located at the address in Data_Address

GOSUB 100 \(* wait for calc to send ready

*
: Calc is running. Send it data

REPEAT
RUN Lock(Data Addr)
: load DataMod with data

FOR i=2 TO 6

INPUT "Enter a number (1..255), or O to stop):",Num

PO E Data_Addr+i,Num '

NEXT 1

POKE Data Addr+l,1 \(* mark the module ready for operation"
GOSUB 100\ (* wait for calc to indicate

re
PRINT "Sum of squares is "; PEEK(Data Addr+?¥*256+PEEK(Data Addrv+8)
RUN Unlock(Data ‘Addr)

INPUT "More caltulations? (Y,N):",NY
UNTIL NY="N'" OR NY='"n

INPUT "Shut Down Calc Module? (Y,N):",NY
IF NY="Y" OR NY="y'' THEN

RUN Lock(Data_Addr)

22 0S-9 User Notes Volume I

POKE Data Addr+1,2 \(* command for stop
WHILE PEER(Data Addr+1)<>0 DO

SHELL "SLEEP 2"~

ENDWHILE

RUN UnLock (Data_Addr)

RUN SUnlLink (Header Addr)

ENDIF -

END

100 (* Wait for the status byte in DataMod to
(* indicate ready

WHILE PEEK(Data Addr+1)<>0 DO

SHELL "SLEEP 2"~

ENDWHILE

RETURN

Column Four 23

24 0S-9 User Notes Volume 1

COLUMN FIVE

MORE ABOUT LOCKING

Last month I discussed shared data modules,
and demonstrated a Jlocking method which
could be used to permit only one process at
a time to access a data module, or, for
that matter, any shareable resource.

The 1locking protocol I demonstrated
last month has two serious problems. One
is only a problem for those who, 1ike most
of us, can only run more than one process
by sharing a processor between several pro-
cesses. The other problem limits the use-
fulness of concurrent processes. Both
problems have solutions.

The 1locking algorithm I demonstrated
last month used a technique called "busy

waiting." This is usually the easiest way
to make a process wait until something hap-
pens, but 1t wastes processor cycles. I

tried to reduce the amount of time wasted
in the locking module as much as possible
by putting a "sleep" in its wait loop, but
the solution 1 gave was, nevertheless,
inefficient. If waiting for the lock uses
processor time, even very slowly, all you
have to do 1s 1ine up enough processes
waiting for the lock and you can slow the
computer down to a crawl. You might think
that you could always make the waiting pro-
cesses as cheap to run as necessary by put-
ting a longer sleep into the wait loop, but
if the sleep is made very long, there may
be a significant time during which the lock
is off and the all the processes which want
it are sleeping. If the goal 1is perform-
ance, (using performance in the same sense
as “'high performance car®) it is not good
to leave a scarce resource like the 1lock
unused for any length of time. The goal is
to design an algorithm which allows waiting
processes to be completely idle until the
lock is available, then awakens one process
and gives it the lock. .

If each process is running on its own
processor, the processor running a waiting
process has nothing better to do than zip
around the wait loop. Some people think
busy waiting is bad even then. I tend
toward the opposite extreme. The problems
with busy waiting are obvious, the alterna-
tives have trickier problems. The issues
involved in choosing a busy waiting algor-
ithm over a more sophisticated one are much
like those 1involved in choosing a bubble
sort over one of the flashier sorting
algorithms, that 1is, for a small problem
the simple algorithm will do fine.

The other problem with the 1locking
algorithm I gave is that it permits “lock-
out," ie. a process can wait forever with-
out ever getting the lock even when no oth-
er process holds the 1lock forever. If
there will seldom be a process waiting for
the lock, lockout isn‘t a big problem, but
for locks that usually have a process or
morre¢ waii.ng for them lockout is an impor-
tant consideration.

It is tricky to detect Jlockout 1in an
algorithm, but here are the basic rules for
finding 1t: Imagine that you are control-
1ing the computer’s dispatcher (deciding

which process runs and for how long). It
is your job to prevent a certain process
from ever getting the 1lock. You may run
any mix of programs you like any way Yyou
1ike except that the process you are trying
to prevent from getting the lock must be
allowed to run every now and then. If it
is possible to prevent that process from
ever getting the lock, there 1is 1lockout.
The sequence of events that demonstrates
that lockout is possible for the algorithm
I gave l1ast month is: Two processes are
running, A and B. Both processes are simple
programs which just get the 1lock then
release it again and again. Either process
could be 1locked out, but the "execution
sequence" 1in figure Figure 1 only demon-
strates that process B can be locked out.

Start
¢ lock
B: tr¥ to lock
A: unlock
A: lock
B: try to lock
A: lock
etc.
Figure 1: Execution Sequence
for Lockout

You see that by allowing process A to run
long ‘enough S0 that can get the lock again
each time it releases it I can shut process
B out completely. This may seem unfair,
but 1t shows that the algorithm permits
lockout. Murphy‘s law certainly dictates
that if it is possible to prevent a process
from ever getting the lock (and you want it
to get the lock), the improbable execution
sequence which leads to lockout will happen
at the worst possible moment. This is one
of the kinds of problem that cause strange
behavior in complicated systems.

There are many ways to do locking that
don’t use busy waiting or have deadlock. I
am not going to discuss these tricks this
month, but I will leave you with two hints.
The O0S-89 SEND service request offers an
alternative to busy waiting. Locking can be
done without deadlock by using any of sev-
eral algorithms including one called the
Doorman Algorithm.

GETTING A GOOD "MIX"

The standard use for multiple processes 1s
to make maximum use of a processor when the
work to be done involves a 1ot of waiting
for outside events, such as terminal input.
A process could spend most of 1its time
waiting for input from a terminal, and del-
egate any major work to child processes.
This way the program would almost always be
ready to accept input from the terminal,
even when some previous piece of work was
still in progress. Using a special process
to print a screen is a particularly apt use
of this principle. There is really no rea-
son why someone should have to wait for a
print request to complete before continu-
ing.and there 1is usually no need for the

Column Five 25

process that is doing the pr:nting to com-
municate with its parent process. The pro-
cess that is driving the printer spends
most of its time waiting for the printer,
and the process that is responsible for the
screen 1s, very 1likely, spending most of
its time waiting for i{input from the termi-
nal. These tasks can be in progress at the
same time with almost no effect on one
another. when one process 1is waiting for
something. the other process can run with-
out interference. With tasks like printing
and screen handling, the computer will
spend most of its time with both processes
waiting.

Some programs run well together, other
programs 1interfere badly with each other.
Finding good sets of programs to run at the
same time, and adjusting their priorities
so they all will run as fast as possible is
called finding a good "mix." Tuning hard-
ware and software so a single program can
run as fast as possible is a complicated
job, but choosing groups of programs which
will run well together, and tuning the sys-
tem so the groups will run as fast as pos-
sible is more of a black art. I 1ike to
keep my personal computer rather 1ightily
loaded (no more than two or three processes
active at a time), but it is good guestion
just how much time a computer should spend
waiting. If you give the machine so much
work to do that i1t never has to wait, each
process will run siowly. A computer that
has no resources 1in reserve i5 said to be
saturated.

Consider the case of a program which is
reading from the terminal. Usually, in a
saturated computer, there are several pro-
cesses waiting for processor time at any
moment. The process waiting for the input
character will have to wait for at least
one process, maybe several, to have their
turn before it will get a chance to run.
If each process gets a turn one tenth of
second long, and there are an average Of
two processes waiting to run, then a pro-
cess will take about two tenths of a second
to respond to a simple keystroke. That
comes to 5 characters per second, or 300
characters per minute. For perspective, my
terminal repeats at 10 characters per sec-
ond.

Fortunately, programs running under
0S-9 don‘t actually do any I/0. 0S-8 is
arranged so that input and output are done
by 0S-9 rather than by user programs. The
device drivers are responsible for all 1/0.
0S-9 always gives very fast service to
device drivers. Almost anything will be
interrupted to allow a device driver to
deal with input or output. Some device
drivers have a reservoir for 100 (or so)
characters which they can save up and give
to a process in a burst next time the pro-
cess is started.

For the best performance a computer
should be kept idle most of the time, that
way 1t will immediately jump on any work
you give it. It would be nice to have
anough money to buy overpowered computers
80 there would be 1ots of idle time and
axcellent performance, but if money is a
concern you have to strike a compromise
between getting fast response, and getting
the maximum amount of work out of your
machine.

26 0S-9 User Notes Volume I

It s possibie to speed up important
processes by cthanging their priority, The
heavier the 1l1oad on a computer, the more
important it 1is to fuss with priorities.
An edit session, a listing to the printer,
and an assembly can share the machine very
nicely if the priorities are properly set.
The edit session i{is i{nteracting with an
impatient human, so it should have a high
priority assigned to 1it. Since editing
usually involves a 10t of dead time while
the human doing the editing stares 2t the

screen, the editor will actually use very
1ittle processor time. The process that is
printing is very much the same story. It

isn‘t interacting with a human, but even a
200 character per second printer is slow by
computer standards. The process that 1is
driving the printer should be given an
intermediate priority so it will be able to
run the printer at a good clip without
interfering to any great extent with the
edit process. The assembly shbuld be given
a very low priority. Assemblies are the
type of thing that will use a 1ot of pro-

. cessor time {if they are allowed. Even if

it is given a 1low priority, the assembly
will get time that the other processes
don’'t want, so since both will usually be
waiting for something, the assembly will
pget plenty of time.

Most business programs, as well as com-
pilers, assemblers. and disk utility pro-
grams, spend a 1ot of time waiting for the
disk to do something. The sound of a disk
clucking and buzzing 1s a pleasant busy
sound, but it actually signifies wasted
time. While the disk {is doing mechanical
things 1ike starting, seeking, loading the
head, and even turning, some program 1is
likely to be waiting. 0S-9 makes some
effort to speed disk access, but with sev-
eral processes wanting to access the same
disk the problem is more than a small oper-
ating system can handle. There are stan-
dard tricks for reducing the amount of time
a program spends waiting for the disk
drive. The easiest of these for a regular
user to get at is the use of large buffers.
Most programs that access the disk will run
faster if they are given enough storage soC
they can read and write large blocks of
data. If you want to hear some very busy
noises from your drives, start a COPY with
only a 1ittle bit of memory, then do a DIR
for a large directory on the same disk Yyou
are COPYing on. The disk drive will chuck-
le madly as 1t shuttlies back and forth from
directory to file in an attempt to serve
both the copy program and the DIR command.
Switching from file to file on a disk (even
a Winchester) 1is slow. The best way to
deal with this is to avoid the problem by
not running more than one program accessing
a particular drive at a time. It will be
obvious {f there is a problem. If programs
are run 1in the wrong combinations, they
will run very slowly, and the disk will
sound very active. If you have to make the
best of a bad mix, give processes as much
memory as you can. Well designed programs
can use extra storage to cut down disk
usage, or to transfer (read or write) more
data for each turn they get.

AN ASSEMBLY LANGUAGE PROGRAM
WHICH SETS PRINTER OPTIONS

I just installed a new printer on my Ssys-
tem. an Okidata Microline 82 (nice print-
er). 1 used to set the options on my MX80
with a group of procedure fiiles. An exam-
ple would be the file called Comprint which
contained the command “"display Of >/p". It
would have been possible to set the printer
to compressed printing mode by typing the
display command instead of 1invoking the
procedure file by typing /dO/comprint, but
I can never remember the Epson control
codes. Installing a new printer seemed
like a good excuse to find a better way of
setting the printer options. The program
POpt is the first complete assembly lan-
guage program 1 have published here. I
hope you find it as useful as] dc.

POpt doesn’t do anything technically
exciting, but it is a fairly simple assem-
bly language program which includes most of
the elements found 1in assembler programs.
I am going to go through the interesting
points of the program moving generaily from
the beginning to the end.

The NAM and TTL statements in the first
two lines of the program are purely cosmet-
ic. They provide information which the
assembler puts in the page headings. The
block following those two 1lines 1is the
introductory comment for the program. Al
comments might be considered cosmetic, but
although they don‘t generate any code, 1
think of them as essential parts of assem-~
bly language programs. Any 1ine with an
asterisk in column one is a comment; the
box 1 draw around the comment is just to
make it ook nice.

If you are looking at the output of the
assembler, the two l1ines after the intro-
ductory comment are IFP1 and ENDC. In the
original source there is a 1line between
these, “use /dO/defs/defslist", which calls
in a 1ist of USE commands which make files
containing all the system definitions part
of the program. These definitions help
make the rest of the program more readable.
The words Prgrm+Objct would have to be
replaced with the much less understandabie
$11 if the system definitions, or some oth-
er similar set of definitions. weren’t
included in the program. Throughout the
rest of the program I used the symbols
defined in the definitions files (and a few
additional SET commands in the program
itself) whenever I could. The IFP1/ENDC
which {s wrapped around the use statement
prevents the extra files from being read on
the second pass the assembler takes through
the file. No statement in the system defi-
nitions defines any memory so there 18 no
reason for the assembler to read it on both
the first and second passes; not reading it
during the second pass saves a good deal of
time, and prevents the lines in the defini-
tions from being included in the program‘s
1ine numbering. The 1ines used from the
definitions files don‘t print both because
they aren’t read on the second pass (when
output is gener-ated), and because the first
line in the definitions file is the assem-
bly directive OPT -1 which directs the
assembler not to print anything until it
encounters the OPT 1 directive. The defi-
nitions files 1 routinealy include in assem-
bl ies are 1isted in table Table 1.

Table 1; Definitions files

routinely included 1n
assemblies

0S9Def s
059SysDefs
0S91DDefs
0S9RBFDefs
0S9SCFDefs

There are a 1ot of symbols in all those
files; a program with the full set of defi-
nition files generally needs to be assem-
bled in a region of at least 24K to accom-
modate the large symbol table. If you want
to use your memory more economically, cre-
ate a stripped down definitions file with
only the definitions you expect to use, and
use it instead of the standard files; but
be prepared to scrap your file and build a
new one if you get a new version of the
operating system. Level One and Level Two
definitely have different definitions, and
if you dig around deep enough in the oper-
ating system, it is unwise to count on
things staying fixed even from version to
version.

A few lines down from the ENDC is the
MOD statement. This statement generates
the 0S-8 module header, a block of data
which 0S-8 needs. The fields in the module
header are:

- PROGRAM LENGTH

Trying to fill in a number here would
be foeolish. The assembler can figure
out the length of the module for you.
The symbol Pgmlen i{s defined in the
last 1ine of this program.

. SYMBOL USED FOR PROGRAM NAME LOCATION

This 1isn‘t the program name itself,
but the name youv choose to assign to
the Jlocation containing the name. 1
like the name °®Name" for that loca-
tion. The program’s name is usually
placed close to the module header, but
it can be placed elsewhere 1in the
module if it is convenient for you to
do it that way.

. MODULE TYPE

I 1ike to define the module type as a
symbol before the MOD statement and
just put the symbol here. The module
type tells 0S-8 what kind of thing to
expect this module to do. This module
is a program (not a subroutine or
data), and it consists of object code
(not data or some sort of intermediate
code).

] REVISION

This field contains two types oOf
information. It indicates whether the
module is reentrant, usable by several
different users at the same time, and
gives the revision number of the pro-
gram. Most well written programs are
raentrant, 50, since 0S-9 uses reent-
rant modules more efficiently than
non-reentrant modules, most programs

Column Five 27

should be labeled reentrant. The
revision number is used when 2 module
is 1loaded from disk to determine
whether the module should replace a
module by the same name already in
memory. A module with a higher revi-
sion number will replace a module with
a lower number.This i{s particularly
useful if you want to override a mod-
ule which has been placed 1in ROM.
Unless you want to supersede a module
in memory the revision should be i.

. ENTRY POINT

The name assigned to the first
instruction in the program. I usually
insert a 1ine before the first
instruction in the program with this
name on it. This saves a little bit
of typing if I want to add instruc-
tions before the first instruction in
a program.

. MINIMUN AMOUNT OF PERMANENT STORAGE
REQUIRED

The amount of storage the program will
need in addition to the storage used
for the module itself. This number,
like the program length, can be cal-
culated by the assembler ~-- note the
MemSize equ . a few

The 1ine after the MOD statement tells the
assembler to reserve space for one byte of
storage. The next two lines reserve 25%
more bytes. The total memory requirements
of this program are one byte for the print-
er‘s path number, and 255 bytes for the
stack. The stack probably doesn‘t need to
be that large for this simple program, but
0S-28 1is gecing to allocate memory in 256
byte units even on a level I system, so I
played it safe and squandered the memory on
the stack. The results of allocating too
little space for the stack are very unplea-
sant,

The egquate after the rmb for the stack
uses the *.* special symbol which means
the current offset in the data definitions.
This is an easy way to get the assembler to
tell us how much storage the program will
need for use in the MOD statement.

The next two 1lines are the module’s
name {pointed to by the module name field
in the module header), and the version num-
ber. The module name must be defined with
a FCS statement. This type of data defini-
tion closes the string it {5 defining by
setting the high order bit on in the last
byte ~- *t* is $F4 instead of $74. This
lets 0S-9 know where the end of the name
is. The byte after the name is by conven-
tion the version number of the program.
Some utility programs display this number,
put 1t 1{is optional, Nothing awful will
happen 1f you start right in with cata or
program after the program name.

The version number is the last overhead
until the very end of the program. The
fcc’s and fcb’'s for the next 40 or so 1ines
define constants needed in the program.
About the only interesting thing about them
is that each of the strings defined with a
fcc 1s followed by fcb CS$SCR, a carriage
return. At first it 1ooks 1like I could
have saved space by using one <CR> for all
the strings, but it turns out that the

28 0S—-9 User Notes Volume I

extra code needed for that approach uses
more memory than the extra carriage
returns.

The program scans the parameter string,
and if certain characters are found, sends
character strings to the printer. There
are three phases: first the input length,
in D, is checked. If it 1is one (or lower)
there is no parameter string; in this case
display a menu of options. Second, scan
the parameter string for the character */"
which denotes a device name. If there is a
device name in the parameter, open that
device as the printer, otherwise open the
device /P. Third, scan the parameter
string again ignoring any characters 1in a
device name. Translate each character to
upper case and compare the translated char-
acter to each significant character. Each
time =2 significant character is found,
transmit the appropriate character string
to the printer, and send 'a 1ine to the
standard output path describing what has
been done.

There are a couple of simple tricks
which are useful while scanning the parame-
ter string. The shell always terminates
the parameter string with a carriage
return. This lets me terminate the scan
when I encounter a carriage return instead
of having to count bytes. Data bytes may
have the parity bit on or off. I remove
the parity bit with “anda #$7F.*" 1f the
parity bit is left on, twice as many com-
parisons need to be done. For example, "a"
could be $81 or $Ef. In this case, 1
thought it would be best to treat both
upper and lower case characters as the
same. The easiest way to do this is to
transiate all lower case letters to upper
case (or vice versa if you 1ike}. Once you
determine that a character is an upper case
letter it can be transiated to a lower case
letter by subtracting $20 from it, or ang-
ing %11011111 with it.

There are two sections of this program
responsible for output. Common1 writes
strings two bytes long to the printer. It
uses the 1ISWrite service reguest which
writes a specified number of characters
without any editing. There 1s nothing spe-
cial about two bytes: it is just the length
of the longest control string I wanted to
be able to send to the printer. 1 padded
the shorter control strings to two bytes by
adding a $00, a null, to them. Common2
writes up to BO characters to the standard
output path. Common2 uses the Iswritin
service request which treats the carriage
return as a special case. when it encoun-
ters a carriage return it does whatever the
path descriptor is set up to do on end of
1ine (normally send <CR><LF>} and returns.
This means that by terminating each string
to be written by Common2 with a <CR> I make
it unnecessary to know the length of any of
the strings.

This program ends 1in either of two
places. If there are no errors, after the
second scan the program branches to Exit
which clears the .carry bit in the condition
code and performs the FSExit service
request returning control to 05-9. If
there is an error, control goes to ErrXit
which sets the carry bit and returns con-
trol to 0S-8. You might expect that the
best way to set or clear the carry bit in

the condition c¢oOde register 1s with the
andcc and orcc instructions. Those
instructions certainly are able to turn the
carry bit on and off, but the COM instruc-
tion turns the carry bit on faster (and the
CLR 1instruction turns it off faster) than
the obvious instruction. whenever the A or
B accumulator is free, it is fastest to set
or clear the carry flag by playing with the
accumulator.

At the very end of POpt there are two
final lines of overhead. The EMOD direc-
tive causes the assembler to generate a
checksum for the module which is used when
this program is run to make certain that
the module 1is valid and undamaged. The
line with "PgmLen equ *" calculates the
length of the module for use in the MCD
statement at the very beginning of the moad-
ule.

THE OS~9 USER'S GROUP

An 0S-9 User’‘’s Group was formed last sum-
mer . I couldn’‘t say it’s thriving, but it
is coming along. The club has a telephone

bullietin board, and 1lots of dreams. It
isn‘t going to go anywhere unless plenty of
0S-8 users join it. Membership is $25 for
individuals (payable to 0S-39 Users Group
c/o Terry Straehley 1005 Roble Lane, Santa
Barbara CA 93103). I strongly suggest that
all 0S-9 users join the group. Even with
the relatively small membership the group
now has, a lot of interesting information
passes through the bulletin board. If we
all join, this group could become a great
resource.

THE FUTURE OF THIS COLUMN

There 1is enough material for another six
months or more of columns about concurrent
processes, but I am going to move on to
some other subjects for a while. It seems
there are a great many new DS-9 users out
there, some of whom have written to me ask-
ing for help with the fundamentals of the
system. The program this month is a first
attempt to help these people. I‘117 try to
devote at least part of this column to 0S-9
basics for the next few months.

Column Five 29

POPT PROGRAM

Microware 0S-9 Assembler 2.1 08/05/84 23:06:32 Page 001
POpt - Change Printer Setup Options for ML 93
00001 NAM POpt) .
00002 TTL Change Printer Setup Options for ML 93
00003 A e *
00004 * Printer Setup Opticns) *
00005 * c Correspondence Quality *
00006 * *
00007 ¥ 0 Ten CPI *
00008 * 2 12 CPI *
00009 * 7 17 CPI *
00010 * Double Width Characters *
00011 * 5 Five CPI *
00012 * 6 Six CPI *
00013 * 8 Eight CPI *
00014 * o o *
00015 * r reset to initial conditions *
00016 *) *
00017 * Lead in for alternate path name. Default *
00018 * is /P. The gath name must either be the *
00019 * last parameter, or separated from the next *
00020 * parameter by a delimiter. *
00021 *) o *
00022 * The options are specified as parameters when *
00023 * POpt is run. If no options are specified, a menu *
00024 * is presented. *
00025 * *
00026 * Examples: *
00027 * poBt re2 *
00028 * -> rinter Reset *
00029 * -> Ce;resgand?nce Quality Printing . *
00030 * -> Print Density twelve characters per inch *
00031 * *
00032 * pogt'r6 /pl *
00033 * -> rinter Reset ¥
00034 * -> Print Density six characters per inch *
00035 * -> {output was directed to the printer at /pl } %
00036 * You can put the print options on either or bot *
8883; t sides of/t?e device name... /o1 :
; opt rc is the same as opt r c
00039 *____E_E_______P ______________________ E-E _____ E _________ ¥
00040 I1FP1
10042 ENDC
10043 0011 Type set PrErm*Objct
“h044 0081 Revs set Reknt+l
~ 45 0000 87CD04BA MOD Pgmlen,Name,Type,Revs,Entry,MemSize
¢ +46 D 0000 PrtPthN rmb 1
~ 047 OOFF StackSz set 255
0048 D 0001 rmb StackSz space for stack
00049 D 0100 Memsize equ .
00050 000D 504F70F4 Name fcs /POpt/
00051 0011 01 Edition fecb 1
00052 0001 StdOut set 1 Number of Standard Output Path
00053 0012 2F50 DPrtNam fcc '"/P" Default Printer Name
00054 0014 0D fcb CSCR
00055 Fookok Kok
00056 * Responses for each printer option set
00057 *

00058 0012 83726965 Msg5CPI gcg égéént density five characters per inch (

c

00060 004% 83726965 Msg6CP1 gcg égéént density six characters per inch (d
c

00062 0080 5072696E Msg8CPI fcc

/Print density 8.5 characters per inch (d
00063 00B4 OD fcb CSCR]
00064 O00B5 5072696E MsglOCPI fcc /Print density 10 characters per inch (no
00065 OOE2 0D fcb CSCR
00066 OOE3 5072696E Msgl2CPI fcc /Print density twelve characters per inch
00067 0108 OD fcb CSCR _
00068 010C 5072696E Msgl7CPI fcc /Print density 17 characters per inch/
00069 0130 OD fcb CSCR
00070 0131 436F7272 MsgCQ fcc /Correspondence Quality Printing/
00071 0150 OD fcb CSCR
00072 0151 5072696E MsgRst fcc /Printer Reset/
00073 015E 0D fcb CSCR

30 0S-9 User Notes Volume I

Microware 0S-9 Assembler 2.1 08/05/84 23:06:37 Page 003
POpt - Change Printer Setup Options for ML 93

1‘0142 oo o -~ ¥
N0143 * No alternate printer path found *
v0144 e e e e *
88%2% 8%2% 308DFCCB LoopID 1 DPrtN PCR

eax rtNam,
r 47 0347 20ED bra Loopll Open the default printer path
{48 0349 LooplE
88%28 0349 %536 puls D,X,Y restore N
00151 * Loop2 scans the parameter string for *
00152 * grinter control options. If an option is *
00153 * ound the corresponding subroutine is *
00154 * called. *
00155 e ———————— *
L S
! A a
12158 034D B847F anda {S7F clear parity bit
7180 0351 2738 S o
t) e X
?8%2% gggg g%%g nga ﬁ5502 contr?l character?
| .
"0163 0357 812F cmpa §/" {tait of'a path name?
%8%2? 0359 102700E0 lbeq SkipPN Yes; Skip over the path name
50166 * Translate lower to upper case if ¥*
00167 ¥* necessary. *
00168 Kt *
00169 035D 8161 cmpa ﬁ'a
00170 035F 2506 blo oop2l
00177 0383 5308 bne® Tosonn

1 oo
00173 0365 8020 suba #SZB lower to upper case
00174 0367 Loop2l
90175 oo i ——————— *
Qg%;? I Analyse the parameter :
'.i' --
2178 0369 3734 Sor® feser oV
- e ese
-:0180 036B 8143 cmga é'C Correspondence quality?
30181 036D 2734 beq Q
82 036F 8130 cmpa #'0 Ten CPI

- .83 0371 2743 beq enCPI
»0184 0373 8132 cmpa #'2 Twelve CPI
J0185 0375 2751 beq wlvCPI .
00186 0377 8135 cmpa #'5 Five CP1?
00187 0379 2760 beq FiveCPI
00188 037B 8136 cmpa #'6 6 CPI
00189 037D 276F beq ixCPI
i B 4 o

e vntn
00192 0383 8138 cmga '8 Eight and a half CPI?
00193 0385 1027008B lbeq EightCPI
00194 0389 20co bra Loop2
70195 038B Exit
%0196 038B 5F clrb set B (return code) to 0 and t
30197 038C 103F06 0s9 FSExit return to 0S5-9
00106 O38F 3410 Reset pehs X

shs
88%8? 8%8% %QSBEEDB 1gax ECRst,?CR poi?t g% Reset control string

sr Common write
00202 0398 308DFDB5 leax MsgRst,PCR point at remark
88%82 8%8? %;?894 lbfr gommon write it

uls
00205 03Al 20A8 ra Loop2 go search for next option
00206 03A3 cqQ
00207 03A3 3410 shs X
00208 03A5 308DFDB6 eax CCCQ,PCR
00209 03A9 8D7C bsr Commonl
00210 03AB 308DFD82 leax MsgCQ,PCR
00211 03AF 170081 lbsr Common2
00212 03B2 3510 uls X
00213 03B4 2095 ra Loop2

32 0S-9 User Notes Volume 1

Microware 05-9 Assembler 2.1 08/05/84 23:06:34 Page 002
POpt - Change Printer Setup Options for ML 93

00074 ek dedeskok

00075 * Printer Control Strings

00076 o)

00077 015F 1B31 CCcQ fcb 1b,'1 Set correspondence guality
00078 0161 1EIF CC5CPI fcb 1E,S1F Five CPI

00079 0163 1C1F CC6CPI fcb 1C,$1F Six CPI

00080 0165 1DIF CC8CPI fcb S1D,S1F Eight CPI

00081 0167 1E00 CCOCPI fcb $1E,OQ Ten CPI

00082 0169 1C00 CC2CPI fcb $1C,0 Twelve CPI

00083 016B 1DOO CC7Cp1 fcb $1D,0 Seventeen CPI

00084 016D 1800 ~~ CCRst fcb $18,0 reset printer

00085 Fedododeskkatdodst

00086 * The Menu

00087 *

00088 016F 4E6F206D ErrMsgl fcc /No more than 127 bytes of parameters are
00089 01A0 OD fcb CSCR

00090 0lAl 492F4F20 ErrMsg2 fcc .1/0 error on printer path.

00091 01BA OD fecb CSCR

00092 01BB 504F7074 Menul fce /PORt accepts the following parameters:/
00093 O0lEl OD fcb CSC

00094 01E2 2052202D Menu2 fce / R - Reset the printer/

00095 O01F8 0D feb CSCR

00096 01F9 2043202D Menul fce / C - Correspondence quality print/

00097 021A OD fecb CSCR

00098 021B 2035202D Menué fec / 5 - Print at five characters per inch/
00099 0241 0D fcb CSCR

00100 0242 2036202D Menu5 fcc / 6 - Print at six characters per inch/
00101 0267 OD fcb CSCR

00102 0268 2038202D Menub fcc / 8 - Print at eight and a half character
00103 0294 OD fcb CSCR

00104 029B 2030202D Menu? fce / 0 - Print at ten characters per inch/
00105 02C0O0 0D fcb CSCR])
00106 02Cl1 2032202D Menu8 fce / 2 - Print at twelve characters per inch
00107 02E9 OD fcb CSCR

00108 02EA 2037202D Menu9 fce / 7 - Print at seventeen characters per 1
00109 0315 OD fcb CSCR

00110 0316 Entry

00111 e o o o o o o o o o o o o o

00112 * X points to the start of the parameter area.

00113 * Y points to the end of the parameter area,

00114 * The last character in the parameter area is a <CR>,

88%{2 i D contains the length of the parameter area.

00117 0316 10830001 cmpd #1 Check length of parameter area
00118 031A 10230137 ibls enu if there 1s nothing there; Dis
00119 O031E 10830080 cmpd g128 It's hard to deal with paramet
00120 0322 1024017E lbhs Errorl high; parameter area too long
00121 * - -—- - -——

88%%% : Search parameters for output device overxdei

00124 0326 3436 pshs D,X,Y save everything

00125 0328 Loopl

00126 0328 A680 1da X+) .

00127 0324 847F anda JS7F clear parity bit

00128 032C 810D cmpa #50D <CR>?

00129 032E 2713 beq ooplD

00130 0330 812F cmpa #'/ start of path name?

00131 0332 26F4 bne oogl

00132 0334 30IF leax -1, back up one to /

00133 0336 Loopll

00134 *— -——- *

00135 * Open alternate printer path *

00136 K e e -

00137 0336 8602 lda {Write,

00138 0338 103F84 0S9 1SOpen

00139 033B 1025014F lbes Error2

00140 033F 9700 sta PrtPthN save the path number

00141 0341 2006 bra LooplE

Column Five 31

Microware 0S-9 Assembler 2.1
POpt - Change Printer Setup Options for ML 93

NN
(V]
~

60

o))
—

0000000000000 0000000
0000000000000 0000000

NN DN
NNNNISNOAO N NON
S WN=HOVOIUNSWN

03B6
03B6 3410
0388 308DFDAB
03BC 8D69
03BE 308DFCF3
03C2 8D6F
03C4
03Cé6
03C8
03C8 3410
03CA 308DFD9B
03CE 8D57
03D0 308DFDOF
8D5D
3510
16FF70

3410
03DD 308DFD80
8D44
308DFC2E

8D4A

0414

0414 3410
0416 308DFD4B
041A 8DOB
041C 308DFC60
8D11

3510
16FF24

0427 9600
108E0002
042D 103F8a
0430 %85C

8601
108E0050
103F8C

1027FF44
0447 8120
1027FEFE
44D 812C
044F 1027FEF8
0453 20E8

TenCPI

TwlvCPI

FiveCPI

SixCPI

SvntnCP1

EightCPI

Commonl

Common2

08/05/84 23:06:39

shs
eax
bsr
leax
bsr
uls
ra

shs
eax
bsr
leax
bsr
uls
bra

shs
eax
bsr
leax
bsr
uls
bra

shs
eax
bsr
leax
bsr
uls
bra

shs
eax
bsr
leax
bsr
uls
bra

shs
eax
bsr
leax
bsr
uls
bra

lda
1d
0s
bcs
rts

lda
1d
(613
rts

X

CCOCPI,PCR
Commoni
MsglOCPI,PCR
gommonZ

Loop2

X

CC2CPI,PCR
Commoni
Msgl2CPI,PCR
Common2

Loop2

X
CC5CPI.PCR
Commonl
Msg5CPI,PCR
gommonz

Loop2

X
CC6CPI,PCR
Common1
Msg6CPI,PCR
gommonz

Loop2

X
CC7CPI,PCR
Common]
Msgl7CPI,PCR
Common2

X

Loop2

X
CC8CPI1I,PCR
Commonl
Msg8CPI, PCR
gommonZ

Loop2

PrtPthN
2

ISWrite
Error2

Printer Path Number
length

1/0 error on printer path

output path for remarks
max length of strings

#5td0ut
80
SHritin

lda

anda
cmpa
lbeq
cmpa
lbeg
cmpa
lbegq
bra

X+

JiS7F

#CSCR <CR>?

xit yes; done

CSSPAC <space>?

}?opZ end of path name
{ogpz end of path name
Sk1pPN

Column Five

Page 004

33

Microware 0S-9 Assembler 2.1

08/05/84 23:06:41
POpt - Change Printer Setup Options for ML 93

Page 005

00286 0455 Mernu

00287 0455 308DFD62 leax Menul,PCR

00288 0459 8DDS8 bsr Common

00289 045B 308DFD83 leax Menu2,PCR

00290 045F 8DD2 bsr Common2

00291 0461 308DFD94 leax Menu3,PCR

00292 0465 8DCC bsr Common2

00293 0467 308DFDBO leax Menu4,PCR

00294 046B 8DC6 bsr Common?2

00295 046D 308DFDD1 leax Menub5,PCR

00296 0471 8DCO bsr Common2

00297 0473 308DFDF1 leax Menu6,PCR

00298 0477 8DBa bsr Common2

00299 0479 308DFEIE leax Menu7,PCR

00300 047D 8DB4 bsr Common

00301 047F 308DFE3E leax Menu8,PCR

00302 0483 8DAL bsr Common2

00303 0485 308DFE61 leax Menu9,PCR

00304 0489 8DAS8 bsr Common2

00305 048B 16FEFD lbra Exit .

00306 ittt il *

00307 * End with an error *

00308 e atataded e Rttt *)
00309 048E Error2 equ * Error in printer path
00310 048E 3404 shs B save error c¢ode
00311 0490 108E0050 Tdy gBO

00312 0494 308DFD09 leax rrMsg2,PCR

00313 0498 8602 lda 2

00314 049A 103F8C 0S9 ISWritLln

00315 049D 3504 uls B recover error code
00316 049F 103FOF S9 FSPErr print error message
00317 0442 200F bra ErrXit

00318 04A4 Errorl eau * Parameter string too long
00319 04A4 108E0050 ldy ESO

00320 04A8 308DFCC3 leax rrisgl,PCR

00321 04AC 8602 lda 2 Error output
00322 04AE 103F8C 0S9 ?Wrxth

00323 04B1 C601 . 1db # error code
00324 04B3 ErrXit

00325 04B3 43 coma . set carry

00326 04B4 103F06 0S9 FSExit

00327 04B7 285030 EMOD

00328 04BA PgmLen equ *

00000 error (s)

00000 warning(s)

SO4BA 01210 program bytes generated

20100 00256 data bytes allocated
24F]1 09457 bytes used for symbols

34 7S-9 User Notes Volume 1I

COLUMN SIX

0S-9 by itself does very 1little useful
work . You won‘t find an editor, assembler,
compiler, spelling checker, or payroll sys-
tem anywhere on the standard distribution
disk. That isn’t to say that you can’t get
these programs for 0S-9, or even that some
of them aren’‘t sometimes packaged with the
operating system (Gimix packages Micro-
ware'’'s editor, assembler, debugger,
BasicO2, and RunB with every 0S-9 system),
but 0S-9 car be purchased with no frills,
and in that form it is essentially useless.

For an experienced microcomputer user
with lots of friends using 0S-9 and a near-
by store with a large stock of 0S-9 soft-
ware the task of choosing the right array
of software could be fun, but for me it was
frightening. The least expensive software
I could find cost about fifty dollars a
crack, and it went up fast from there. I
didn‘t know anyone running 0S-9, and,
though there were many computer stores in
Rochester, the only one which dealt in 6809
based machines believed strongly (nearly
exclusively) in TSC software. I gritted my
teeth and bought what looked good to me. I
was surprised to find that everything 1
bought was at least OK. In retrospect 1
can see that it wasn‘t so very surprising
that I was lucky in my software purchases:
most of the software for 0S-9 is good.

with 08-9 I got the Microware Editor,
Assembler, Debugger, and Pascal. 1 have no
special 1love for the Microware Debugger,
but I still use it because it is the only
game in town. It usually is packaged with
0S-9, and it is hard to get along without,
especially if you do assembly language pro-
gramming, but 1 hope Microware feels a
touch of humiliation each time they send
out a copvy of that program -~ it is not up
to the standard set by their other pro-
grams. The assembler i1s unexciting, but it
does the job. There are other assemblers
around, but the Microware assembler is the
standard.

The Microware Editor is hard to classi-
fy. It is the only non-screen-oriented
editor for 0S-9 that I know of. It works
fine as a simple editor, but it might be
more accurate to call it a simple string
processing 1anguage. The editor features
multiple work spaces, and a high powered
macro language which can be used to write
fairly sophisticated programs. The bad
side of all this sophistication is that it
is a little bit hard to use the editor for
simple things. I have never been able to

figure out how to copy a range of 1lines
without using a disk file as a temporary
holding place. I don’t use the Microware

Editor wvery frequently since I got a
screen-oriented editor, but I got a lot of
work done on 1t wnen it was the only editor
I had, and I still use it occasionally. 1
should add that some people think editors
like the Microware editor are better for
programming 1than the more word processing
oriented editors.

It is hard for me to be moderate in my
praise for Microware‘s Pascal. I wish it
included a debugger., and the procedure for
linking to external procedures is a bit
clumsy, but I love it. I use it to develop

programs for classes where the students use
DEC Pascal and IBM Pascal and have no com-
patibility problems. There are enough
enhancements to make this Pascal useful for
real applications (such as a PROMPT built-
in procedure which forces out the contents
of an output buffer without a carriage
return). The compiler generates intermedi~
ate code which can be executed by either of
two interpreters (one normal, and the other
supporting large programs by a paging
arrangement)., or transiated into efficient
native code.

Recently 1 got BasicO9. You may have
guessed from my comments that I am getting
to like it even though it is called Basic.

I have DynaStar, DynaForm, and DynaS-
pel?l from Frank Hopg Labs. None of these
programs are exceptional, but I use them
all regulariy. DynaStar is a screen-
oriented editor with which I have typed and
revised many hundreds of pages. It is best
at editing documents, but usable for pro-
grams. I expect the reason the program is
called DynaStar is that it borrows heavily
from Wordstar. My mother uses Wordstar,
and I find that I can help her untangle
some problems with Wordstar by assuming
that it is keystroke for keystroke identi-
cal with DynaStar. 1 have some small com-
plaints about DynaStar, but the bottom line
is that I 1ike it well enough to have spent
hundreds of hours using it.

DynaForm is a text formatting/mail
merge program. It is full of fancy Mail-
Merge features that I never use. [use it
to print files with optional page headers
and trailers, underlining, and bold print-
ing. A few times 1 have used its ability
to generate indexes and a table of con-
tents. DynaForm doesn’‘t do well when com-
pared to the high powered text formatting
packages used on large computers, but 1
don’t think it is intended to compete with
that kind of thing. The thing about Dyna-
Form that annoys me most freguently is that
it can’‘’t be customized to use the special
features of my printer. It prints bold
text by simply printing the bold characters
three times. DynaStar can be used to imbed
printer control characters in text, but
DynaForm only knows one way to print bold
or underiined text. I also wish it would
use the standard 1input and output paths
instead of allocating special paths,.

DynaStar and DynaForm were written by
Allan Jost. They show signs of being writ-
ten by a programmer with a very profession-
al attitude. They are not loaded with fea-
tures but they are so reliable that I just
take them for granted.

DynaSpell 11s a spelling checker. I
need a spelling checker very badly. Some
people buy computers to run a spreadsheet
program. I might have bought one to run a
spell ing checker, DynaSpell essentially
looks up each word in a document in a set
of dictionaries. 4&ny words that it doesn’t
find are treated as questionable words.
These words can be fixed, accepted as is,
or accepted and added to a dictionary,
DynaSpell isn’‘t as carefully written as the
programs by Allan Jost; there 1is nothing
major wrong, but the meticulous care isn’t
there. When DynaSpell runs out of space to
store words in, it spews out pages of

Column Six 35

‘overflow" messages. There is no way to
civeck the contents of the directory when
JynaSpell 1is asking for the name of the
file to check. when you abort the program
(with 8 controt C) in order to check the
directory again, DynaSpell leaves the ter-
minal’s device descriptor in a strange
state. DynaSpell has most of the features
commonly found in spelling checkers for
microcomputers, but it doesn’t compare with
similar programs on larger machines. Maybe
a spelling checker is one of those tasks
which needs fast machines with large memo-
ries. I want a spelling checker which
helps me correct misspelled words by giving
me a list of suggested spellings, and a
built 1in thesaurus would be another nice
touch. Still, 1 use DynaSpell when it is
inconvenient to ship my files off the the
IBM to be checked. It isn‘'t a great pro-
gram, but it does its job.

I reviewed DynaCalc a few months ago.
I still 1like the program, and it is stil}
heavily used. I wouldn‘t have chosen Dyna-
Calc as part of my core group of software
(1 mostly program and write with my comput-
er) but I can imagine people who might not
need any other program.

NEW RELEASE OF MICROWARE PASCAL

I just got release 2.0 of Microware’'s Pas-
cal. It is & major revision, including a
new intermediate code language., a sSsingle
general purpose I-code-to-native-code
translator, and new run time support mod-
ules. 1 didn’t do any careful comparisons
of the two versions, but I get the strong
feeling that the new release compiles fast-
er, and runs faster. The new manual 18
significantly better organized and more
complete than the old one, but still makes
no attempt to teach Pascal. Two new Sstan-
dard functions have been added: GETCHAR,
which returns a single character from
input, and IDREADY, which returns true if
there is input ready. These new functions
snould be useful for 1{interactive applica-
tions like editors.

0S-9 DIRECTORIES

A directory 1s a special type of file con-
taining information about files. It could
be seen as something l1ike a 1ibrary’s card
file. It contains the names of files along
with information about them, especially
where they can be found. Unlike anything a
proper 1ibrary would contain, the entries
in a directory aren’t kept in any particu-
larly useful order. You can get a format-
ted listing of the contents of a directory
with the DIR command.

0S-8, 1ike UNIX and many other multi-
user operating systems, supports hierar-
chies of directories on disk. Directories
can be used for a number of things, or. if
you like, largely ignored. A directory can
contain any number of other directories in
adoition to normal files.

Every disk has a root directory on it
which is created when the disk is format-
ted, and cannot be done away with. Unless
you fuss around with INIT and SYSGD the

36 0S-9 User Notes Volume I

disk you boot off of must have a directory
called CMDS in 1its root Cclirectory. There
may also be a SYS, and a DEFS directory in
the root directory on the boot disk when
you install 0$-9.

You (the user) can create new directo-
ries with the MAKDIR command. To use the
command type MAKDIR followed by the name of
the new directory you want to create:

MAKDIR /D1/SOURCE.DIRECTORY

It has become a convention to use capitai
letters for directories’ names. 0S-9
doesn’t have any trouble with lower case
directory names, but it is an easy way oOf
reminding oneself which files are directo-
ries.

It is sometimes tricky to keep track of
2 library of several hundred (maybe thou-
sand) files. MUl tiple directories are a
major heip in organizing files in such a
way as to maximize the chance of finding
them again. Long ago 1 found that I
couldn‘t fit all my files on one disk (that
was a 100K floppy back then). I put each
major project on .a separate disk. wWhen I
got disk drives with greater data capacity,
I found that it wasn’t an unadulterated
good thing. Each disk contained so many
files that it was a major job to locate a
file even knowing which disk it was on. 1
worked out naming conventions that made the
job easier, but they used up the first two
characters of each file name -- the result-
ing file names were pretty cryptic. I
still keep hundreds of files on each disk,
but my largest directory has about forty
files in it.

The root directory on a disk I have
labeled “pascali* contains nothing but sev-
en directories: DIST.SRC, UTIL.SRC,
SUBR.SRC, BUGS, DEFS, DOC, and PCODE. Each
of those directory names describes what 1
expect to find in them pretty well (to me
anyhow) . Each directory with programs in
it contains a directory called DOC which
contains related documentation. If it
seems like I have large numbers of directo-
ries called DOC, it‘'s true. Pretty near
everything needs documentation. Somet imes
1 4ind that a directory begins to get out
of control. Projects that [expect to need
atout ten files have a way of expanding to
farty or fifty files. A project like that
really belongs in a directory of its own,
sc] create a new directory in the directo-
ry that contains tne files for the project.
anrd move all the files that are part of
that project into the new directory.

Any file can be accessed by giving its
full name, e.g..
/D1/UTIL.SRC/DFIX/Compacter would denote
the file Compacter in the direcztory DFIX
which is in the directory UTIL.SRC in the
root directory on disk D1, but that’‘s more
typing than I would choose to do except as
an act of desperation. The most commonly
usea shortcuts are the CHD, and CHX com-
mands. The CHD command changes the direc-
tory which is treated as the root directory
for data. CHX does the same thing for the
execution directory.

when 05-9 is booted the data directory
is set to the root directory of the boot
disk, and the execution directory is set to

CMDS in the root directory on the boot
disk. If you want to use files in the root
directory on the boot disk, all you need to
do is give the file name. if you want to
use files in a directory which is in that
directory you give the name of the directo-
ry with the file name, e.g.., to get at the
file 0S9Defs in DEFS in the data directory
use DEFS/0S8Defs. If the default data
directory isn’t convenient for you, a new
directory can be selected with the CHD com-
mand., for example, to change the data
directory to the root directory on /D1 use
CHD /D1. The CHX command works the same
way CHD does, but it effects the execution
directory.

There are two special entries in every
directory. The "." entry points to the
directory itself, and the L entry
points to the directory the current direc-
tory is 1in, the parent directory. & typi-
cal use of the ".." entry is to refer to
sibling directories. wWwhen a project gets
large,- 1 break it up into a set of directo-
ries, all in a directory which I set aside
for the project. 1f a program needs access
to the file HexDefs in the directory DEFS
which 1is a sibling of the directory SRC
(where the program is), 1 can use the

shorthand name *../DEFS/HexDefs" fcr the
file, I have found this a good convention
to stay with. As 1long as 1 continue to

keep related families of files in directo-
ries that are siblings, the notation
“../DEFS" will always get me to the appro-
priate DEFS directory, and "../DOC* will
always refer to the related Documentation
directory.

To experiment with directories, start
with a disk with some empty space on it,
and use CHD to set the data directory to
the root directory. Build some directoe-
ries:

MAKDIR TESTDI
MARDIR TESTD2
MAKDIR TESTD3

Make things a little more complicated:

CHD TESTD2
MARDIR TESTD21
MARDIR TESTD22
MAKDIR TESTD23
CHD TESTD21
MAKDIR TESTD211
MAKDIR TESTD212
MAKDIR TESTD213
CHD ../TESTD22
MAKDIR TESTD221
MAKDIR TESTD222
CHD ../TESTD23
MARDIR TESTD231
MAKDIR TESTD232
CHD ..

CHD ..

Now we’'re back at the ropot directory. The
DIR command should show the files that were
in the directory before yow started this
experiment plus the directories TESTD1,
TESTD2, and TESTD3. DIR TESTD1 will show
an empty directory. DIk TESTD2 will $how
the directories TESTD21, TESTD22, and
TESTD23.
show the contents of the directory TESTD23:

The following commends will all

DIR TESTD2/TESTD23

DIR ./TESTD2/TESTD23
CHD TESTD2 ; DIR TESTD23
CHD TESTD2/TESTD23; DIR

The first two command 1ines leave the data
directory at the root directory. The third
command line moves the data directory to
TESTD2, and the fourth command 1ine moves
the data directory ail the way out to
TESTD23.

It is easy to create new directories,
but a little involved to delete a directo-
ry. Perhaps it 1s a good thing that it
requires more than one quick operation to
remove a directory. If a directory with
files in it is erased, all the files in the
removed directory will remain on the disk,
but 0$-9 won‘t be able to 1locate them.
Older versions of 0S$-9 don‘t have any com-
mand which will delete a directory. To do
away with a directory with these older ver-
sions: delete all the files (and directo-
ries) in the directory, use the ATTR com-
mand to change the directory into a normal
file (ATTR <«dirname> -d), and delete the
file that used to be the directory. Be
particularly careful not to use ATTR to
change the directory into a regular file
until the directory is empty. There is no
easy way to change the file back into a
directory so you can delete the files 1in
it. With the new reiease of 0S5-8, the com-
mand DELDIR can be used to delete directo-
ries. DELDIR simply automates the steps I
just wert througn.

Directories are an important feature of
UNIX-1ike operating systems. They allow
files to be grouped in manageable clusters,
and make it easier to handie many concur-
rent users.

I am preparing to eat some of the words
I set down in my first column. I am look-
1ng forward to this with a good deal of
pleasure =-- they were critical words. Some
people have gone to a fair amount of effort
to convince me that [was wrong. If things
go well I’11 hold the worc eating ceremony
next month.

Column Six 37

¥ 08-9 User Notes Volume I

STANDARD TERMINAL SUPPORT
FOR 0S-§

One of the first programs I wrote for a
micro played "Life." The game starts with a
given pattern, and, by repeatedly applying
a set of rules, generates and displays new
patterns. If the patterns are displayed
properly on a CRT, the changing figures on
the screen can be fascinating. (Note: Life
was inventec¢ by John Horton Conway, ant nas
been extensively discussed 1in Scientific
American and BYTE.) I wanted my program to
be usable with most terminals; so after
investing a few days in the program, I
spent another few weeks trying to make it
"device independent.” I never really fin-
ished. It was an uncommonly fast game,
but, since I couldn‘t generalize the termi-
nal control, no-one without a Hig will ever
be able to enjoy it.

Many micros avoic this problem by not
using a terminal (e.g.. the Color Comput-
er), but people, like me, who program com-
puters without a built-in screen must
either use only those control codes common
to all terminals (1ike carriage return, and
1ine feed), or expend a 1ot of effort writ-
ing special code to handle different termi-
nals.

Full screen editors are the prime exam-
ple of a type of program that must have
control of some of the features of the ter-
minal, but many other high Quality programs
support some of the features that most ter-
minals share. Every program with general-
ized terminal support must be configured
for the terminal (or terminals) it is sup-
posed to work with as part of the installa-
tion of the program.

Some programs use a special module
which contains terminal~specific code for a
few crucial functions. It is simple to
install a program that uses this kind of
terminal control provided that the neces-
sary module is provided. If a suitable
module for your terminal is not available,
a new one must be written in assembly ian-
guage.

Another approach to generalized termi-
nal control is to use a configuration pro-
gram to ask questions about the terminal
being used and store the information 1in
tables which enable a single terminal con-
trol module to drive any reasonable type of
terminal.

It is sad to see so much effort used
solving the same problem over and over. It
is so hard to write a program so it can be
adjusted for use with any terminal that
even some commercial programs don’‘t do it.
For small programs it can take more work to
implement terminal support than to write
the rest of the program. Frank Hogg Labs
seems to have developed a standard for ter-
minal control, the GOTOXY module. Once the
module is installed for one program, it
need not be done again except for a new
type of terminal. If every software dis-
tributor would standardize on GOTOXY. it
would make l1ife a lot easier for program-
mers and purchasers of software. Frank
Hogg tells me the GOTOXY modules are not
proprietary, so this is an alternative =-
UCSD Pascal makes do with no more. Unfor-

tunately, GCTOXY is harc to call from some
languages, and supports a terribly 1imited
set of operations.

I would 11ke to propose a standard
interface for CRT terminals. It would be
much easier for Microware to build the
standard control system than for me to do
it, but it looks like the job is mine. I
will kick the problems 1 find around for a
month or so. Please help me with this. If
I have to devise a standard in a vacuum, it
may not please enough people to be widely
used.

Any standard is a compromise. The most
important goal is to make it easy for any
programmer to use the interface. This
rules out all the language-specific inter-
faces. The other two important goals are
that all the currently existing programs
with (or without) terminal control modules
must continue to operate without modifica™
tion, ana that the interface should provide
the most sophisticatec terminal control
possible.

Since many languages can‘t use
GETSTAT/SETSTAT, or other exotic ways of
doing I1/0, 1 believe the standard terminal
control module should either be a callable
module like GOTOXY, or some form of filter.
The callable module would be more effi-
cient; but different 1anguages call subrou-
tines differently, and it would be sad to
forsake the built-in 1/0 facilities of a
1anguage in order to route all terminal 1/C
through a single mgdule. There are several
places a module could be placed in the ter-
minal I/C path where it could act as a fil-
ter isolating terminal specific contro’
strings on the terminal side of the filter,
and standard strings on the program side.
I don’'t believe that the difference in
efficiency between the filter and the sub-
routine method of terminal control is all
that great. The filter method seems to be
the best approach to the terminal-
independent program problem.

The filter method requires that ali
programs act as if they are being used with
some s tandard terminal. That termina’
could be imaginary, but with so many dif-
ferent terminals available why invent
another. Two terminals seem 1like attrac-
tive choices: the VT52 and the VT100. The
VTI100 1s especially attractive because it
implements the ANSII standard. It would be
nice to go with the accepted standard, and
I think I will finally decide to use a sub-
set of the ANSII standard -- a subset
because I don‘t retlish the idea of trying
to emulate all those flashy features on a
dumb CRT. The worst disadvantage of the
ANSII standard protocol is that its cursor
control seguences will be hard to generate
in assembly language programs. The row and
column have to be in ASCII characters. It
hurts me to think of a programmer being
forced to include binary-to-ASCII conver-
sion code in his program just so the termi-
nal control module can convert the numbers
back to kinary. The VTS52 is representative
of most moderately intelligent +erminals.
It certainly 1includes every function I
would want to include in the subiset of the
ANSII standard I plan to implement. In the
short run the VT52 is a better choice than
the VT100; it could be emuiated more effi-
ci®ently, and would be just as useful as any
practical subset of the ANSII standard.

Staadard Terminal Support for 0S-9 39

$tily, I believe that in the 1long run
:dhering to the most widely accepted stan-
tard is the best policy. I am looking for
a gooa excuse to use the VT52 as the stan-
dard, but haven’t found a good enough one
vet.

The choice of the subset is another
tricky decision., The minimum useful subset
is either the direct cursor positioning
command, or the set of cursor up, down,
left, and right commands. Actually. home
cursor is adeguate for most purposes, but
it takes a substantial amount of work to
program for a terminal that is that dumb.
There are many powerful commands that make
it easier to program for a terminal, and,
more important, cut down the number of
characters that need to be sent to the ter-
minal to accomplish some oOperation. If
fewer characters need to be sent to (say)
clear the screen, then the screen will
clear faster and the number of interrupts
the computer will need to service will be
decreased. However, the more fancy termi-
nal control commands are i{included in the
standard, the Jlarger the terminal control
module will get.

There 1s no reason the filter trick
can’'t be applied to terminal input as well
&8s output. For some of the less powerful
terminals it will be necessary to pass all
input through the filter it order to know
where the cursor is; however, all terminals
will benefit from filtered input. An input
filter will permit standard program func-
tion keys, arrow keys, the clear screen
key, and perhaps some other special keys 10

&0. 0S-9 User Notes Volume I

be defined.

The following is a 1list of terminal
control strings 1in descending order of
likelihood tw be in the subset:

. Direct cursor positioning

. Clear 1o end of line

. PFkeys/Clear Key/Arrow Keys

. Alternate cursor (block/
underscore}/normal cursor

. Highlight on/off (either reverse video
or intensify)

. 25th {(or other special) line support

The following are significantly harder:

. Save cursor position/return to saved
position

. Insert/delete 11ine

. Delete character

. Enter/leave insert character mode

I will consult everyone I can think of
about this, and hnope the people I don’'t
trink of will write or call me with their
thoughts. After a month or two’s thought,
1 will try to write the coce to support the
standard for at Jleast one terminal, 1
would appreciate any help or advice 1 can
get.

COLUMN SEVEN

Last month I promised that I would eat
some words this month. In the first column
I wrote for 68 Micro Journal, I said that 1
was sorry no one was using more than 64K
for a single program under 0S-9, and 1 made
the point rather strongly that 6809-based
computers should not be shared.

Several months ago David Brown asked me
to look at his version of MUMPS for the
6809. Strictly speaking, since MUMP S
doesn’t run under 0S-9, it is out of my
area, but it is intriguing. The version of
MUMPS David Brown sent me uses a fairly
sophisticated virtual memory scheme, and is
not effected by 64K boundaries. Since it
doesn‘t run under 0S-9, I still challenge
someone to be the first with a program that
uses more than 64K at once under 0S-9, but
since Dave Brown’s work is impressive, 1
gave it a mixed but generally nice review.

My mother is the secretary of the
school board back in the town where I grew
up. She has given me a very interesting
pipeline into the workings of a municipal
school system. Recently there has been a
lot of fuss about computers at school.
Pre-college schools have to make a number
of difficult decisions in the process of
integrating computers in the educational
process. Even the choice of the best com-
puter is complicated for them by the scar-
city of good software for their purposes
(and their wuncertainty concerning what
software they need), and by the worst kind
of financiel problems. wWhen 1 heard that
my home town was going to commit itself to
a gaggle of microcomputers running Basic, 1
felt motivated to research the subject with
an eye toward talking them out of Basic.
The 0S-9 users’ group’s bulletin board is
of ten a good source of information, and in
this case it was surprisingly useful; it
turns out that many 0S-9 users are involved
in education. Once started on the idea
that 0S-9 might be a good solution for some
of a schools system’s problems, I rubbed
some figures together and came to some con-
clusions that shouldn’t have surprised me.

It is clear that financial considera-
tions are crucially important to all the
school systems I know of. One micro can be
inexpensive enough to fit into a budget,
but one Apple is not very useful for teach-
ing a class of thirty. I figure that a
high school computer lab should be set up
to teach Pascal, word processing, the use
of a spread sheet, and the use of computers
in the sciences. I know from experience
that students can be lab partners and work
as a team of two without too much trouble,
but three or more students working together
will have problems. Figuring thirty stu-
dents in a class, the lab will need fifteen

stations. The minimum configuration I can
put together is fifteen micros, each
including:

. A spread sheet -- $100.00

. Pascal -- $200.00

. wordstar type editor -- $300.00

. Operating system -- $100.00

. One 5.25" floppy drive and contrc'ler
-- $600.00

. A printer -- $250.00

. A monitor -- $200.00

. The micro -- $500.00

A1l those prices are rough, but reflect the
cheap alternative, not the quality that
students deserve. Each micro will come to
$2250.00 (though 1 doubt that they could
actually be put together for that little).
Fifteen of them cost $33750.00. That’s
serious money, and it only buys a minimal
system for each lab team.

If a large O0S-9 system could handle
fifteen students, it would be possible to
purchase a top of the 1ine CPU with a hard
disk, a floppy disk, fifteen serial ports
(intelligent), a half meg of memory, and
top of the 1ine sof tware, for about
$14,000.00. Fifteen very nice terminals
would cost $9000.00 bringing the cost of
the system to $23,000.00. Two thousand dol-
lars will buy a very nice printer, bringing
the total cost to about $25,000.

I have talked to several people who run
many users on a Gimix-I1II system. If half
of what the Gimix-II1 users say is true., it
would be reasonable to have eight or ten
students sharing a machine. If all that
they say is true, it might be possible to
hook thirty students to one CPU and expect
them to run at a reasonable speed. I now
have a second terminal on my level two Sys-
tem. I can say from my own experience that
my system can handie two users with very
few signs of being l1ocaded down.

Based on what I know about my system,
and what I have beer able to find out about
Gimix=-III, I think a Gimix-III system with
at least 256K of memory would be able to
handle four to six users with a level of
service that I would find acceptable. Giv-
en a choice of a toy computer with bargain
basement software, and the bare minimum of
peripherals, or a fifteenth of a fully con-
figured Gimix~II1 system; I would pick the
piece of a large system like a flash.

I confess to being an ivory tower
idealist. I want people to like computers,
so I flinch at the idea of giving out slic-
es of computer so small that there is not
enough power to allow software to be
friendly. That means that I think a indi-
vidual deserves at least a level two system
with lots of memory. Realistically, most
hobbyists can’t afford to commit that much
money to their computer: businesses need a
much stronger argument than friendly rela-
tionships between staff and computers; and
schools simply have to choose the least
expensive way to do things most of the
time. I maintain that I am philosophically
opposed to sharing micros, but if I am
forced to consider the alternatives, 1 am
strongly in favor of sharing a computer --
provided it is the right computer.

Column Seven 41

A LETTER The assembler program which was 1nclucd-
ed with the letter, and which I will

Pon Williams sent me a letter from Bengt- include here, is an 1nteresting extension
Allan Bergvall whc sent along an 1nterest- on the program called "StrtTask® which I
ing program that amounts to a special sort gave a few months agc. If we were using
of shell for BasicOS programs. It gives me real UNIX we would solve the problem of
encouragement 1n my plan to write a passing parameters to BASICOS8 programs by
enhanced shell, but is useful as it stands. modifying the shell; ParamMod is a sort of
His letter follows this column. - special purpose mini-shell which runs

BASICOS programs.

LETTER FROM BENGT-ALLAN BERGVALL

Microware's BASIC09 is an excellent interpreter, easy to use for producing your
own utilities. Unfortunately, it 1s lacking a straightforward method of passing
arameters. For example, if you are going to write a "Help" utility, you want to
ype

0S9:help dir

to learn about the dir command. This is impossible if Help is a BASIC09 program.
If Help is a packed BASICO9 program, interpreted by RunB, you can type

0S9:help

only, and let the program ask you what help you want. If you don't have RunB,
you have to type

0S9:basic09 #5k help

However, even if Microware doesn't tell you, you can also pass parameters in RunB
or BASICO9 by using the syntax

0S9:help ("dir") or 0S9:basic09 #5k help(''dir")

and using the PARAM statement in the Help program. This is OK if you will use
the prq?ram rarely, but i1f the program will be used often, and perhaps not by
yourselt, this is a very clumsy syntax.

The desired syntax can of course be accomplished by writing Help in another
language that permits the desired parameter syntax, i.e. in assembler. This 1is
probably the wrong way for a user utility program. To solve the problem, I have
written a short ''universal' program in assemb%er, called ParamMod, with the fol-
lowing characteristics:

° ParamMod allows the desired parameter syntax.

. ParamMod transforms the parameter list from the desired syntax to the syntax
reauired by BASIC09 or RunB. The resulting parameters are all of the type
STRING. To be used as numeric types, the strings have to be transformed
using the VAL function.

L ParamMod forks to either BASICO9 or RunB, and the main program is written in
BASICO9.
° ParamMod has to duplicated and customized on three text strings and needed

BASICO09 memory for each utility:
- innam

The wanted utility name. In the given case, Help. Other utilities could
be names Compare or Analyze.

- Out name

The name of the file that contains the BASIC09 procedure and performs
the desired action, It could be named Help B or /D0/COM/Compare B or
AnalyzeBody.interprt. - -

- interprt

The name of the BASICO9 interpreter to be forked to. Either BASICO09 if
outname is a saved procedure or RunB if it is a packed procedure.

- Memory

The total number of bytes needed for the procedures and their data are-
as.

42 0S-9 User Notes Volume I

. In the fellowing, we are assuming you are writing a Help utility. For other
utilities, change the names accordingly.

First customize ParamMod's three text strings and BASIC09 estimated memory

size with(your text editor. Then assemble it with Microware's assembler, using
the command:

0S9:asm ParamMod o=Help #10k
and the resulting code for Help will be in your execution directory.

Then write your BASICO9 program, naming the outermost procedure Help B. You

must save or pack Help B to run it through Help. RUN it from within BASICDY9 with
the command (including parameter):

B:Shelp dir

You may also during the development phase run the program without Help. 1In that
case you must use BASICO9 parameter syntax:

Birun help_b("dir")

Included is the assembly listing for ParamMod, customized for a Help utility and
a dummy Help B program.

Bengt Allan Bergvall

Blavifigev.

S-561 49 Huskvarna

Sweden

Column Seven 43

PARAMMOD
* Program written by Bengt-Allan Bergvall, Blavingev. 1,
s-561 49 Huskvarna, sweden.

Program to reformat a parameter list from an easily

tyged form to the clumsier form required when running a

BASIC09 program.

Given the command

‘¢ 0S9:help paraml param2 param4 (note the extra space)

* This program will fork to the RunB or BASIC09 program
Help as if given the equlvalent command:

* 0S9:7BASIC09 #5k Help B('paraml'’,"param2","","param4")

* This program is general and can reformat the resulting

parameter list up to 256 characters, but the name
strings inname and outname has to be changed for each
implementation.

if interprt is runB, then outname has to be a packed
BASICO9 program in the execution directory.

If interprt is BASICO9 then outname has to be a saved

* BASICO9 program either in the present data directory or
* in another file with outname giving the full path name,
“ e.g., /DO/COM/Help_B .

The memory needed by BASICO9 or RunB must also be
iven.

ngm arameter list modifier

ttl for BASICO9 or RunB

1fpl
use /DO/DEFS/defslist
endc (use os9defs .
mod pgend,inname,prgrm+tobjct,reent+l
fdb pgstart,stack
* data_variables o
parend5 rmb 2 output parameter limit -5
outpar rmb 256
varend equ .
stck rmb 200 stack area
stack egu . stack pointer
FdTdE w Fea ok Sk ok b A oot ek A e R ok st e sk ok ok e oo o ok

** Customization area

inname fcs .Helg. Name of utilit¥

outna%e fcs .Help_B. Name of BASICO® procedure
fcb

interprt fcs .BASICO9. Either BASICO9 or runB

* Total memory needed in b{tes by BASICO9 or RunB

* process: (eauivalent to the needed BASIC09 MEM value)
memory equ 5000

** End customi%ition
For v devr vtk ke kA kbR ke d ko
pgstart

* Modify garameter list from free form into BASICO9
stan%. orm. Example of free form: paraml param2 param4
Resul 1?% BASICO9 string form:

Help B ("paraml”,"paramZ","", "param4")

* %

*

prepare limit check for parameter list, allow for
ending 1ast5parenthesxs.
leay varend-5,U
sty parend5
* copy outname into output parameter list
shs X

eay outpar,U
leax outname,PCR
namechar lda ,X+

beq nameend

sta ,Y+

bra namechar
nameend puls X input parameter list
* append modified input parameter list to output
parameter list
lda #'(

sta ,Y+

44 0S-9 User Kotes Volume I

lda fvu
sta ,Y+
archar lda ,X+

* check the resulting parameter list not too long

cmpy parend5

blo parOK

comb set carrx

1db #56 BASICU9 parameter error
0S9 FSExit

parOK cmpa #5$20 space’
beq nextpar

cmpa #S0D carriage return ends parameter list

beq lastpar

sta ,Y+

bra parchar
* reformat next parameter
nextpar lda #'"

* list.end
lastpar lda #'"

sta ,Y+ .
lda #SOD carriage return
sta ,Y+

fork to intergrt (RUnB or BASICO09)
leax interprt,PCR
ldy #S100 allow one page parameters
leau outpar,U
1da ? rgrm+obict
1db }%memory+ 55) /256 data area
0S9 F$Fork
becs ut
0S9 FSWait
bcs ut
clrb no error
ut 0S9 FSExit
emod
pgend equ
end

st

*

HELP B

PROCEDURE Help B

REM Duqm{ Help_utilit¥
REM prints the Earame er
PAR text :STRING

PRINT text

BYE \REM bye needed to give automatic return to 0S-9 when run by Basic09

Column Seven

45

& 0S-9 User Notes Volume I

COLUMN EIGHT

THE 0S-9 USER SEMINAR

On August 12 the 0S-9 User Seminar opened
rather slowly as I and a few other people

stood in line in front of the exhibit hall
on the third floor of the Des Moines Mar-
riott. wWe watched as various Microware

staff struggled to get a Radio Shack com-
puter (running 0%5-8 of course) interfaced
with a television. when I got into the
hall, 1 was surprised at the number of
exhibitors. 1 have always thought of the
0S-S community as about the size of a large
family -- there were 24 booths listed in
the exhibitor guide. I had a ball wander-
ing through the hall, meeting people I have
only known through phone conversations, and
seeing some exciting hardware.

Several of the exhibitors were showing
machines that used 0S~8S as a process con-
trol environment. One booth sported a rack
of equipment that would have been more at
home next to an assembly line.

Smoke Signal broadcasting had a video
tape rig showing a movie of a military-
tooking man. I remember a bugle _gnd a 1ot
of strutting up and down, but I just can‘t
remember what he was talking about: I think
he was promoting the TMP package. Smoke
Signal had a compact S$S50 based machine
that 1 have never seen before.

There were a couple of Japanese engi-
neers demonstrating Fujitsu FM-7 and FM-11
computers. Very well done. I wish tney
were available in this country. A particu-
larly nice feature of the software on the
Fujitsu machines was split-screen support.
I saw them editing on one part of the
screen while two other sections displayed
moving graphics ... all running at the same
time.

Tano was showing a Dragon computer,
imported (1 believe) from England. The
Dragon is a small, inexpensive computer
with color graphics and 0S-9 Level Dne. I
only saw it playing games, but it does that
pretty well.

Privac was showing the graphics board
that I have been coveting for months now.
It looks even better in reality than it
appears in an advertisement. There was a
program running almost continuously that
demonstrated the board. Figures and char-
acters would appear, disappesar, rotate, and
float across the screen. I had always won-
dered how well the Privac board was sup-
ported under §S-9; it turns out that 0S-9
is the operating system they use. The demo
program was written in BasicOS.

wires from the Gimix booth seemed to
spread all over the hall. The 0S-9 User
Group, JBM Group, and Frank Hogg Labs all
were borrowing computer services from
Gimix. Perhaps to demonstrate the tireless
ability of GMX-IIl to spew characters out
on many terminals, unused terminals were
kept busy listing strange programs. when-
ever 1 walked by, one of the terminals at
the FHL booth was listing a COROL program.
At the Gimix booth 1 met the engineer
responsible for my hardware (who is ailso

the president and the service manager of
Gimix). He thinks Gimix hardware should
move in about the same direction I want it
to go. If things go well, there should be
some terrific new hardware coming out some-
time in the indefinite future.

The JBM Group is hard for me to charac-
terize. They had some wutilities that
sounded good except that they were written
at least partly in BasicOS. The thing that
upset and fascinated me was that they have
a sort which they claim runs very fast.
They claim to have compared their sort to a
standard disk-based merge sort, and come
out significantly better. Either the algor-
ithm used by the program they compared
theirs to was not the best available in the
literature, or their claim may have to be
placed in the same class as perpetual
motion machines. The man who invented
their sorting algorithm wasn‘t there for me
to ask about the details of his method, and
1 had no way to check their figures, so 1
will continue to view their sort with skep-
ticism; however, even if it 1is only an
average sort, its manual documents a fine
general sorting program of a type which is
much needed by serious 0S-9 users. They had
several other packages including a set of
Basic09 subroutines for ISAM file handling
that sounded much less exotic, but inter-
esting.

There were, of course. many exhibitors
I haven‘t mentionea {for example Micro-
ware’s own booth), but I don‘t intend to
make this column into a walking tour of the
exhibit hall.

Frigday there was plenty of time to look
around. Saturday and Sunday were soO busy
there was barely time to eat. Microware
filled most of the weekehd with classes,
presentations, and “roundtables®” ranging
from 0S-9 and Basic09 Features, which cov-
ered things 1ike the Basic0OS8 editor, to the
0$-9 Roundtable, which gave us a chance to
interrogate the parents of 0S-9 about its
workings. In the evenings a few of the
exhibitors ran "hospitality suites" which
gave some of us an excuse to stay up late
and talk about our computers.

Saturday night there was a meeting of
the 0S-9 User Group. The User Group 1is
having some troubles whiCh seem to stem
mostly from having only a few members
spread over a wide geographical area. we
elected officers for the next year: Dale
Puckett (President), myself (Vice Presi-
dent), Goerge Dorner (Treasurer), and Tom
Murphy (Secretary). we are respectively
responsible for the Software Exchange Com-
mittee, the Membership Committee, the Com-
munications Committee, and the By Laws Com-
mittee.

Monday those Oof us who were still tleft
around went off to Microware’'s offices. I
had a chance to discuss some of the diffi-
culties I am having with DS-9 and C with
the appropriate people, and discovered that
those programmers are seriously crowded.
They desperately need to make the move to a
larger facility that they have been plan-
ning.

Column Eight 47

SHELL COMMANDS

“he shell is a program that interprets com-
‘and lines and does what is called for.
‘ne full UNIX sheil is a programming lanr-
guage in itself. The 0S-2 sheli is only a
subset of the UNIX shell, but it has enough
flexibility to be useful. The first thing
to learn about the sheil is how tO0 use the
built-in shell commands. The chd, chx, ex,
kill, w, and setpr commands are built into
the shell. The shell commands are used to
control the environment of the programs
that are run by the shell.

I use the chd command, which is the
command which changes the working data
directory, more than any other shell com-
mand . The working data directory 1is the
directory which will be used for most files
you read or write without specifying a
directory in the file name. It is usually
much better to change the working directory
than to explicitly include directories in
file names so 1 freguently change directo-
ries as 1 change from one task to another.
It is a rare day when I use the chx com-
mand, the command which changes the working
execution directory, even once. 1 imagine
that someone with a smaller system disk
than mine would use the chx command much
more freguently than 1 do because 05-9
rememoers where the working directories are
on disk, and needs t¢ be reset with chd and
chx commarmds when a <©:Sk i8 changed. 1f
you forgex to change directories when you
change disks, 0S-89 will give you a nasty
message next time you try to use the direc-
tory. I have never gotten into trouble by
forgetting, but it is not wise to trust an
operating system too far.

The ex command should be classed as an
advanced command. It replaces the shell
with another program. Replacing the shell
is certainly a good thing to be able to do,
especially for users with smaller systems,
but it can have disconcerting results --
mainly that when the program ends, the
shell won‘t be there.

The rest of the shell commands are pri-
marily useful for those who run programs
concurrently. You can 1instruct the shell
to start a program running, then give you
another shell prompt by putting an & after
the command on the command 1ine:

089: dir >/p&

would list the files in the data directory
on the printer while you run other pro-
grams.

If you run programs concurrently, the
kill, setpr, and w commands will be useful.
The kill command should be used about the
way you use the gquit control key (usually
<CNTL>Q or <CNTL>E). The quit key only
works on the last program to do I/0 to the
terminal, the kill command works on any
program. The setpr command is used to con-
trol the way the computer‘s resources are
divided up. The higher the priority of a
program. the larger a share of the computer
it will get, and the faster it will run. A
program‘s {or, more properly, process’s)
priority can be anywhere in the range 1 to
255. The w command causes the shell to
wait for a child process to finrish. That
means that the shell won‘t prompt for
another command until a program that was

48 0S-9 User Notes Volume I

started by it terminates. The main use of
this command is to recover from the mistake
of running a program that does I/0 to the
terminal in background. The usefulness of
the w command can be appreciated by trying
the following experiment:

0S9: dir x&

Now try to get some useful work done
when you are disgusted with the screwy
behavior of your terminal, type w at the
0SS prompt:

0s9: w

There is one particularly nice feature
of the shell which is, so far as 1 know,

undocumented. If you run a program like
the assembler with its output directed
somewhere other than the terminal, then

decide that you would 1ike to run another
program at the same time, 'you can cut the
assembly 1loose from the shell with the
interrupt control key (usually <CNTL>C).
The interrupt control key will usually ter-
minate the program which most recently did
1/0 to the terminal, but, if the p-ogram in
control of the terminal (the assembler 1in
this case) doesn’t do any 1/0 to the termi-
nal at al!, it won’t kill it. Instead, the
shell sees the interrupt, and converts the
program in control of the terminal to a
concurrent program,

A LOGICAL DEVICE DRIVER

This column 1is an experiment with a new

format. There is a demand for information
for new 0S-9 users, but 1 have also heard
requests for more advanced discussions. In

this column 1 am trying to include some-
thing for everyone. What follows may be of
general interest. but. for an inexperienced
computer user, it may be heavy going.

Several months back I started a project
whose objective was to find a way to give
0S-8 a terminal-independent way to control
CRTs. 1 have a special device driver which
does just what is called for, but it 1is
built around Microware’s ACIA source. I
may be able to get permission from Micro-
ware to publish the modified driver, but 1
would rather not have the terminal mapping
tied that closely to the computer’s 1/0
port. Not every computer uses an ACIA chip
for its serial interface, and my special
driver only works with ACIA serial inter-
face chips. wnat is needed is a virtual,
or logical!, device that can insulate the
terminal mapping code from the physical
interface.

The idea of a logical device driver has
many applica*ions beyond a terminal -
independent 1nterface. At the User Seminar
1 spent some time talking to the engineers
from the Fujitsu booth. They wanted my
opinion + of a proposal to make logical
devices a part of 0S-9 in order to allow
the system drive to have a consistent name
regardliess of the type of hardware being
used. This would make it easier to write
programs that referenced files on the sys-
tem drive. A logical device can certainly
do this. It would be possible to set up a
logical disk with some obvious name 1ike
SYS. and have it know the name of the phys-

ical drive being used as tne system drive:
DO, HO, or whatever.

The icea can be extended even further.
There is no compelling reason why the log-
ical device should refer to exactly one
physical drive. The 1logical device could
refer to several physical devices or just a
part of one.

Some possibie uses of the concept are:

. A disk drive with associated cache
storage.
. A neat, and fairly easy way tc suppcrt

split screen terminal displays with
each section of the screen treated as
a separate terminal.

. A gateway to a network.

. A way to associate a printer with a
terminal for screen dumps.

. A terminal-independent interface.

The device driver 1 have included with
the column is a logical SCF device driver
for a Level Two system. A RBF driver, or a
driver for Level One would be somewhat dif-
ferent, but only the details would need to

be changed. The driver, which 1 named
VCIA, doesn‘’t do anything at all except
waste time. It is a skeleton for sometning

interesting to be built on.

Starting from the top, let’s go through
the interesting parts of the program. A
logical driver must l1ook just l1ike a real
driver to the system, so it must have the
type Drivr+Objct, and it must have a Dyte
after the normal module header reflecting
tnhe modes in which the driver can be used.
This one says it 1s good for update, it
might be a good idea to add execution. The
storage reguired by a device driver is
called the device static storage, it is
allocated, and partly initialized by the
file manager, in this case SCF. The file
manager uses the first section of the
device static storage, the storage reserved
for it with the "“org V.SCF.*"

Performance 1is crucial at this level.
Every character read from or written to the
terminal will pass through this module so
even a small improvement in efficiency is
good. Normal good coding practice is still
important, but the priorities shift some-
what. SCF will branch to entry, entry+3,
entry+& depending on what service it
wants. The normal convention is to put a
1ist of 1bra instructions here, but a bra
instruction is a l1ittle faster, so I used
them and padded them to three bytes each
with nops (which are never executed in this
context).

The INIT call must find the physical
device driver ang set up the proper envi-

ronment for it. The physical driver, which
I call P.D., is found and mapped into the
address soace with a F$LINK call. This is

a bit tricky. in Level Two, the module is
linked into the address space belonging to
the process doing the 1link. The device
driver uses the process number of the pro-
cess that opened it, but it runs in the
system address space. I had to fool the
operating system into thinking I was run-

ning under the system process number by
playing with the pointers in the system
direct page. If this were Level One, I
think 1 could have simply used a F$SLink
call without all the fussing around.

The real device driver is going to need
its own device static storage, so the 109-
ical device driver plays SCF for a moment
and gets the amount of storage P.D. needs.
I use the Leve! Two system memory request,
Level One users can probably use the Level
One analog. The address of the memory must
be saved for future calls, and I save the
size for convenience.

One never knows when SCF will change
its part of the static storage, so before
each call information from VCIA‘'s static
storage must be copied to P.D.‘s static
storage, and after each call information
must be copied back from P.D.‘s static
storage., to VCIA‘s.

The INIT call, and each other call,
basically changes from VCIA‘s static stor-
age to P.D.’s-and calls the appropriate
entry in P.D. *

The TERM entry is responsible for
cieaning up as the device is closec. After
calling P.D. to allow it to close down the
physical device. it frees the device static
memory that INIT allocated for P.D., and
unlinks P.D. It is worth noting that TERM
is the mirror image of INIT.

The device descriptor I use for VCIA is
called VTERM. Since SCF thinks VTERM is a
real device, its device descriptor is
important. Even the address of the port
that VTERM uses is important. If you keep
things as simple as 1 did, the 1logical
device driver will map everything including
the information from the device descriptor
directly to the physical device driver,
but, if you want to support something 1 ike
spiit screen, you will have to give each
logical terminal a different port address,
or SCF will know they all are referring to
the same device, and get in the way.

Fortunately this wvirtual driver works
with GIMIX I/0 processors. This is pure
luck because GIMIX doesn‘t publish enough
information about their driver for me to
design an interface for it. Let‘s consider
this a gentle push for Richard Don at Gimix
to release more information about his pro-
prietary software.

It should be possible to move a good
deal 1less data back and forth between
VCIA‘’s and P.D.’s static storage than I do,
but I played it safe in spite of the large
cost. It would be goot to try to find some
fields that don’t need moving so time could
be saved by not moving them.

This module demonstrates that, although
0S-9 Level One is compatible with Level Two
for user programs, it is not compatible for
system modules. This shouldn‘t be & sur-
prise, but 1t is something to be cautious
atout. In many cases all that needs to be
changed is an entry in a definitions file,
but if you try to run VCIA as it stands 1in
a Level One system, the best you can hope
for is that it will give an error code and
quit.

Column Eight 49

Debugging code in system state 1S noj
something 1 will do if I have a choice.
The debugger won‘t work on modules that
need to run in system state, and debugging
code that writes out helpful messages as a
program runs doesn’t make sense in a device
driver module. If the driver doesn’t work
what do you write to? I debugged this mod-
ule by using its return code. If you have
VCIA set carry before it returns to SCF,
the program that is trying to use it will
get the value that was in the B accumulator
when VCIA returned to SCF. This a slow way
to learn things. but it works.

One final point: it is expensive, but
otherwise impeccable technioue to pile log-
ical device on logical device. VCIA has no
way of knowing whether the device it
pelieves controls the physical device 1is
real or logical.

Microware 1is said to have an "Over the
top" debugger that can be used to debug
system software. The only person I know
thxt has looked into it says it doesn‘t
wore with version 1.2 of DS-S. It seems
Micrware now uses debugging hardware.

50 -9 User Notes Volume I

VCIA DEVICE DRIVER

nam
ttl

T e e e e e e e e o e e e e o

*
%
%
*
%
%*
*
%*
%
%
3

LI I I S I R

IFP
use
END
Type
Revs

vcia
Virtual (logical) device driver

This module should be used as a SCF (Sequential
Character File) device driver. It doesn't
drive any specific device, but, rather, calls
a physical device driver, such as ACIA, to
deal with the physical device.

Possible uses: .
Mapglng various terminals to a standard
Implementing windows.
Linking a P%A.an§ an ACIA to provide
switchable printing of terminal output

¥
*

As it stands this module is a dummy. It passes
all calls through with minimum interference.

The INIT call must set up the environment for
the device driver before passing the call on.

Read, write, getstat, and setstat can Trobably
get away with less than they do, but all
variables are magped between control blocks

to ensure that this module 1s transparent.

The TERM call must release memory allocated for
the physical driver before returning.

1 use /DO/DEFS/defslist
C/HO/DEFs/defshst

set Drivr+QObjct

set ReEnt+l

MOD Vcialen,Name,Type,Revs,Entry,MemSize

fcb Updat. Driver can be used for updated (read + write)

Name

fcb 1

fcs /VCIA/
edition number

PDNam fcs /ACIA/
o ok ok ok ok ok kot sy ek

*

org

Device static storage for this virtual driver

V.SCF room for SCF variables

PDModH rmb 2 Pointer to Physical Driver's Header
PDModE rmb 2 Pointer to Physical Driver's Entry

PDModM rmb 2 Pointer to Physical Driver's Static Memory

PDModMS rmb 2 amount of memory allocated for PD static mem

MemS

ize equ .

Spc
g********

* B
*

lock of entry points

Entry
bra Init

no
brg
nop
bra
no
brg
nop
bra
no

gaddout each entry to three bytes
ea

Write
GetStat
PutStat

lbra Term

kR

KoKk
* ad
* so
*

fefedkhhhkthk

EE IR R R O I I R R I

Init finds the driver it will use a gh¥§ical device driver,
a

and allocates and initiallizes its s
Passed: . .

U Points to static storage

Y Points to device descriptor

koot

just process number to system process
the link will be into the system address sparce.

ldd D.Proc
pshs D save A

1ic storage

Column Eight

51

1dd D.SysPrc
std D.Proc

lda #7T ge driver module tyg

leax PDNam,PCR point X he name of the P Driver
0S9 FSLink

puls D restore old process number

std D.Proc

lbcs Errorl

ldx 2,S copy address of device static store to x
stu PDModH,X save P.D.,'s Module Header address
sty PDModE,X save P.D.'s Entry address

1dd MgMem ,U memory requirement of P Driver
0S9. FSSRqMem request system Memory

lbcs Errorl

std PDHodHS X save amount of memory allocated
stu PDModM,X save pointer to memory

% oo ofe ook Kok ook stk

* At this p01nt goxnts at vcia's static storage
* U points to P. s static storage
1db #V.SCF length to move
Fofe ke Fe s ot ok
%

%

into P.D.'s static store.

bmi XMove

lda B,X

sta B,U

bra LMoveE go around loop again

XMove
uls Y but leave U in the stack
i ’I‘:“s\': FedrFodk e vk

* U points to P.D.'s static storage
Y points to the device descriptor

ldx PDModE, X L.
jsr DSInit,X do P D ainmit

tfr G,X
puls ¢
2 B
" ii N

* now X points at PD static store
: U points at vcia static store

%

bsr Mapln

puls B,PC return to SCF
spc 2

SCF needs to see any changes the yhysxcal device
driver makes to V.Paus, (or Vv

X points at P.D. static storage.
U points at vcia statxc storage.

Mapln
ldb V.Paus,X
stb V.Paus,U
1db V.Err,x
stb V.Err,U
rts
spc 2

Read
1db #DSRead
bra Common
spc 2
GetStat
1db #DS$GSta
bra (ommon
sgc 2
PutStat
1db #DSPSta
bra Common
spc
Write

52 0S-9 User Notes Volume I

Move the entire set gart of the device static storage

1db #DSWrit

#SPE *
* Code used by all entries except INIT . *
: Passed B -~ offset from P.D's entry point for this op.I
Common
shs D,U
dx PDModM,U
K e e *
* The physical device driver needs to have = x
* V.LPRC, and V.BUSY copied to it each time it is *
¥* called. .) *
¥ At this point U points at vcia static storage. *
: X points at P.D static storage. *

ldd V.LPRC,U

std V.LPRC.X

ldd V.LPRC+2,U

std V.LPRC+2.X

1dd V.LPRC+4.U Line
std V.LPRC+4.X

ldd V.LPRC+6,U Dev2
std V.LPRC+6.X

ldd V.LPRC+8.U Intr
std V.LPRC+8.X

ldd V.LPRC+1Q,u PChr
std V.LPRC+10.X

ldd V.LPRC+12.U XOn
std V.LPRC+12.X

, SPC .
R e e e e e e e it e e e e e e e e e e - — —— —— ———— ¥
* The P.D. requires Y, and A to be as they were I
* when vcia was called. A and Y haven't been *
* been disturbed. *
* U must point to P.D.'s static storage. ¥
I When Common was called,] *
> B pointed to the offset from P.D.'s entry point *
: that we should jump to. :

ldx PDModE,U
1du PDModM,U .
puls D recover offset in P.D. and A from stack
jsr B,X
sgc 2 .)
tfr U,X point X at PD static storage
puls U recover pointer to vcia static
shs B save return code
sr MapIn (X points to PD static, U points to vcia static)
puls B,PC return to SCF
spc 2
spc 2
Term
1db #DS$Term
bsr Common call PD
pshs CC,B,U CC and error # from P.D.

tfr U,X

ldu PDModM,X address of PD static storage
1dd PDModM§,X size of memory

0S9 FSSRtMem return memory

bcs Error2

ldu PDModH,X address of module header
9% J¢ 3% ¥e o ¥ e Yo o

: adjust process descriptor to system process

1dd D.Proc
shs D save D
dd D.SysPrc
std D.Proc

spc 1

0§9 FSUnlink unlink PD)
puls D recover old process descriptor
std D.Proc ancd restore it in place
bcs Error2

spe 1
puls CC,B,U,PC return to SCF
spc
Errorl
puls Y,U
rts

Column Eight

53

Error2
leas 2,S clear CC and B off stack
puls U,PC return to SCF
spe 2
£kop

Vcialen equ

use vterm
END

*

H: QS-9 User Notes Volume I

COLUMN NINE

PROTECTION

As I was working away, distracted by the
problem of choosing a topic for this
month’‘s column, I deleted a bunch of files
by mistake. Worse, I didn’t notice that I
had done myself in until minutes later --
too late to get the files back. This event
made the choice of a subject for this month
substantially easier. The first topic for
this month is file security.

Users on 0S-9 are known by a number.
If you use 0S-9 as it came off the distri-
bution disk you will be the only user and

have the user number 0. User O is special:
UNIX users would call him the superuser.
The superuser has special privileges that
enable him to circumvent the protection of
files. A1l other wusers, and, to some
extent the superuser, are separated from
disk files by 0%5-9's file protection
scheme.

If you use the DIR command with the "E"
option:

0S9: DIR E

you will get a list of the files in your
current working directory with a 1ot of
information about each file as illustrated
in Figure 2.

directory of . 19:50:32

Figure 2: Output of DIR Command

Owner Last modified attributes sector bytecount name

1 83/05/10 2234 ------wr
1 83/09/11 2351 -s--r-wr
1 83/06/11 1630 -------r
0 83/09/14 2036 d-ewrewr
1 83/08/28 1614 ----r-wr 245

4141 Columné
45BD Column8
6081 Column5
3EQ PROGRAMS
8E9 Dictionry

The information in this display that
relates to a file’'s protection are its own-
er and attributes. A1l the files in this
directory, except ,the file (a directory
file) called PROGRAMS, belong to user num-
ber 1. The type of protection given to a
file depends on the contents of the attri-
butes field.

The first position in the attributes
field is for the directory attribute.
Directory files have several special char-
acteristics, the one relating to protection
is trnat they can‘t be deleted with the DEL
command .

The second position in the attribute
field is the shareable attribute. If there
is an “s" in this position, the file can
only be accessed by one process at a time.

The next six positions in the attribute
field are two groups of three attributes
each: public execute, write and read, and
private execute write and read. If a pub-
1ic attribute is on (indicated by a letter
instead of dash in that position} then any
user can do that class of operations. If a
private attribute is on, the owner of the
file can do that class of operation.

The file called Columnd has typical
protection. itser 1, who is the owner of
the file, can read or write it, and nobody
else can do anything to it except observe
that it is there.

ColumnB8 is protected such that any user
can read the file, but only user 1 can
write to it. It also has the non-shareable-
attribute which protects it against being
accessed by more than one user at a time.
The non~-shareabtle attribute prevents things.
from getting confusing when user 1 is.
updating the file and some other user is:
reading it. by preventing that situation-

from coming about. wWhoever gets to the
file first has exclusive access to it until
he closes it. If several users want to
read a file at the same time there is usu-
ally no reason not to let them do so, prob-
lems start to appear when a user wants to
write to the file while other access it,
and things get really sticky if several
users want to update the file at the same
time. The non-shareable attribute is most
important when several users want write to
a file concurrently.

The protection of columnS demonstrates
one of the more useful applications of file
protection in a single user system. It is
impossible for anyone, even the owner of
the file, to write to it without first
changing its attributes. Since the class
of operations controlled by write protec-
tion includes writing, renaming, and delet-
ing, a file which is write protected can’t
be deleted by mistake. If 1 had write pro-
tected my files 1 wouldn‘t have been able
to delete them without thinking about it.

It would appear to be impossible to
ever delete a write protected file, but the
owner of the file can use the attr command
to change the attributes. The procedure
for deleting a write protected file is: use
the attr command to remove the write pro-
tection:

0S9: attr column5 w

Then delete the file with the normal del
command.

None of the data files in this directo-
ry have the execute attribute. They are
all text files and manifestly not executa-
ble. 0S-9 will only load a file for execu-
tion if it has the executable attribute.
The separation of the execute attribute
from the read attribute makes it possible

Column Nine 55

to create an execute-only file. It would
oe difficult for someone to copy. dump, or
disassemble an execute-only file. The

execute-only azttribute 1is a wuseful trick
for protecting proprietary software.

Echo Press carriage return to
Echo Press carriage return to
Echo Press carriage return to
TSMON /IT1&
TSMON /IT2&
TSMON /TERM

Figure 3: Sample Startup file

initiate logon >/TE M
initiate logon >/ITl
initiate logon >/IT2

A particularly sneaky problem is relat-
ed to the execute attribute. Merging exe-
cutable files together to form a file with
all the modules used by some program, or to
allow a set of popular utilities to be
lcaded compactly under Level Two, will cre-
ate a file which doesn’t have the execute
attribute. 0S-9 won‘t let you execute or
load the resulting file. It gives an error
214, “NC PERMISSION." The fix for this
problem is to use the ATTR command to give
the file the executable attribute.

If you don’t intend to have more than
one user on your computer there is no rea-
son for you to worry about user numbers.
If you want to share your computer with

other people -- either taking turns using
the computer or using 0S-9 as a multi-user
operating system -- 1t 1is a good 1idea to

have a separate user number for each person
whoO uses the computer. The best way to set
your user number is to start the TSMON pro-
cess in the startup file. The 1&st l1ine in
the startup file should be something 1ike:

TSMON /TERM

TSMON will just sit there until you type a
carriage return,. This may give you the
impression that something is wrong with the
zomputer unless you are ready for this
~tolid lack of activity. To comfort myself

2 include the 1line:

ECHO Press carriage return to

initiate logon>/TERM

before the TSMON command 1in the startup
file. It leaves directions on the screen
after I boot the system. If you are 1lucky
enough to own a system large enough to sup-
port three terminals, the seQuence of com-
mands in Figure 3 should be included in the
startup file to get everything going. It
is imoortamt to start the last TSMON as a
foreground task {no &).

The main business of TSMON is done by
the LOGIN command. The LOGIN command uses
files called password and motd which must
be in the SYS directory on the same disk
the default data directory is on (normally
/DO). The password file includes the user-
name, user-number., and, optionally. a pass-
word for each user authorized to use the
computer., It also includes a 1ot of infor-
mation used to set up the environment for
each user. The full contents of each 1ine
in the password file are:

. User Name
. Password
. User Number

56 0S-9 User Notes Volume I

. Initial priority

. Initial execution directory {usually
.)

. Initial data directory {usually .)

. Initial program to execute (usually
“shell ")

The login command prompts for a user-name,
and, if that user has a password in the
password file, for a password. If the
user-name isn’t 1in the peassword file, or
the password isn’t correct, LOGIN announces
the mistake and prompts for user name
again.

The login command protects each user
numbe~ from unauthorized use by insisting
on getting a good user-name/password match
before letting someone use a user-number.
Many different users can share a user- num-
ber, allowing them to share files in a
group. but each user-name can only be asso-
ciated with one user number.

If you find a need to change your user
number in the middle of a session with your
computer you may be able do it with the
LOGIN command. The LOGIN command can only
be used if your default data directory is
on the same disk the password file is on.
The LOGIN command needs to read the pass-
word file. If you protect the password
file against public read to keep everyone
from browsing through the passwords, nobody
but the superuser can use the LOGIN com-
mand.

The motd file contains the "message of
the day." If there is any text in motd it
will be displayed on the screen each time
anyone logs on. It can be used to display
a general greeting, or to give system sta-
tus information of general interest; e.g..
“we are running a new release of Pascal
today. "

Some tricks can be done with the "ini-
tial program® in the password file. It is
possible to specify not only the initial
program, but also a parameter string for
it. This opens up extensive possibilities.
Most operating systems allow a user to have
the commands in a file (sometimes called a
user profile or a login command file) exe-
cuted every time he logs on. If you are
willing to accept some limiiations, the
initial command can be used to do much more
than start a shell for you when you log on.

The simplest possible entry in the
password file might go something 1ike:

myname,,3,100,.,.,shell

which would set up a user called myname.
Myname would have a usernumber of 3, and
would be started with a priority of 100.
His data and execution directories would be

standard -- for most systems /DO and
/DO/CMDS. Whenever myname logs in a shell
will be stared for him.

A somewhat more demanding user can maxe
the password file do much more for him. If
the l1ine in Figure 4 is inserted in the
password file, it sets up a user with a
password of xyzzy., gives him non-standard
data and execution directories, and runs
FREE and MFREE for him before leaving him
running a shell.

fFigure 4:

Password File Entry

hisname,xyzzy,2,150,/D0O/HISDIR,/D0O/BASICX,shell free;mfree;ex shell

- The important thing is that the sequence of
commands the user wants executed must start
with the name of the program that will
interpret the rest of the line. If that
program is the shell, the last command in
that shell’s parameter string must be an ex
for whatever command you want to start the
user with.

If you want to start a user with a par-
ticularly long script of commands. perhaps
enough commands to hold him for an entire

session, use a shell command file. T he
trick is to have the initial command be
"shell" with a file name as the parameter.

If the file 1isn‘t in the default data
directory its full path-name must be speci-
fied. A sample password file entry mignt
go like:

hername,wltrs,5,130,.,.,
shell her.cmd.file ; ex shell

In this case the file “her.cmd.file" must
be in the system default data directory.
The command file invoked at login is just

like any other shell command file. The
important restriction to remember is that
the shell command file is run by a differ-
ent shell from the one that the user will

be using when the command file is finished.
If you change the directories in the com-

mand file, those changes will effect only
the shell running the commands, not the
shell that will be running after the com-

mand file is done.

THE "SUSPEND STATE"

Microware has added a nifty performance
enhancement to the latest version of 0S-S.
They discovered that device drivers were
spending a significant amount of time using
the FSSEND service request (SR) to communi-
cate between the interrupt service routine
for the port and the rest of the device
driver, In order to understand why the
send was done you need some background in
the way the D0S-9 SCF device drivers work.
The simplest way to write a device driver
is to read and write to the port directly
from the read and write entries of the
driver, but this requires that the driver
go 1into a wait loop while the interface
chip is performing the operation. A wait
loop isn‘t a bad thing if the processor has
nothing to do until the I1/0 is complete,
but, in an environment 1ike 0S-9, there are
likely to be several tasks waiting to get
done. The *right" way to write a device
driver under 0S-9 is to have the actual 1/0
done by an interrupt service routine, and
have the read and write entries of the
device driver share queues with the inter-

rupt routine.

A character to be written goes to the
write entry of the device driver which puts
the character into the write queue if there
is space for it, or goes to sleep if there
isn‘t. The interface chip should be set to
generate an interrupt whenever it is ready
to write another character. The interrupt
service routine will be started every time
an interrupt is received from the port it
is responsible for. If the interrupt was
an output interrupt, thé interrupt service
routine will take & character out of the
output queue and send it to the port. 1f
the device driver is sleeping, waiting for
an empty slot in the queue to appear, the
interrupt service routine should send it a
wakeup signal.

The procedure for reading a character
is roughly the reverse of that for writing.
The queue for input goes from the interrupt
routine to the read entry and the device
driver sleeps 1if a read is done when the
queue is empty.

A1l this sending from the interrupt
service routine to the driver is expensive.
A new system state called the “Suspend
State” was invented to keep device drivers
from having to use F$SEND requests to start
and stop 11ts read and write operations.
The *"suspend state" is a 1ot like a 1light
nap. The process 1is in the grey area
between sleep and activity. Suspended pro-
cesses remain in the active process queue
where they quickly age to the top of the
queue, but while the suspend bit is on in
their process descriptor they can’‘t be
scheduled. To wake a suspended process up
just turn the suspend bit off in its pro-
cess descriptor, The following code would
wake a suspended process from the interrupt
routine of a driver:

ldx (Address of Frocess
descriptor for the process
ou want to awaken)
lda #255-Suspend
anda PSState,X
sta PSState,X

This sequence of instructions can be done a
great deal faster than a F$SEND.

A process can suspend itself by turning
the suspend bit in its process descriptor
on, then sleeping for & tick. The sieep 1s
just & way of giving up the rest of the
time slice. Even without the F$Sleep, next
time the dispatcher sees the suspended pro-
cess descriptor it will treat it as sus-
pended, and won’t start it again until the
suspend bit is turned off.

Column Nine 57

There are & few important limitations
to the suspend state. The first is that a
process can‘t get out of suspend state on
its own. The second limitation is that the
suspend bit is in the process descriptor
which 1is the in the system address space.
A non-system process has no easy way of

58 &9 User Notes Volume I

directly modifying the process descriptor.
The 1last 1limitation {8 implicit 1in the
advantage of suspend State, suspended pro-
cesses stay in the active process Queue.
They will slow the dispatcher down slightly
because it will have to pass over them each
time it looks for the next process to run,

COLUMN TEN

MORE ABOUT COMPUTERS AT SCHOOL

I had my first chance to look through a
microscope when I was very young. My sis-
ter was deeply ingrossed in the microscopic
world so I, being a typical younger broth-
er, hung around and made a pest of myself
until she showed me what she was working
on. I couldrn‘t see anything but a blur
which sometimes faded out altogether. I
didn’t see much point 1n looking at a blur.
As years went by 1 was given my own micro-
scope, but chemistry sets. and my own
experiments, were much more interesting. I
still had trouble getting interested 1in
blurs.

In ninth grade 1 encountered a real
microscope for the first time. It was a
fine old instrument. The teacher treated
it with- great respect, and insisted that we
do the same. when I first used it I got a
surprise that stays with me to this day.
It was nothing 1ike the microscopes 1 had
used before, focusing jt with the fine
adjustment knob was no problem, and when
something was in focus, even a single cell
or a bacterium, it was very clear. 1 could
have happily spent weeks peering through
the eyepiece at everything 1 could fit on
the stage. Eventually the class moved on
to other things, but I had a new apprecia-
tion for the world of the very small.

It is unfair to blame my parents for
not getting me & high quality microscope
when I was eight, but it bothers me to
think of what I missed. I was fascinated
by what the microscope revealed when I was
a teenager. The effect would have been
even stronger if I had been younger.

My experience with the microscope is
what makes me keep complaining about the
tendency of schools to use the lowest qual-
ity hardware and software they can find.
The younger the students, the lower the
quality. The argument is that sophisticat-
ed hardware and software isn‘t needed for
any but the most advanced students. This
iS a serious error. with computers "fool-
proof" means either trivial, or very
sophisticated. It regquires good hardware,
and excellent software to deal satisfacto-
rily with the worst a child can do. The
kids at most schools are getting the same
kind of experience with computers I got
with my early microscope only a blurry
image of what it should be.

The section of a column I wrote a few
months ago about computers for schools has
drawn more comment than any other column 1
have written, maybe more than all of them
put together. Some people wrote to agree,
others disagreed. I was glad to hear from
those who agreed with me, but I was most
interested in the letters from people who
took issue with one or more of my points.
Two of my points drew particularly heavy
criticism. I calculated the price of an
imaginary (but realistic)} single-user com-
puter. Several people thought an adequate
computer could be purchased for less than I
suggested. 1 also spent some time wishing
schools would stop using Basic. It didn‘t
surprise me that several readers felt Basic
was a fine 1anguage.

The little story about the microscope
was intended to address the question: “why
bother to provide decent computers at
schoo'!?" Students should be given a chance
to use a computer that they don‘t have to
struggle with, and & 1language that encour-

ages clear thinking. Kids don‘t know
enough to complain about Basic on the
cheapest computer that can be found. I do.

so I am complaining for them.

There were about five more paragraphs
here about Basic, and the evils of skimping
on computers for children,. but while re-
reading the cplumn-I .gdecidad .toat I -sounded
a bit shrill: ~ Please forgive the abrupt
transition, but the smooth conclusion of
this argument has been pruned with a quick
block-delete.

PIPES

One of the most useful features of 0S-9
(and UNIX) 1is the pipe. Pipes by them-
selves aren’'t good for much, but if you
build a good set of "software tools," pipes
make many tasks surprisingly easy.

A pipe is a special device which forms
a connection between two programs such that
the oOutput from one 1is directed into the
input of the other. The shell is & major
user of pipes. You can ask the shell to
connect the standard output of one program
to the standard input of another by putting
an exclamation point *!" between the com-
mands. The "!" separates commands 1ike the
";" and "8* do, but it also redirects the
output of the command before it into the
input of the command after it. You could
get the same effect by using intermediate
files (Have the first command save its out-
put into a disk file. when the first com-
mand ends, run the second command with its
input coming from the file the first com-
mand wrote.), but intermediate files are
neither as fast nor as easy to use as
pipes.

when you first start using 0S-S. pipes
won’t be of much use to you. For one thing
they are a bit confusing, but, more impor-
tant, the standard 0S-9 utilities don’t
include many filters.

A filter {is a program which reads from
the standard input file and writes to the
standard output file until end of file on
standard input. They can be used without
pipes, bui, in combiynation with pipes, a
good toolbox of filters can be among the
most useful facilities available under
0S~9.

The most elementary filter would simply
copy bytes from standard input to standard
output. More advanced filters change data
on 1ts way through. Some common filters
sort the data, break it into words., remove
duplicate 1l1ines, count bytes, words, and
lines, and translate upper case letters to
lower cCase.

It is relatively easy to write special
filters to solve problems one at a time.
The trick 1s to write filters which, in
combination with others, can do 1lots of
useful things. I have a filter which 1

Column Ten 59

call "words" (available from the 0%-8 Users
byroup. but too long for this column) which
Dreaks the input up into one word per line.
I wrote another program which counts the
number of <CR>s in the input and writes
that number out when the end of the input
is reached. I can hook those two programs
together with a pipe to form a command 1ine
that counts the words in a file:

0S9: words <columnlO ! linect

That command line feeds columni0 into words
which slices it up, one word per line. The
output of words is fed into the standard
input of 1inect which responds by giving me
the number of 1lines in its input ~-- the
number of words in columniO. I can use
linect by itself to find the number of
lines in a file.

I have written other filters cailed
sort and unia. Sort sorts the standard
input into the output. Uniq removes dupli-
cate l1ines; for example:

Line One
Junk Line
Junk Line
Junk Line
Another line

would come out of Uniq

Line One
Junk Line
Another line

The commapd line:
0S9: words <collO ! sort ! uniq

would break columni0 into words, sort the
list. remove duplicate lines, and give me a
sorted l1ist of the words I used in that
column.

Since 1 have written a number of pro-
grams 1in assembler and BasicO9 for this
column, I thought I might include a few
filters written in Pascal this month.
infortunately old releases of 0S$-9 had a
*law 1in PIPEMAN which prevented it from
«Orking with Pascal programs. Pascal
“ewinds its standard input file when it
zrarts. PIPEMAN wouldn’t put up with a
‘ewind with the upshot that filters written
:n Pascal couldn’t even get started. The
easiest language I know for writing filters
is C, but since C isn‘t as widely used as
assembler and BasicO9, I‘11 include two
filters, Bword in BasicO9, and CharCt in
assembler.

Both BWord and LineCt are crude pro-
grams. They are nowhere near as efficient
as they can be. In particular, reading one
character at a time is intensely bad prac-
tice under 05-9. Both of these programs
could be generalized by using command
parameters more extensively.

CharCt counts the number of occurrences
of the first character in the command 1ine
parameter area in the standard inpu: file.
It could be generalized to look for cnarac-
ter strings, or regular expressiors. It
might also be improved by using more than
three bytes for the counter.

The shell always places at least & car-

60 0S-9 User Notes Volume 1

riage return in the parameter area passed
to a program it starts {(FORKs). Char(t
relies on this to give it an easy way to
defauit to counting carriage returns in its
input. If you want to count some other

character use it as a parameter on the com-
mand line:

0S9: charct . <testfile
would count periods in testfile.

0S9: charct <testfile
would count carriage returns in testfile.

BwWord splits the input file into lines,
ore word per 1ine. A word is defined as a
string of characters between spaces, tabs,
or carriage returns. It wouid be more gen-
erally useful if it would define a word as
a string of characters delimited by any
given set of characters. One use of this
that comes to mind is to divide a file into
sentences by breaking it at each period.

BWords should be entered with BasicO8,
and packed. If you nave RUNB you can run
words with a command line |1ke:

0S9: words <testfile

which will divide the text in testfile into
words. If you don’t have RUNB you might
need to use a somewhat longer command 1ine:

0S9: basic0? words <testfile

It is easy to spend & great deal of
effort writing filters you will never use.
wWhat is needed is a set of general purpose
tools. There are several sources for good
ideas for filters. Books about UNIX often
give descriptions of filters which are com-
monly used under UNIX. In general, if a
concept is useful for UNIX it will also be
for 0S-8. The standard programming book,
Software Tools, by Kernighan and Plauger,
is an especially good source for ideas and
algorithms.

A MORE ADVANCED APPROACH TO
PIPES

The Shell uses pipes to connect strings of
its children together. Any program that
has access to 0S-9 system calls can use the
same trick the shell uses to make the stan-
dard output of one of its children feed
directly into the standard input of
another, but it is simpler to use pipes as
a connection between a process and its
parent. If you need a formatted 1ist of
processes (the 1informatior given by the
procs command) you can either mess with the
process descriptors yourself, or use a pipe
to intercept the output from procs.

If your algorithm can be divided into
several sections that communicate in only
one direction (Say. one section collects
information, the second sorts it, and the
third formats a report.), the job can easi-
ly be done by three separate processes dif-
patched from the command 1line with the
shell managing the pipes. If the steps
aren‘t fixed (Perhaps you either report or
update a file depending on the date.), it
might be easier to deal with the pipes

yourself. This type of thing requires
pipes to be defined for each new process’s
standard input path.

Using a pipe as the
path from a child process is useful for
more than intercepting the output from sys-
tem wutilities. The first experiments to
try with this mechanism are with system
utilities, but the most interesting appli-
cations are with processes designed espe-
cially for this use. An example might be a
program which uses a process attached via a
pipe to get data from a remote computer.
The process at the end of the pipe would
dial the remote computer up, go through the
logon formalities, and deal with any commu-
nication protocols. The main process would
just read distilled information from the
pipe.

standard output

A1l three standard paths can be used
for pipes. I haven’t thought of a use for
all three paths, but a combination of input
and output paths is useful. The child pro-

cess is given work to do through its stan-
dard input path and returns the results of
its work through 1its standard, or error,
output path. The parent process gives the
child work through one pipe and at an
appropriate time (maybe much later) gets
the results by reading from a different
pipe.

A FORKed process inherits the three
standard paths of its parent. If it were

OK to give up after setting up pipes, the
way to set them up would be to close the
standard files, and create three pipes. one
each for path one, two and three. The
instructions to open a pipe in the standard
input path would be:

Pipe fcs "/PIPE"
lda #0 std in
0S9 ISCLOSE
leax Pipe, PCR
lda #UPDATE,
0S9 ISOPEN

New paths always take the
path number

lowest available
so the pipe would fall into

path zero. A process forked from this pro-
cess would inherit its standard paths
including the pipe 1in path 2zero. The new

process would treat its path O as a normal
standard input path. Characters written
into the pipe by the parent would be read
by the child.

If a pipe is opened with no process
FORKed to use it, the pipe will act like a
queue. A process can write a limited num-

ber of bytes into the pipe and read them
out again in the same order they were writ-
ten. If there isn‘t room in the queue for
the data from a write to be stored the pro-
cess doing the write will be put to sleep
until there is space to complete the write.
I1f the process that reads from the pipe is
the same one that 1s sleeping until the
queue empties a little there is a deadlock.
A deadlock can only be avoided, or broken
by some outside agency the human at the
terminal for instance. Because of this
deadlock problem, and the small size of the
queue in the pipe. the idea of using a pipe
as a queue is only a novelty.

The example of communications via pipes
that I have invented is a BasicOS8 program

that prompts for pairs of coordinates, and
passes the pairs to a C program which
"rasterizes" the 1ines between the points
defined by the coordinates. The BasicOS
program passes as many pairs as i1t 1ikes to
the C program, then closes the path it has
been writing the data to. when the parent
closes his end of the pipe the child will
get an end-of~file. The C program sends
the rasterized data back through its stan-
dard output path. This data consists of a
string of 2zeros and ones indicating where
dots should be placed on each horizontal
line in order to draw the vectors received
as input.

Rasterizing vector graphics information
is a particularly good application for a
separate process. In a Level Two system
each process can use an entire address
space of almost 64K, The size and resolu-
tion of the graph that 1s produced depends
on the amount of memory available for the
bit map of the graph. I have a version of
rast that uses 46K for its bit map and can
generate an 8"X8" graph on my Okidata at 72
dots per inch. I am not very experienced
with graphics; there is probably a much
better way to rasterize data than what I
used. My program seems tooc complicated for
such a simple task, but it works.

It is particularly

important to keep

track of interactions between two processes
communicating via pipes. If the processes
ever get into a situation where both are

waiting for input from a pipe leading to
the other process, they will be stuck until
you free them by killing one of the pro-
cesses.

The 1important part of this system of
programs is an assembly 1anguage subroutine
for the EBasicO9 program. The subroutine is
descended from the StrtTask subroutine I
published months ago, but has been enhanced
to open pipes to the new process. The
I$DUP call is used to preserve the standard
input and output files of the BasicO9 pro-

gram while paths zero and one are turned
into paths then back into whatever they
were before.

Installation

This system of programs is written in three

separate languages. If you don’t have C it
should be fairly easy to translate rast
into BasicO89, but if you rewrite rast in
BasicO9 be certain that you don’'t try to

fork it directly. BasicO89 shouid be the
program you fork; rast should be the param-
eter. If you want to keep the old StrtTask

around, rename either 1t
Grapher should be typed into Basic0O8 and
saved. Particularly if you are using Level
One, you should pack Grapher and use RunB
to save memory. In Summary:

or the new one.

. Enter StrtTask and rast.c using an
edi tor

] Assemble Sti"tTask

. Compile rast.c

. Enter Grapher using BasicO9

] Save the source

Column Ten 61

-

. If you intend to run Grapher from the
command line add the)line: BYE to the
end of Grapher and Pack Grapher

3 Run Grapher which will load StrtTask
and rast from the execution directory

Operation and Modification

Grapher will prompt for pairs of coordi-
nates. After each pair is entered it will
ask you to verify that you want to plot
that 1ine. Be careful with this. There is
no validation in any part of this system.
There 1is no reason it shouldn’t be there
either. Please add enough error checking
to make you comfortable if you intend to do
more than play with this program a little.
If you try to draw a line way off into the
wild blue yonder your computer will give it
a good try, mashing everything in its way.
After you enter the last pair of coordi-
nates respond to the {y,n,d) prompt with D.
The D response sends the last pair to rast
and charts the response from rast on the
screen,] 1ike to draw conservative pat-
terns like the one given by the imput in
figure Figure 5.

0 079 23

0 23 79 0

000 23

00790

011 79 11

39 0 39 23

Figure 5: Sample Input for rast

program

Rast is set up to rasterize a 80 by 24
graph. That is the size of a standard ter-
minal, but if you want to deal with larger
or smaller graphs, change VDIMENSION to the
number of vertical dots in the graph, and
HDIMENSION to the number of horizontal
dots.

Pipes are a powerful tool for interpro-
cess communications. They can be used with
good effect to solve almost any interpro-
cess communication probitem i{f the connec-
tion can be made. The worst problem with
pipes is that they can only be used between
processes that are very closely related
{between siblings, or parent/child}. There
is also a performance problem under Leve}
Two; not only is there the cost of a system
request per transfer, but 05-9 has to move
the characters from one address space to
another -- taking a surprising length of
Time. If you feel ambitious you will find
‘mat it is possible tO©0 make a major per-
ormance improvement to rast by using a
compression algorithm on its outbut.

62 0S-9 User Notes Volume 1

WELCOME COCO

I have been reading messages in the COCO
special interest group on Compuserve. It
sounds)ike Microware put a real version of
0S-9 on that little machine. 1 am serious-
ly impressed with the reality of a very
inexpensive computer with a UNIX-1ike, mul-
titasking, even -- if I may stretch a point
-~ multi-user ooerating system. There may
be a number of interesting ways to inte-
grate COCOs with each other and with larger
0S-9 systems to get a bargain version of
advanced distributed computing. It may not
be too much to hope for that Tandy wil)
find a way to put 0S-9 Level Two on some
descendant of the COCO. There is some
chance that I will be able to take the
viewpoint of a COCO user in this column in
the future. I haven‘t made up my mind yet,
but I need a Level One system. and the Col-
or Computer may be the way to get one. 1
would appreciate advice.

THE USERS GROUP

The executive committee of the 0S-9 Users,
Group has met twice since the annual meet-
ing (I am writing this in November}. we
have struggled with various issues and
defineg assorted policies, mostly rather

duil. Very likely by the time this column
is printec¢ the members will have received a
newsletter, and everyone will have seen

information in this and other magazines.
Right now our software library is ready to
go. I know it has good stuff in it; sever-
al programs of mine are part of the collec-
tion. Our plan 1is to give a standard
selection of software from the 1ibrary to
the existing membership and to eacCch new
member. The other programs in the 1ibrary
will be available for small amounts of mon-
ey, or software contributions. The address
of the Users Group is:

0S-9 Users Group

PO Box 8027

Des Moines, lowa

50301

BWORD

PROCEDURE bword .

* Filter to divide input into words. One word per

0000
0036

(e enT e Yau)

000NN NN DN O

[alelelolelelelelelelelololelolelelelolelolelelo) o)
r—lb—di—‘HHHHHP‘HHHD—IHD—‘HF—'D—‘HHHHD—‘HHD—‘
oONOW e > 00O
gggggqmumawmcmmmuouwuwcqmumooo

s

100

* line.
*

DIM chr:BYTE

DIM inword:BOOLEAN

DIM Std0ut,StdIn,StdErr:INTEGER
ON ERROR GOTO 100

Stdin=0

StdOut=1

StdErr=2

inword=FALSE

LOOP
GET #Stdin, chr
IF inword THEN
IF chr=ASC(" ') OR chr=9 OR chr=13 THEN
inword=FALSE
WRITE #StdOut

LSE
PRINT #StdOut,CHRS (chr);
ENDIF
ELSE
IF chr=ASC(" ") OR chr=9 OR chr=13 THEN
ELSE
inword=TRUE
PRINT #StdOut,CHRS(chr);
ENDIF
ENDIF
ENDLOOP
BYE
REM end of file handler
DIM errnum:INTEGER
errnum=ERR
IF errnum=211 THEN
BYE
ELSE
ON ERROR
gRéNT #StdErr,"Error Number: "; errnum
Y
ENDIF

Column Ten

63

CHARCT

Microware 0S-9 Assembler 2.1 11/08/83 22:55:20 Page 001
CharCt - Count a occurances of a specified character

00001 NAM CharCt

8888% N TTL Count a occurances of a speC1f1ed character
00004 * CharCt Written 1 November 83 *
00005 * Last Modified 5 November 83 *
00006 * A filter to count occurances of an speC1f1ed*
00007 * character in the standard input. If no ,
00008 * character is specified, default to counting *
00009 * carriage returns. *
00010 B ittt *
00011 IFP]

00013 ENDC

00014 0011 Type set Prgrm+Objct

00015 0081 Revs set ReEnt+l

00016 0000 87CD009A MOD gmlen,CharCt,Type,Revs,Entry,Memsize
00017 D 0000 Count rmb 5 stored in BCD
00018 D 0003 InChr rmb 1

00019 D 0004 TstChr rmb 1

00020 D 0005 OutStr rmb 6

00021 D 000B CR rmb 1 for a CR

00022 D 000C) rmb 200 Stack

00023 D 00D4 Memsize equ .

00024 000D 43686172 CharCt fcs /CharCt/

00025 0013 01 fcb 1 version .
00026 K e *
00027 * At entry: *
00028 * U and DP point at local storage. *
00029 * X points at the parameter area. *
00030 Femmmmmm e e *
00031 0014 Entry

00032 0014 OFO0O clr Count

00033 0016 OFO1 clr Count+]

00034 0018 OF02 clr Count+2

00035 00l1A Aé684 lda , X

00036 001C 9704 sta TstChr

00037 001E 3043 leax InChr,U

00038 0020 108E0001 ldy #1 characters to read
00039 0024 Loop

00040 0024 8600 lda ?0 std in

00041 0026 103F89 0s9 SREAD

00042 0029 251E bcs Quit

00043 002B D603 1db InChr

00044 002D D104 cmpb TstChr

00045 O002F 26F3 bne Loop

00046 ettt *
00047 * Increment Count

00048 K e *
00049 0031 8601 lda gl

00050 0033 9B02 adda Count+2

00051 0035 19 daa

00052 0036 9702 sta Count-+2

00053 0038 8600 lda 0

00054 003A 9901 adca Count+l

00055 003c 19 daa

00056 003D 9701 sta Count+l

64 0S-9 User Notes Volume I

Microware 0S-9 Assembler 2.1 11/08/83 22:55:28 Page 002
CharCt - Count a occurances of a specified character

00057 003F 8600 1da #0

00058 0041 9900 adca Count

00059 0043 19 daa

00060 0044 9700 sta Count

00061 0046 4F clra std in

00062 0047 20DB bra Loop

00063 K e e e e *

00064 % I1f we reached EOF print the total count and *

00065 * o exit., *

00066 * If some other caused us to stop. Return *

00067 * with an error code. *

00068 * *

00069 0049 Quit

00070 0049 C1D3 cmpb #ESEQOF

00071 004B 2636 bne x1t

00072 004D 3045 leax OutStr,U

00073 004F 9600 lda Count

00074 0051 8D33 bsr Cnvt

00075 0053 9601 lda Count+l

00076 0055 8D2F bsr Cnvt

00077 0057 9602 lda Count+2

00078 0059 8D2B bsr Cnvt

00079 0058 3045 leax OutStr,U

00080 005D 9604a lda QutStr+5 mark last position in OutStr
00081 OO3F 8A80 ora 580 set carry bit

00082 0061 970A sta OQutStr+5

00083 0063 108E0007 1dy #7 length

00084 0067 8630 1da '0

00085 0069 FndLen

00086 0069 Al84 cmpa LX

00087 006B 2606 bne OutPut

00088 006D 313F leay -1,Y decrease length

00089 006F 3001 leax 1,X

00090 0071 20F6 bra FndlLen

00091 0073 OutPut

00092 0073 860D lda g$0D <CR>

00093 0075 970B sta R

00094 0077 960a lda QutStr+5)
00095 0079 847F anda #S7F clear the carry bit out
888%9 007B 9704 sta utStr+5

00098 007D 8601 lda #1 std out

00099 007F 103F8C 0s9 SWRITLN .

00100 0082 SF . clrd clean up for exit
00101 0083 Exit)

00102 0083 103F06 0S9 FSExit

00103 0086 Cnvt

00104 0086 1F89 tfr A,B .
00105 0088 44 lsra shift the high order nible into low
00106 0089 44 lsra

00107 0084 44 lsra

00108 008B 44 lsra o
00109 008C 8R30 adda #'0 convert to ASCII digit
00110 OO8E A780 sta X+

00111 0090 C4OF andb %§0F remove high order nyble
00112 0092 CB30 addb #'0 convert to ASCII digit
00113 0094 E780 stb , X+

00114 0096 39 rts

D0115 0097 A1D953 EMOD

00116 009A Pgmlen equ *

Column Ten 65

GRAPHER
PROC%DURE Grapher

66

100

DI rocess No Comp Code,Opt_Size,Lang Type:BYTE
DIM Parm_ L:TINTEGER

DIM InPipe, OUEP pe:BYTE

DIM ch:STRIN T

DIM YN:STRING

DIM x1,yl1,x2, §2 INTEGER

DIM name:STRING

DIM Parms:STRING[20]

___ X
* Set up to call StrtTask which will fork the named *
: module, passing it the parameter string in Parms. i

name=""rast"
rocess No=0
pt_Size=0
Lang_Type=$11 \(* attributes of forked module (object code, program)
Parms= '+CHRS (1 g

Parm L=LEN(Parms) \(* The length of the parameters must be correct

e e e e e e e e . e - — — — — — — — —————— T — — — ———— — — — T

process *

RUN StrtTask (name, process_No,Lang_ Type,Parm_L,Parms,Opt_Size
. InP1pe*0utP1pe)
* Write data for '"rast" into path #InPipe which *
i corresponds to the standard input path for rast :

PRINT "Enter the end€01nts of lines you want drawn. X jmust be in"

PRINT "the range must be in the range 0..23."
LOOP

INPUT "Enter X Y coordinates for the ends of a line: ",6xl

'Y
PRIN?,"The line will be drawn between ("; x1; " yl “)'g nd ("”)"
INPUT "OK ? (Yes,No,Done): ",YN
YN=LEFTS (YN, 1)
I R Y THEN 2y
nPipe, , X x
ENDIF P y y
EXITIF YN="d" OR YN="D" THEN
PRINT #1nPipe,"1",x1,yl,x2,y2
ENDEXIT
ENDLOOP
ON ERROR GOTO 100
CLOSE #InPipe .
——— - - — — - o~ D
" When #InPipe is closed rast will get an end-of-file *
i on its standard input path. :
LOQP
K e e e e e e e e *
* Read from #OutPipe (which corresponds to rast's standard *
* output until end-of-file on that path, The end-of-file *
* indicates that the other end of the pipe has been closed *
i (in this case rast has ended). :
GET #0utPipe,ch
IF ch="0" ? HEN
PRINT " '
ELSE
PUT #1,ch
ENDIF
ENDLOOP
ON ERROR
CLOSE #0OutPi
RUN Na1tTask%process No,Comp_Code)
IF Comp Code<>0Q THEN
PRINT "Completion code for '"; name; " # "; process No; " was "
~ ;} Comp_Code
ENDIF -

0S-9 User Notes Volume I

STRTTASK

Microware 0S-9 Assembler 2.1 11/08/83 23:33:26 Page 001
StrtTask - Start a subtask (called from Basic09)

00001 ttl Start a subtask (called from Basic09)

00002 nam StrtTask

00003 ettt o -—- -—-%*

00004 * StrtTask is a subroutine for Basic09. *

00005 * Start a named module as a subtask. *

00006 * Let the new task run asynchronously, *

00007 * Open nges to the modules standard in and standard*

00008 * out paths. *

00009 * Return the new tasks process number, the path *

00010 * numbers for the pipes, and the condition code *

00011 * from the Fork. *

00012 * Calling sequence: *

00013 * run StrtTask (Name, Process Num, Lang Type, *

00014 * Param L, Param, Opt sizg *

00015 * _ InPipeN, OutPipeN) T . *

00016 * Name is any length, but has a valid terminator *

888%3 * (high bit set on last byte, or delimiter after it):

888%8 : {roce%s_Nug Eytg_figldi proces7tnumbgrtoffnew task.:
an e e field, language e e for

00021 * fo%Kegpmodzle. grage/type By *

00022 * Param_L, integer field, length of parameter area. *

00023 * Param field of any type, parameter area to be *

00024 * passed to forked process. . . =

00025 * Opt Size byte field, optional data area size in *

00026 * pages. *

00027 * InPipeN, integer field, path number *

00028 * OutPipeN, integer field, path number *

00029 * Process_Num, InPipeN, OutPipeN, and Return_Code *

00030 * are altered by StrtTask, no other parameters are. *

00031 Koo - ittt *

0003% IFP]

00034 Kekkokksk ENDC

00036 * Offsets to arguments

00037 *

00038 0002 ACount equ 2

00039 0004 ModuleN equ 4

00040 0008 ProcNum equ 8

00041 000C ModType equ 12

00042 0010 Parmlen equ 16

00043 0014 Parms equ 20

00044 0018 MDatSize equ 24

00045 001C InPipeN equ 28

00046 0020 OutPipeN equ 32

00048 0021 Type set SBRTN+OBICT

00049 0081 Revs set REENT+1

00050 0000 Stdln equ O

00051 0001 StdOut equ 1

00052 0000 87CDOOB1 mod TLen,StrtTask,Type,Revs,SEntry,0

00053 000D 53747274 StrtTask fcs (StrtTask/

00054 0015 2F504950 Pipe fcs '/PIPE” .

00055 0014 01 fcb 1 version

00056 001B SEntry

00057 001B EC62 ACount,S get param count

00058 001D 10830008 cmpd #8 are ghere 8 params?

8882% 0021 £0260083 lbne adExit no; leave now. N

00061 * Set up Pipes for StdIn and StdOut. *

00062 * The procedure is: *

00063 * Dup the stdin and stdout paths to save them. *

00064 * Close stdin and stdout. *

00065 * Open /PIPE twice. One will be path O the next*

00066 * path 1. *

00067 * Fork the new process.

00068 At - *

00069 * Offsets from S for local storage

00070 0000 DStdIn equ

00071 0001 DStdOut equ 1

00072 0002 LocalSiz equ 2

00073 *

Column Ten 67

Microware 0S-9 Assembler 2.1 11/08/83 23:33:36 Page 002
StrtTask - Start a subtask (called from Basic(9)

0074 0025 327E leas -LocalSiz,S make space for temp storage

40075 0027 8600 lda StdIn

20076 0029 103F82 0S9 $Dup Dup Stdin

0077 002C 257D bcs BadExit2

00078 002E A7E4 sta DStdIn,S

00079 0030 8601 lda {StdOut

00080 0032 103F82 0S9 $Dup Dup StdOut

00081 0035 2574 bes BadExit2

00082 0037 A761 sta DStdOut,S

00083

00084 0039 8600 lda {StdIn

00085 003B 103F8F 0S89 $Close Close StdIn

00086 003E 256B bes BadExit2

00087 0040 8601 lda #StdOut

00088 0042 103F8F 0S9 ISClose Close StdOut

88888 0045 2564 bes BadExit2

00091 0047 308DFFCA leax Pipe,PCR

00092 004B 8603 lda FUPDAT.

00093 004D 103F84 0S9 SOEeQ Open a pipe in path 0

00094 0050 2559 . bes BadExit2

00095 * This will be path 0

00096 .

00097 0052 308DFFBF leax Pipe,PCR

00098 0056 8603 lda #UPDAT.

00099 0058 103F84 0S9 IS0pen Open a pipe in path 1

00100 O005B 254E bes BadExit2

00101 * This will be path 1

00102 005D 103F82 0S9 ISDup Dup it

00103 0060 2549 bes ?adExitZ

88%82 0062 A7F822 sta LocalSiz+OutPipeN,S5]

00106 0065 8600 lda #StdIn]

00107 0067 103F82 0S9 ISDup. Dup it

00108 006A 253F bes BadExit2

88%(1)8 006C A7F81E sta [LocalSiz+InPipeN,S]

00111 006F AE66 ldx ocalSiz+ModuleN,S address of module name

00112 0071 10AEF812 ldy LocalSiz+ParmLen,ST length of parameters

00113 0075 A6F80E lda LocalSiz+ModType,S] type of module to invoke

00114 0078 E6F81A 1db LocalSiz+MDatSize,S] optional data area size

00115 007B EEE816 ldu LocalSiz+Parms,S ointer to parameters

00116 007E 103F03 0S9 FSFork start the new process

00117 0081 2528 bcs %adExth

8@1%8 0083 Q?FSOA sta LocalSiz+ProcNum,S] save new process number
L it g

Gc120 * Restore the original stdin and stdout files to *

00121 * paths 0 and 1. *

00122 K e -- *

00123 0086 8600 lda Stdin Close StdIn and StdOut

00124 0088 103F8F 0S9 SClose

00125 008B 8601 lda }StdOut

00126 008D 103F8F 0Ss9 S$Close

00127 0090 AG6E4 lda DStdIn,S path number of duped stdin

00128 0092 103r82 0S9 1%Du dup it into path

00129 0095 A6E4 lda DStdln,S

00130 0097 103F8F 0S9 ISClose and close it

00131 009A A661 lda DStdOut,S path number of duped stdout

00132 009C 103F82 0s9 IS$Du dup it into path

00133 009F A661 lda DStdout,S]

00134 00Al 103F8F 0S9 ISClose and close it

00135 00A4 3262 leas LocalSiz,S clear stack

00136 00A6 SF clrb clear carry

00137 0047 39 rts return

68 0S-9 User Notes Volume I

Microware 05-9 Assembler 2.1 11/08/83 23:33:45
StrtTask - Start a subtask (called from Basic09

Page 003

00138 00A8 BadExit

00139 0048 43 coma set carry

00140 00A9 327E . leas -~LocalSiz,S dummy push

00141 00AB BadExit2)

00142 00AB 3262 leas LocalSiz,S clear stack

00143 00AD 39 rts return

00144 O00AE 239951 EMOD

00145 00B! TLen equ ¥

00146 ttl Wait for a (child) process to complete
00147 nam WaitTask

00148 A -—- - ————== %*
00149 * WaitTask is a subroutine for Basic09 *
00150 * HWait for the a child process to complete. *
00151 * Return the process ID of the process that completed™
00152 * in parameter one. *
00153 * Return the competion code of the process *
00154 ¥ in parameter two. *
00155 * This subroutine will wait using no CPU time until *
00156 ¥ a child‘frocess completes. *
00157 * If a child cgmfleted just before WaitTask was *
00158 * called, it will return almost immediatly. *
00159 * If there are no children, an error will be returned®
00160 * with a process number of 0 *
00161 * . Calling sequence: *
00162 * RUN WaitTask (Process No, Comp_Code) . *
88%22 : both process_no and Comp_Code aTe BYTE variables. :
00165 0021 Type set SBRTN+0OBJCT

00166 0081 Revs set REENT+1

00167 0000 87€D0032 mod WLen,WaitTask,Type,Revs,WEntry,0
00168 000D 57616974 WaitTask fcs /WaitTask/ o

00169 0015 01 fcb 1 edition

00170 0016 WEntry

00171 0016 6FF804 clr [4,S] zero the process ID
00172 0019 EC62 ldd 2,S param count

00173 001B 10830002 cmpd ti . 1f not exactly 2 params then
00174 00Q1F 260C bne BExit2 the caller is making a bad mistake
00175 0021 103F04 059 FSWait wait for a child
00176 0024 2508 bes BExjt

00177 0026 A7F804 sta Q,SI return the process ID
00178 0029 E7F808 stb 8,S return the completion code
00179 002C 39 . rts return

00180 002D WBExit2

00181 002D 43 coma set carry

00182 002E WBExit

00183 002E 39 rts return

00184 002F 4C34C4 ENMOD

00185 0032 WLen equ

00186 end

00000 error(s)

00000 warning(s)

SO0E3 00227 program bytes generated
$0000 00000 data bytes allocated
$218B 08587 bytes used for symbols

Column Ten

69

RAST

70

9 November 1983 0:14 Rasterizing Program
1 #finclude <stdio.h>
2 #define VDIMENSION 24
3 f#define HDIMENSION 80
4 jidefine BYTES HDIMENSION/8
5 #define TRUE 1
9 ;def1ne FALSE 0O \
8 * Data Structure *
9 * The rasterized data is kept in an array of bits. *
10 * The Setbit and BitSet rouF1nes are responsible for ¥
11 * determining which bit correspondes to each *
12 * position. They also are the only procedures with *
13 * access to the "bit" array. *
14 K e e e e e e e e *
15 ?ain()
16
17 int x1, yl, x2, y2;
18 int 1i;
19 char op; /* takes values of L Line (n,n,n
20 C Circle (n, n
21 S Spline OY n ,n,
22 E Spline osed n , N,
23 . N
%g register int j;
26 wh1le (scanf ("%c %d %d %d %d",&op, &xl,&yl, &x2,&y2) !=
27 Ignore "op' for now ¥
28 if (x1 < x2)
29 draw(x1,x2,yl,y2);
30 else
%% draw(x2,x1,y2,yl);
32 for{(i=VDIMENSION—1'i>=0‘i--)
35 for (j=0;j<HDIMENSION; j++)
36 %char b1tset(J iJ72 1 s o)
37 prxntf("
38
39 eturn;
2? { /* end of main */
2% draw(xl, TZ y% yZ% 2
nt xl, x s
TR ¥
45 int deltay, deltax, x, y, dy, dx;
46 float e, slope;
47 register int i;
28 delt 1
eltay =
30 Seltay - Y3
51 X = xl
52
53 g(deltax == deltay) & (deltay == 0))
54 * special case -- draw a point */
55 pl (x Y) ’
56 return;
57 }
58
gg if (deltax > deltay)
61 if gdeltax == ()
62 * prevent division by zero */
63 y = 1 <= y2;
64 tor (1=0; 1<-((de1¥ay >= () 7 deltay :
65 plot(x y++);
gg return;
68 slope = (floatgdeltay/(float)deltax;
69 if %slope >= 0
70
;% ; = siope 0.5;
73 yp Y
74 els
75 i
76 e = slopet0.5;
77 dy = -1;
78 }

0S-9 User Notes Volume I

Page 1

EOF)

-deltay) ;i++)

w WWWRNRNRNRNRN RN RNNRN i i s = e = 2 O 0 0 O 0 0 00 OO0V VWV OV
%8So&gwmuwmqmubwNwowmumubwwwowmqmuwaHo@mquwa

D—-D—IHD—'l—ﬂ—‘o—-l—ﬂ—‘b—ﬂ—-l—ﬂ—ll—ﬂ—ﬂ—lb—ﬂ—‘.—ll—u—-D—lb—ﬂ—ﬂ—ﬂ—ﬂ—ﬂ—ﬂ—lD—‘D—ﬂ—ﬂ—ﬂ—ﬂ—‘b—ﬂ—ﬂ—ﬂ—ﬂ—ﬂ—ﬂ—'.—ﬂ—ﬂ—-b—-i—ﬂ—lD—ID—H—-D—‘D—I

(S8, 10 N0 W o o o o o e o~
WO WIS WO

9 November 1983 0:14 Rasterizing Program Page 2

for (i=0; i<=deltax] i++)
{ /* actually draw the line */

plot X’Y);
if (((slope > 0.0% I3 Ee>0.og% N
slope < 0.0) & (e<0.0)))
+= d ;
x++;

e *+= sloge; .
) } /* actually draw the line */

els?

slope = (float)deltax/(float)deltay;
if islope > 0)

e = slope-0.5;
dx = 1;
. }
e s?

e = slope+0.5;
dx = -1;

e e .
for (930; Istdeltay; 9 x
* draw a _line with slope greater than one *

for this type of line y needs to be *

* incremented more frequently than x. :/
plotgx.Y);
1f g (slope > 0) && (e>0)) || ((slope < 0) && (e<0)))
X += dx;
e —= dx;
3
} e += slope;
}
return;
} /* end of draw */
plot(x,y)
nt X,y;

setbit(x,y);
return;

static char bit [VDIMENSION] [BYTES];

setbit(x,y)
tnt X,y

int temp=1;

register int tx;

temp = temp << (x%8);

tx = T/ ; .

bit [yl [tx] = bit[y] [tx] | temp;
return;

}

bitset (x,y)
nt x,y;

int temp=1;

temp = temp << (x%8);
return(bit%y][x§8f & temp);

Column Ten 71

72 ot~9 User Notes Volume I

LULUMN ELEVEN —-— THE 0S-9
1/0 SYSTEM

0S-9 uses a mooular 1/D system designed for
simplicity and flexibility. Because of
this modularity an exceptionally ambitious
user could write a new I/0 subsystem and
graft it 1into 0S-8 without making any
changes to the rest of the operating sys-
tem, But there are other aspects of the
I/0 system which don’‘t require any program-
ming to exploit, and so useful that new
0S-9 users should play with them as soon as
possible.

THE UNIFIED INPUT/OUTPUT SYSTEM

Each 0S-8 process has three standard paths
(files) open when it starts, Path O is
called standard input, Path 1 is standard
output, and path 2 1is standard error. It
is possible for a program to close these
paths and re-open them for its own purpos-
es, but most programs leave them open and
use them as one might think they should be
used.

The standard 1input path usually reads
from the keyboard (terminal), and is used
as the primary source of input from the
user. Programs can and often do open other
input files, sometimes the majority of the
input is from some path other than standard
input, but standard input is by convention
the path used for communication with the
user.

The standard output path typically
writes to the screen (terminal), and is
used for routine output to the user. Every
character that appears on your screen prob-
ably came from a standard output path.

The standard error path is seldom used.
By convention it is used for error messag-

es. Normally the standard error path is
directed to the screen together with the
standard output path. The rationale for

having separate paths for routine output
and error messages rises from a special
characteristic of the standard paths. Each
of the paths can be directed wherever the
user wishes before a program 1is started.
This can prove useful when it is convenient
to have different things done with error
messages than with the rest of the output
of a program.

The standard paths are open when a pro-
gram starts because they are inherited from
the process that started it, in most cases
the shell. The shell takes advantage of
this ability to pass its standard paths on
to the programs it starts to change the
paths from the standard (all to the termi-
nal) to any other disposition a user might
specify.

Options on a shell command l1ine {ngdi-
cate to the shell what needs to be done to

the standard paths. The optians are
"»xxxxx" for "redirect standard output to
XXXXX , " "<xxxxx" for “"redirect standard
input to xxxxx," and ">»xxxxx" for '"redi-

rect standard error to xxxxx." If any stan-
dard path is not redirected it is simply

inherited from the shell; 1t usually goes '

to the terminal.

The ability to redirect the standard
paths is called device independent 1/0
because paths can be directed to any
device, not just another device of the same
type as the default device for the path.
The power of this feature is easiest to see
with a few examples:

0S9: list filename

Is a command with no redirection. It lists
the contents of the file called "filename"
on the screen through the standard output
path.

0S9: list filename >/P

lists the contents of filename on the
device called /P, usually the printer. The
single "> at the end of the command tells
the shell to redirect the standard output
to the file whose name follows the >. I
can’‘’t think of any reason for someone to
want to put the output of the 1ist command
into a disk file, but:

0S9: list filename >1lstfile

does just that. It puts the output of the
1ist command into a file named 1stfile. 1If
you are using a multi-user system you can
send the output of a command to another
user with a command 1like:

0S9: asm test.a 1 >/72

which would send the 1listing from the
assembly of test.a to the device called
/T2, which is usually a terminal.

I redirect Standard Output more than
the other paths, but there are reasons to

redirect the other paths as well. The
Standard lInput path is the one which pro-
grams usually read from. A program can be

fed a canned script of commands by redi-
recting its Standard Input to a disk file
with the c¢ommands i{in it. I sometimes
insert this command in my startup file:

debug <startup.debug >/NL

This runs the Microware debugger with its
input coming from startup.debug, and its
output going to a special SCF device which
] made public in the first column I wrote
(/NL is a null device -- it makes anything
you send to it disappear). By putting
debug in my startup file like this I can
easily apply patches to resident modules
every time I boot my system.

The Standard Error path 1is used so
infrequently that it is easy to forget that
it exists. It is the path which programs
usually use for serious error messages.
Usually., it {is a good idea to leave the
Standard Error path directed to the screen,
but sometimes it should be redirected.
Some compilers send syntax errors, or at
least summary statistics out the Standard
Error path. If you want to run a program
that uses the Standard Error path in back-
ground while you edit in foreground, it is
wise to redirect the both the Standard Out-
put and the Standard Error paths of the
compiler to disk files or the printer, oth-
erwise yonu may find messages from the com-
piler cropping up in the middle of your
screen at awkward times.

Column Eleven -- The 0S-9 I/0 System 73

Reo:rection almost always works fine,
»4t there are some problems lurking around.
.1 shouldn‘t be the responsibility of a
:is;er to watch out for these problems, but
1S-9 is designed with the assumption that
yrograms will follow some conventions
applying to their use of the standard
waths. Some programs rely on dealing with
particular deviCes. These programs should
open special paths to those devices, but
some use the standard paths for device
dependent 1/0. These programs should be
avoided if possible.

The typical DS-9 system comes with
three types of files, Sequential Character
Files, Random Block Files, and Pipes.
Sequential Character Files (usually called
SCF files) are written or read from begin-
ning to end. The most common SCF files are
Terminal input and output, printer output,
and modem input and output. The bytes in a
RBF file (files handled by the RBFMAN file
manager) can be read in any order. Disk
files and other files 1like them, 8uch as
files in bubble memory or main memory, are
usually RBF files. There is only one type
of Pipe file, that is a temporary file kept
in main memory which is used a buffer
between one program’s output and another
program’s input.

Unless a program concerns itself with
timing 1ssues or wuses the more exotic
GETSTAT/SETSTAT system service requests,
there is no way for it to tell the differ-
ence between one device and another provid-
ed the devices are of the same type (RBF,
SCF, or Pipe). Some programs can’'t have
their standard 1/0 redirected to a RBF file
or a Pipe, but the great majority can. If
a program uses SCF-specific GETSTAT/SETSTAT
codes it will only be possible to use it
with the proper type of files, but all but
one of the programs that 1 know of from
Microware and other major wvendors can have
their 1/0 redirected without restriction.
The one exception is Microware’'s Pascal
with old versions of 0S-9. A1l programs
written in that language, 1including the
compiler itself, try to rewind their stan-
dard output file when it starts. The SCF
file manager deals with this strange
regquest correctly by "ignoring it, but the
Pipe manager returns an error 1if anyone
tries to rewind it. If you try to redirect
the output of a program written 1in Pascal
to a Pipe, the program will die as soon as
it’s started. Microware has a fix for this
problem if you run into it.

CHANGING 0S-9'S DEVICE SUPPORT

The modular design of 0S-8‘s I/0 system
aliows nmew devices to be added and the sup-
port of old devices to be enhanced with the
only restrictions being the wishes and
budget of the person responsible, and the
memory constraints of the computer. Sup-
port for 1/0 starts at the IOMAN module
whith fields each 1/0 system service
request and sometimes does a little work
before passing it off to the appropriate
module. File managers including SCF and
RBF are the next level down from IOMAN;
they do most of the file handling work that
isn’t specific to a particular piece of
hardware. The device drivers, such as ACIA
and PlA, handle the interface with the 1/0
hardware. The device descriptor modules

74 0S~-9 User Notes Volume I

contain the directions which all these mod-
ules follow. There is a descriptor for
eaCh device in an 0S5-9 system containing no
executable instructions, but 1lots of data
which controls the other 1/0 modules.

Hardware that requires complicated new
modules for the 1/0 system should come with
the necessary modules. The hardware vendor
has to have the modules written (or write
them), but a customer need only load the

modules =-- normally by including them in
his boot =-- 1in order to add software sup-
port for the device to his system. This

sets 0S-8 apart from many operating systems
in which a major part of the operating sys-
tem has to be changed for any new device.

Hardware vendors often need to write
1/0 modules in order to sell their products
to the 0S-9 community, but anyone can write
1/0 modules if the need or the mood takes
them. Writing an entire new 1/0 subsystem
would require a 1ot of work, but most prob-
lems can be solved with much less effort.
Many dgevices can be accommodated by 0S-8
without any serious programming at all by
creating new device descriptors. Device
descriptor modules specify how each device
is to be treated. The device descriptor
contains fields which indicate (to IOMAN)
which file manager and device driver should
be used for the device, an absolute phys:-
cal address for the device, and any other
data specific to the particular device

The first 18 bytes of all device
gescriptors have the same format. The
first nine bytes are common to all module
headers (Sync Bytes, Module size, Offset to

Moduie Name, Type/Language ($Fi),
Attributes/Revision, ana Header Parity
check} . Of these. the mecdule attributes

are most interesting in the context of the
device descriptor. If the device descrip-
tor module is marked reentrant, the device
can be used by more than one process at a
time; otherwise, it can only be linked to
or opened by one process at a time. Device
descriptors which are not reentrant are not
only restricted to use by only one process
at a time, they can’t be 1inked to by debug
at all if they are in the boot. Some
devices, such as the printer, shouidn‘t be
reentrant unless you feel very ready to be
responsible. 0S-9 will happily mix output
from several programs 1ine by line on the
printer if you tell it to.

The format of the next nine bytes is
common to all device descriptors. The
fields are: the offset to the File Manager
name (e.g.. RBF} for two bytes, the offset
to the Device Driver name {(e.g., AClA) for
two bytes , the mode (what the device can
do, e.g. Read/Write/execute) for one byte,
the device controller’s real address for
three bytes, and the length of the initial-~-
ization table.

After the first 18 bytes, different
types of devices have different fields.
The 1initialization table which follows the
byte with 1its length contains most of the
fields that are interesting to play with.
After the 1initializat-c~ table there 1is
nothing but module names and the CRC.

There are eleven fie ds in the initial-
ization table for RBF-type devices (disk
drives). The first field is one byte long

and contains a 1
RBF device,

indicating that this is a
The other fields are:

. drive number

. step rate

. device type

. media density (O=single, 1=double)

. number of cylinders {two bytes long)

. number of surfaces, verify {(O=verify
writes)

. default sectors per track for two
bytes

° default sectors per track on track

2zero for two bytes
. sector interleave factor
° segment allocation size
The step rate can take on valués of O0..3
with the higher numbers reflecting higher

stepping rates.

In the device type byte three bits are

significant. Bit zero indicates a 8" flop-
py if it is one. Bit six indicates a non-
standard format is being used if it is one.
Bit seven being one indicates that the

device is a hard disk.

In the media density byte two bits are
significant. Bit zero = 1 indicates that
the device can handle double density. Bit
one = 1 indicates that the disk is capable
of double track density (96 tpi)

The fields in the device descriptor are
interpreted by the device driver and the
file manager. Changing a value 1in the
device descriptor can‘t force the other
modulies to do something they weren‘t writ-
ten to do. For example, it probably isn‘t
possible to use the device driver which is
designed for floppy disks to control a hard
disk -- changing the device type byte won’t

change the capabilities of the device driv-
er. It is the option of the person writing
the device driver to ignore anything in the
device descriptor he wants. This means
that there is no guarantee that the options
in the device descriptor will work, I have
heard that the floppy disk driver on the
color computer ignores many of the options.
I’1) confirm this when 1 get one.

A different set of fields are
initialization table for SCF devices.
of these fields contro? the line-editing
function of the SCF manager. These are the
values that are temporarily set by TMODE.
They can be set permanently by changing
them in the device descriptor.

in the
Most

The initialization table in the device
descriptor is copied into the path descrip-
tor when a path is opened. There it can be
changed and read by GETSTAT/SETSTAT calls,
but the change applies only to that partic-
ular path. Changes to the device descrip-
tor become the default for ail paths opened
to that device.

way to change the device
descriptors is with debug. If, for exam-
ple, you want to add a new terminal to your
system which you don‘t have a device
descriptor for, you can modify a similar
descriptor with debug to fit your regquire-
ment (probably changing on'y the controller

The easiest

address and module name), save the result
with the save command, and verify it with
the update option to fix 1its CRC. The

resulting module can be 1oaded and used.

A device descriptor can be modified
even while the device it specifies is in
use because the descriptor igiself is sel-

dom referenced. In fact, as far as I know,
the device descriptor is only used when a
path is opened to the device.

The device descriptor is the control-
ling part of the 0S-98 1/0 structure. There
are several things that can be done with
them that I haven’t covered yet, but that
will be material for other columns.

Column Eleven -- The 0S-9 1/0 System 75

-

76 0S-9 User Notes Volume I

COLUMN TWELVE -~ THE COCO

I now have a Radio Shack Color Computer
with 0S-9. I had hoped that this column
would be about my first experiences as a
new CoCo/0S-9 Level One user, but 1 have
only had a few hours to play with the new
machine and this column is due.

Even just a few hours with the CoCo
version of 0S-9 is enough to form some
first impressions. First, that really is
0S-8 in there. A1l the standard commands

and utility programs are included. Even
XMODE, which didn‘t come with my Level Two
system, was on the CoCo 0S5-9 disk. I am

impressed with the performance of the CoCo.
I am used to a two megahertz GIMIX system,
and the CoCo 1is distinctly slower than
that; but, I bet BasicO9 on a CoCo would
give an IBM-PC running its version of Basic
a good race. I hope I have a chance to do
some benchmarks soon.

for a user moving from Color Basic to
0S-9 the change must be wonderful, but con-

fusing. 0S-9 brings out much of the power
hidden in that 1little off-white box. It
also demonstrates the 1limitations of the

Color Computer. After this column I intend
to concentrate on positive aspects of the
CoCo, but right up front I have to say that
my new CoCo is a sit-down 1lawnmower with
the soul of a Grand Pre racer. I want to
get my complaining out of the way early, so
this column is elected.

On the hardware side, I guess my com-
plaints can be summarized as: this computer
seems to bhave been designed to sell for
under a thousand dollars. It is really
unfair for me to think that this computer
should have DMA (Direct Memory Access) for
its disk I/0 and a chip to do its serial
1/0. By doing those tasks in software
Radio Shack hurt 0S-9‘s performance, but
they also kept the cost of the computer
down.

Certainly, my main reaction to the
Radio Shack version of 0S-9 was pleasure,
but that didn‘t keep me from finding a few
things to complain about. In my last col-
umn 1 hinted that the disk driver included
with CoCo 0S~9 doesn‘t adhere to 0S-9 stan-
dards. I didn‘t make a strong statement
because I didn‘t know from personal experi-
ence. I can tentatively confirm the infor-
mation now -- the CCDisk disk driver
doesn‘t seem to refer to the parameters set
in the disk device descriptors.

The documentation that came with 0S-9
was also a disappointment. 1 expected
entirely new books explaining the trickier
aspects of 0S-9 so any fool could under-
stand it. The manuals 1 got are just
prettied-up versions of the Microware manu-
als with some parts missing. The documen-
tation seems to have been very quickly
done. I checked out the section on device
descriptors first thing: the manual
\ncludes a full description of the device
descriptor with no indication that some
parameters don’t work on the CoCo. Most of
the information from Microware’s manuals
about adapting 0S-5 to a new system are
missing from Radio Shack’s 0S-9 documenta-
tion.

My complaints may sound significant,
but they are not. The hardware limitations
of the Color Computer are no worse than one
would expect in a low-cost computer. The
1imited disk driver is only waiting to be
replaced by a more general one. If no one
else writes one, 1 may do it myself. The
documentation problem is an invitation to
people like me. If 0S-9 on the CoCo con-
tinues to be as big a success as it has
been. books will appear about it in fairly
short order.

NOTES ON COMPUSERVE

I spent over two hours reading through
the messages in the new 0S-8 SIG on Compu-
serve. That bulletin board is really pick-
ing up! People are beginning to buy
BasicOS for the CoCo and are having trouble
installing it. Some -messages went some-
thing l1ike: I installed BasicO9 on my sys-
tem and it doesn‘t work =- HELP. I can’t
imagine how anyone is able to figure out
what went wrong from that kind of com-
plaint; I certainly couldn’t. Several oth-
er people gave more detailed descriptions
of their troubles. It sounded to me 1ike
they were having troubles with directories.

when you start O0S-9 running it will
find a directory called /DO/CMDS on your
system disk. This is the directory 0S-9
will always execute programs out of unless
you explicitly direct it to another direc-

tory. Specifically, if you give the com-
mand

BASICO9
0S-9 will 1ook for an executable file

called BASICOS in the /DO/CMDS directory.
If it finds the program, everything is
fine; otherwise, 0§-9 will search the
default data directory (initially /DO) for
a file called BASICO9. 1f BASICO9 in found

in the data directory it will be taken as a
shell command file, and a shell will: be
started up to execute the commands. If

that file turns out to be full of the
machine code for BasicO8., the shell will be
understandably confused. If you copy
BasicO9 from its odistribution disk to the
root directory for your system disk {which
is what the command:

copy /Dl/basic09 Basic09

will do} your shell will get wrapped around
the axle in about the way I just described.
The way to avoid that problem is to put
BasicO9 in your execution directory with a
command 1ike:

copy /Dl/basic09
/ ¥CHD8/Basic09

The system disk. on my CoCo is very
full, If 1 had any number of my own pro-
grams on that disk it would overflow. When
that happens it is time to divide the files
on that disk between two disks. One way to
spl .t things up is to put Basic03 and a few
other programs that are freguently used
with BasicOS on a disk by themselves, and
replace the system disk with the special
BasicOS disk when it is time t7 use Basic.
There is nothing wrong with the idea. but
there is a nice pitfall waiting here too.

Column Twelve -- The CoCo 77

Directories are files, and, to save time,
95-9 remembers where the files you are
using are on disk. when you boot 0S-8 it
determines where the directory /DO/CMDS is
and will 1look right there next time it
needs to find a program. If you pull out
the system disk and put in your special
Basic08 disk. 0%-8 will read the location
on the BasicO8 disk where the /DO/CMDS
directory was on the system disk. In the
best case you will get a meaningful error,
but you may not. The way to get around
this problem is to remember to change your
execution (and perhaps your data) directory
when you change the disk it is on. That
is:

Take the system disk out
Put the Basic09 disk in
type CHX /DO/CMDS

which will cause 0$-9 to find the /DO/CMDS
directory again. Of course, if you decide
to call the execution directory on your
Basic disk something other than CMDS,
that’s fine; just change the execution
directory appropriately. For example:

0S9: CHX /DO/BASIC.CMDS

I¥ you put BasicO9 on a disk separate
from many of your other programs you may
find yourself unable to get at some impor-~
tant program while you are using BasicOS.
There are at least three ways to soive this
problem.

0S-9 lets you load programs into memory
and keep them there. You don‘t want to
load too many because main memory is a very
limited resource, but sometimes it can
prove very usegful to have a program or two
in memory . If you insert your Basic disk,
oad /DO/CMDS/basicOS (note that I speci-

fied the full directory name instead of
<r#nging the execution directory -- either
v will work, but this way I won’t need to

z-i~ge the directory back). then remove the
t:e1Cc disk and put the system disk back in.
5w BasicO89 is in main memory. You can see
%as1c08 in the output of the MDIR command,
and the MFREE command will show that there
is much less free memory in the system than
there was before you loaded Basic0S9. Now,
if you type

0S9: basic09

you will find yourself in basic much faster
than when it had to be loadec from disk.
To get rid of the copy of BasicO8S in main
memory use the UNLINK command:

0S9: UNLINK basic09

If there is some small number of small
programs you want to wuse from within
BasicO2 you can load them into memory while
the system disk is mounted. For example:

78 0S-9 User Notes Volume I

0S9: LOAD copy
0S9: LOAD list

remove the system disk
insert the basic disk

0S9: CHX /DO/CMDS

and perhaps change the data
directory

0S9: CHD /DO/BASIC,PROGS
then start basic09
0S9: BASICO9

Jf, for one reason or another, neither
of these tricks will serve, you can change
the execution directory from within
BasicO8. For example, starting from a time
when BasicO8 is running with the basic disk
on drive /DO: ’

Replace the basic disk with the disk with
the programs you need

B: chx /DO/CMDS or whatever
do what needs to pre done, then, before

exi1ting from basic, replace the basic disk
in the drive.

The Basic0O9 CHX command only changes
the execution directory within BasicO8 and
any programs that are run from it. w¥hen
you exit from BasicO9 the directories that
were active before you started BasicO9 will
be active again.

THANK YOU GIMIX

Ever since the CoCo version of 0S-9 was
announced with a different disk format from
all other versions of O0S-9 the users of
large O0S-9 systems have been grumbling
about the incompatibility of our disk for-
mats and the CoCo format. GIMIX has
released a new floppy disk driver for their
systems that supports reading and (if you
have a 40 track drive) writing disks in
CoCo 0S-8 format. I am very grateful, and
I am sure 1 represent many other 0S-9 users
when I thank GIMIX for their efforts.

A HANDY SHORTCUT

I always use 32K when 1 run Dynastar,
and I almost always use 24K for the Micro-
ware Assembier. I am seldom content to use
the minimum memory requirement given in the
module header for any program. I have mod-
ified the module headers oOf several pro-
grams so they will automatically request
the amount of memory I usually request for
them. Debug can be used to do this. The
commands which will modify Dynastar (DS) to
default to its maximum memory size (32K)
instead of the minimum (8K) are:

load ds

using 128 pages.

debug
1 ds .
. +tb To goxnt at the permanent storage size in
the module header. .
. The value of this byte is $20
=FF
Q The change is made so quit debug

Test ds to make certain the new default is vorking.
I first made certain I could edit a large file, then
invoked procs from within ds and noted that ds was

If you want to make the change permanent
use the following sequence:

0S9: save /DO/x ds

0S9: verify U </D0/x
>/D0/CMDS/ds 2

Check its attributes
0S9: attr /DO/CMDS/ds2

You will find that the execute and public

execute attributes are missing, so turn
them on

0S9: attr /DO/CMDS/ds2 e pw
Save the old version
0S9: rename /DO/CHMDS/ds old.ds

Install the new one

0S9: rename /DO/CMDS/ds2 ds

Column Twelve -- The CoCo 79

80 R-9 User Notes Volume I

COLUMN THIRTEEN

BIG SYSTEM HARDWARE

Gimix has offered CoCo owners an
attractive deal. Gimix 1i1ts value. Even
with this roughly thousand dollar break in
the price of a Gimix the upgrade is expen-
sive, but, speaking as a person who has
used a Gimix for many many hours, if you
can find the money, take this opporturity.
What makes it worth thousands of dollars to
move from 8 CoCo to a SS50 system? The
most important difference 1is that every-
thing works right on the larger systems.
Another is that the more expensive systems
are faster. A two megahertz 6809 runs more
than twice as fast as a CoCo in its normal
mode. The DMA disk controller and other
powerful 1/0 devices also make a noticable
difference.

The upgrade from a CoCo to a SS50 sys-
tem isn’t the end of the 1line. A1l the
major SS50 systems that support 0S-9 sup-
port both 0S-9 Level One and Level Two.
The move to Level Two involves a new ver-
sion of the 0S-9 operating system, but no
change in applications programs. A1l the
modern SS50 systems I know of can be
upgraded with little or no change to the
hardware (the main reguirement is memory
management hardware). I imagine that 0S-9
Ltevel Two might run with the 56K of memory
that Level One uses, but just barely. Lev-
el Two begins to come into its own at 128K.
At 344K, 1 have never run out of memory.

BIG SYSTEM SOFTWARE

There is a bit of controversy arising
in the 0S-9 world. Smoke Signal Bsoadcast—
ing has been responsible for a lot of 6809
software over the years, There is even an
operating system which they are responsible
for. Now they are contributing to 0S-9
software. My understanding is that Smoke
commissioned someone to work on the version
of 0S-9 licensed to them. Their consultant
made 0S-9 less mogular in order to improve
its performance. The Smoke users I know
confirm that the revisions make the Smoke
version of 0S-9 run faster than it used to.
Running faster would seem to be an advan-
tage, but the changes Smoke has made turn
out to be a mixed blessing. There appear
to be subtle incompatibilities betweer 0S-9
as it comes from Microware and 0S-9 from
Smoke Signal Broadcasting. I have spoken
to Microware and they say that they can’t
support Smoke‘s version of 0S-9 (that may
have changed by the time you read this). 1
have had trouble exchanging software with
Smoke users.

The Smoke users are amazingly tolerant.
I have read exchanges on the Compuserve
DS-9 SIG in which Smoke users exchange tips
on ways to prevent the OIR commang from
intermittently producing junk.

This problem was resolved to everyone'’s
satisfaction when Smoke agreed to offer
their users a choice of modified or
unmodified 0S-9.

I certainly approve of improving 0S-9’s
performance, but it is very important that
an oberating system be as standard as pos-
sible. If I were buying a system from
Smoke Signal Broadcasting, I would want
strong assurances that their version of
0S-9 was compatible with Microware’s on
every level. A good test would be that all
applications programs and system modules
that run under standard 0S-9 should run
under the modified one, and vice versa.

THE COMPUSERVE 0S-9 SIG

The 0S-9 Special Interest Group on Com-
puserve is booming. Messages flow through
the bulletin board so fast I am beginning
to guestion my ability to read them all.
Many experienced 0S-9 users regularly check
in, but it is a particularly good resource
for newcomers. 1 strongly suggest that yol
join Compuserve if there is an access point
close to you. It is worth it even if you
only use it to access the 0S-9 SIG.

0S-9 ON THE COLOR COMPUTER

I have been saying nasty things about
Tandy which aren‘t true. I blamed the
sloppy programming in the CCDISK device
driver on Tandy when 1t seems the blame
should fall on Microware and Microsoft.
The bootstrap for the CoCo 1is in ROM,
There is only one bootstrap ROM, designed
by Microsoft for use with Color Disk Basic
(I guess). Microware had to design the
CoCo implementation of 0S-9 so it could be
loaded with that Bootstrap. The CoCo boot
ROM reads 15 sectors off track 35 into a
fixed location in memory. The 0SSBoot file
had to fit into those 15 sectors. This
memory constraint forced Microware to pay
even more attention tc writing compact code
than they usually do. Since €809 instruc-
tions that do direct memory references take
less memory than indexed instructions,
Microware used them whenever they could.
Since versatile device drivers take more
memory than 1imited drivers, they wrote
limited drivers. Tandy, I apologize for
the nasty thoughts I sent your way.

I decided to write this month’s project
for the CoCo. I noticed that Color Basic
has a number of commands which make assort-
ed honks and beeps emerge from my TV.

Basic09 has no way to make those noises. I
checked the "Color Computer Technical Ref-
erence Manual!” for information about the

sound generator, and found that the Color
Computer generates sound with a Digital to
Anaiog converter. The output from the D/A
converter is routed through an analog mul-
tiplexer to the mouaulator, and hence to the
TV. It looked 1like 0S-9 could learn to
make noise.

1 expect that the reason Microware
didn‘t include sound generation 1in their
0S-9 for the Color Computer 1is that sound
gerieration with an D/A converter is a very
time dependent operation. A note is played
by gradually (in computer terms} raising
and lowering the voltage generated by the
D/A converter. This has to be done with a
timing loop in a program. The timing 1oop
must have exclusive use of the computer, or

Column Thirteen 81

the rate at which the voltage rises and
valls will vary causing the note being gen-
«rated to rise and fall. Some people might
find the resulting yodel surprising. A
program can give itself exclusive use of
the computer by masking out interrupts, but
iocking out interrupts for more than a few
millionths of a second is antisocial behav-
ior for any program -- even a part of the
operating system.

Still, the ability to at least be able
to generate a beep seems important to me.
] started by writing a program called Sound
to investigate sound production. The pro-
gram generates a saw-tooth wave that sounds
rather 1ike a saber saw cutting thin ply-
wood, but it works. The most important
discoveries I made while writing Sound were
how to 1initialize the multiplexer so the
D/A converter‘s output would be routed to
the Tv. The control registers at $FFO3 and
$FF23 both need to be modified. The fact
that they could be modified was another
interesting discovery. 1 am used to con-
trol registers being either readable or
writeable. These registers are to some
extent read/write. CoCo programmers may
take this for granted, but I was pleasantly
surprised.

Once the control registers are set,
sound can be generated by simply writing
different values 11nto the most significant
€ bits of the bvte at $FF20. The faster
the value 1is changed the higher the pitch.
I wrote the program to send 1000 waves,
then stop.

There 1is lots of room for simprovement
in Sound. The quality of the note created
by the program could be improved, and the
program might even be made to play a song.
I decided to drop Sound and work on build-
ing 2 Device Driver for the D/A converter.

Thie Device descriptor 1 wrote for the
0/a converter, Beep, is almost as small as
a Device Descriptor can be. The D/A con-
verter is not a random access device so I
decide to use the SCF file manager to drive
it. There are no options except the one
byte which incicates that it 1is a SCF
device. There are three addresses in the
descriptor. Normally a descriptor only
needs one port address, but in this case,
since the three addresses used 1n making
the D/A converter make sound aren‘t relat-
ed, 1 included all the addresses explicit-
ly.

The Device Driver, called Beeper, 1is
not interrupt driven. Most 05-9 device
drivers use interrupts to give them a way
to avoid wait loops, but I couldn’t find a
way to get the D/A converter to generate
interrupts. In this case 1interrupts wer-
en’t necessary; the device responds as fast
as data can be pumped into it.

The initialization entry puts some val-
ues tnat will be needed in the termination
routine into device static storage, and
sets the two PIA registers that need to be
adjusted to permit sound to be made. The
termination entry sets the two control reg-

1sters back the way they were before Beeper
started, and the GetStat and PutStat
entries don‘t do anything at all. The read
and write entries deal with the fact that
the D/A converter only uses the high-order

82 0S-9 User Notes Volume I

six bits of the register it is accessed
through.

INSTALLATION OF BEEP/BEEPER

Beep and Beeper have to be typed in and

assembled. As usual, the USE statements
between the IFPt{ and ENDC don‘t come out in
the assembly 1listing. You will have to
include use statements for both OSSDEFS and
SCFDEFS for these programs. when you
assemble the Beeper file it will generate a

file 1in the execution directory called
Beeper with both Beep and Beeper in it.

To use beeper first load it with the
0S-8 command line:

0S9: load beeper

then link beeper with the command 1ine:

0S9: link beeper

Since beeper is the second module 1in the
file it will have a tendency to disappear
if you don’t 1ink it.

As a first try you can get a low growl
out of your computer by listing a file to
/Beep. ! used

0S9: list beeper >/beep

To get a more interesting sound out of
the device you will need to feed it mean-
ingful data. The BasicO¢ program called
Tes tBeep generates a thousand bytes of sine
wave. TestBeep is intenoecs to be packed
and run out of the execution directory. If
it s run from source the BYE should be
removed. It takes a long time to initialize
the array, so be patient. The wave can be
sent one byte at a time with a loop like:

for I=1 to 1000
put #sound,note(I)
next I

But 0S-8 doesn’t do very well at outputting
a single character at a time. This program
segment demonstrates that by generating a
low, raspy note. To get a higher, smoother
note I sent the entire thousand-byte array
with one write. The quality of the tone
still leaves & 1ot to be desired, but it’s
the best I could do quickly.

APPLICATIONS FOR /BEEP

I imagine that the timbre of the tone
generated by TestBeep could be improved by
spending more time with the wave form: the
rough sin wave I use is pretty crude. Cer-
tainly the pitch can be varied by changing
the frequency of the wave. 1 discovered
that TestBeep just as it stands is a useful
demonstration of 0S-9‘s multitasking behav-
ior. 1 started TestBeep with the command
line:

0S9: BASICO9 TestBeep&
if you have RUNB

0S9: TestBeep&

will work fine. This runs the program as a
background task. When the noise started, I
ran a variety of different programs ahd
noticed the effect on the sound.

If you want to generate a higher pitch
than you can get out of Beeper, 1 suggest
doing more work in the device driver. The
approach I have in mind is to add a buffer
in the device static storage for Reeper.
when Beeper receives a request to write a
Zero value it will load the next 256 bytes
written 1into the buffer. when the buffer
isn‘t being loaded, each value written to
Beep will indicate a number of times to
send the buffer out the D/A. 1 bpelieve
that this approach will prove to be really

useful, especially if there is a default
wave loaded into the buffer by the INIT
SOUND

Microware 0S-9 Assembler 2.1
Sound - Sound generator for CoCo

02/15/84 03:00:48

code.

THE USERS GROUP

1 hope all the members of the O05%-9
Users group will have their disks by the
time you read this. 1 am afraid that some
of you will have received the wrong type of
disk. I am responsible for this. We don’t
have any record of the type of disk (size
and format) any of our early members use.
Some of the people who have joined recently
have included information about their disk,
but in most cases I have had to guess. If
you get a disk you can’‘t deal with, write
to the Users Group address, and we will try
to get you a disk you can read.

Page 001

00001 nam Sound

00002 ttl Sound generator for CoCo

00003 IFPl

00005 ENDC

00006 0011 TYPE SET PRGRM+OBJCT

00007 0000 87CD0065 MOD ENDSND,NAM, TYPE,REENT+1,ENTRY,DSIZE
00008 D 0000 CNTL RMB 2 Address of D/A control registe
00009 D 0002 CNTL2 RMB 2 Address of another D/A control
00010 D 0004 PORT RMB 2 Address of D/A input
00011 D 0006 CNTR RMB 2 Number of waves to send
00012 D 0008 CNTLV RMB 1 Initial value of first Control
00013 D 0009 CNTL2V RMB 1 Initial value of other control
00014 D 000A RMB 200 STACK

00015 D 00D2 DSIZE EQU .

00016 000D 534F554E NaM FCS /SOUND/

00017 0012 ENTRY EQU *

00018 Je e dede o o e ook e ok

888%8 * Initialize addresses in local storage

00021 0012 CCFF23 LDD #SFF23

00022 0015 DDOO STD NTL

00023 0017 CCFF20 LDD gSFF20

00024 001A DDO4 STD ORT

00025 001C CCFFO3 LDD gSFFOB

00026 001F DDO2 STD NTL2

00027 KkkkkRkorkkkk

00028 * Save initial values of control registers

888%8 I and set them to route D/A output fo sound

00031 0021 A6D4 LDA [CNTL,U]

00032 0023 9708 STA CNTLV

00033 0025 8A08 ORA #508

00034 0027 A7D4 STA CNTL, U]

00035 0029 A6D802 LDA [CNTL2,1)

00036 002C 9709 STA CNTL2V

00037 002E 84F7 ANDA #SFF-SOB

00038 0030 A7D802 STA CNTL2,U]

00039 o R 3 o3k Kook sk e

00040 * Initialize the counter

00041 *

00042 0033 CCO3ES8 LDD g#OOO

00043 0036 DDOQ STD TR

00044 dekdekhkkvhk

00045 * Send waves

00046

00047 0038 LOOP2

00048 0038 8600 LDA #0

Column Thirteen 83

Microware 0S-9 Assembler 2.1 02/15/84 03:00:55 Page 002
Sound - Sound generator for CoCo

00049 ok Aob Kbk dedok ok
10050 * Send each wave
30051 *
00052 003a LOOP1
00053 003A A7D804 STA PORT, U]
00054 003D 8B04 ADDA #4
00055 O003F 12 NOP
00056 0040 12 NOP
00057 0041 12 NOP
00058 0042 12 NOP
00059 0043 12 NOP
00060 0044 12 NOP
00061 0045 12 NOP
00062 0046 12 NOP
00063 0047 12 NOP
00064 0048 8100 CMPA #0
00065 004A 26EE BNE LOOP1
00066 FekFderkkath
00067 * End of sendin§ one wave.
00068 * See if we sti]l need to send more
00069 *
00070 004C DCO6 LDD CNTR
00071 O0O04E 830001 SUBD gl
30072 0051 DDO6 STD NTR
00073 0053 26E3 BNE LOOP2
00074 o S L L]
888;2 * Restore initial values to control registers
00077 0055 9608 LDA NTLV
00078 0057 A7D4 STA CNTL, U]
00079 0059 9609 LDA ?NTLZV
00080 005B A7D802 STA CNTL2,U]
00081 005E 5SF CLRB clear carr
00082 003F 103F06 0S9 FSEXIT return to BS-9
00083 0062 528D69 EMOD
00084 0065 ENDSND EQU *
00000 error(s)
warning (s)
7065 0010]1 program bytes generated
“D2 00210 data bytes allocated
ZF8 03832 bytes used for symbols

BEEPER
Microware 0S-9 Assembler 2.1 02/15/84 02:59:46 Page 001
BEEPER - 0S-9 System Symbol Definitions

00001 NAM BEEPER
00002 IFP1
00006 ENDC
00007 USE BEEP Device Descriptor
00008 TTL DEVICE DESCRIPTOR

00009 NAM BEEP

00010 OOF1 TYPE SET DEVIC+OBJICT

00011 0000 87CD0027 MOD BPEND, BPNAM, TYPE,REENT+1, FMNAME, DRVNAM
00012 000D 03 FCB READ.+WRITE. MODES

888%2 O00E FFFF20 FCB SFF,SFF,$20 PORT ADDRESS
00015 0011 01 FCB OPTL Length of options section
00016 0012 OPTIONS BSU *

00017 0012 00 FCB DT.SCF
888%8 0001 OPTL EQU *-OPTIONS

00020 0013 FF23 CNTL1 FDB FF23 address of control byte 1
00021 0015 FFO03 CNTL2 FDB FF03 address of control byte 2
00022 0017 424545D0 BPNAM FCS /BEEP/ name of this module
00023 001B 5343C6 FMNAME FCS /SCF/ File Manager name
00024 O0OlE 42454550 DRVNAM FCS /BEEPER/ Device driver name
00025 0024 58AEA3 EMOD
00026 0027 BPEND EQU *
00027 TTL DEVICE DRIVER FOR D/A

84 0S-9 User Notes Volume I

Microware 0S-9 Assembler 2.1 02/15/84 02:59:50 Page 002
BEEP - DEVICE DRIVER FOR D/A

00028 00E1 TYPE SET DRIVR+0OBJCT

00029 0081 REVS SET REENT+1

00030 0000 87CD0076 MOD BPREND,BPRNAM, TYPE,REVS,ENTER,MEMSIZE
00031 000D 03 FCB READ.+WRITE. DRIVER MODE

00032 OQO00OE 42454550 BPRNAM FCS /BEEPER/

00033 0014 01 FCB 1 EDITION

00034 % 36 ok e o ek o ok e ok sk sk ok

00035 * Device Static storage

0003?) *

88838 D 001D e dese ek oSk ORG V.SCF System part of Static Storage
00039 * Local part of static storage

00040 %

00041 D 001D PORTA RMB 2 PORT ADDRESS

00042 D OOlF CfL1V RMB 1 HOLD CNTL1 VAL

00043 D 0020 CTL2vV RMB 1 HOLD CNTL2 VALUE

00044 D 0021 CTL1A RMB 2 HOLD CNTL1 ADDR

00045 D 0023 CTL2A RMB 2 HOLD CNTL2 ADDR

00046 D 0025 MEMSIZE EQU .

00047

00048 o 76 5% % ok vk K ek a ok

00049 * Entry vectors

00050

00051 0015 ENTER

00052 W 0015 16000F LBRA INIT

00053 w 0018 16002C LBRA READ

00054 W 001B 160031 LBRA WRITE

00055 W Q01E 16003E LBRA GETSTAT

00056 W 0021 16003B LBRA PUTSTAT

00057 w 0024 16003A LBRA TERM

00058 0027 INIT

00059 Aok ok e ok ok

00060 * U ADDRESS OF DEVICE STATIC STORAGE

8882% : Y ADDRESS OF DEVICE DESCRIPTOR MODULE

00063 0027 AEA813 LDX CNTL1,Y Get control address 1 out of D
00064 002A AFC821 STX CTL1A,U Save the address

00065 002D A684 LDA X Get the present value of cntl
00066 002F A7C8IF STA CTL1V,U save it for later restore
00067 0032 8A08 ORA #S08 set it for sound

88828 0034 A784 STA R

00070 0036 AEA815 LDX CNTL2,Y do the same stuff for cntl2
00071 0039 AFC823 STX CTL2A,U

00072 003C A684 LDA X

00073 QO3E A7C820 STa CTL2V,U

00074 0041 B4F7 ANDA #SFF-508

00075 0043 A784 STA , X

00076

00077 0045 5F CLRB CLEAR CARRY

00078 0046 39 RTS RETURN

Column Thirteen 85

Microware 0S-9 Assembler 2.1 02/15/84
SEEP - DEVICE DRIVER FOR D/A

00079

000000000V ™™
[a]lalaleleleloeloelo]lelo W

[y

NN 2 bt b et e bt et b et 0
N—OOVOONOAWN S WNI—=ON LT .

[en]en]
oo
——
NN
&SWw

0047

0047
0049
004B
004C
004D
004E

004F

0076

READ
e fo de ok de de ok

* U ADDRESS OF DEVICE STATIC STORAGE

* Y ADDRESS OF PATH DESCRI

: RETURN CHARACTER READ IN
AE4] LDX
A684 LDA

44 LSRA
44 LSRA
5F CLRB
39 RTS

WRITE

Fehhkdk

*
* U DEVICE STATIC STORAGE
* Y PATH DESCRIPTOR

* A VALUE TO WRITE

AE41 LDX
48 LSLA
48 LSLA
3402 PSHS
A684 LDA
8403 ANDA
AAEQ ORA
A784 STA
5F CLRB
39 RTS
GETSTAT
PUTSTAT
5F CLRB
39 RTS
TERM
Fledededkhok

02:59:58

PTOR
A

V.PORT,U

’

V.PORT,U
A

X
#200000011
S+
X

: U DEVICE STATIC STORAGE

AECB21 LDX CTL1A,U
A6C81F *LDA CTL1vV,U
A784 STA , X
AEC823 LDX CTL2A,U
A6CB20 LDA CTL2V,U
A784 STA , X
5F CLRB
39 RTS
Al182B1 EMOD

BPREND EQU *

00000 error(s)

00006 warning(s)

$009D 00157 program bytes generated
S0008 00008 data bytes allocated
$164B 05707 bytes used for symbols

TESTBEEP

PROCEDURE TESTBEEP
DIM NOTE(1000) :BYTE

DIM I:INTEGER

DIM SOUND: INTEGER

OPEN

FOR I

SOUND "68EEP":HRITE

01lo
NOT§(§)-32*(1+SIN(I))

NEX
FOR I=1 TO 100
PUT #SOUND,NOTE

NEXT I

BYE

86

DS-9 User Notes Volume I

Page 003

Bort address from device descr
/A value

Shift out low order bits
Clear carry

Shift out high order bits
save value to write

Get current value at Port
clear D/A value, .

put value to write in
send 1t

RETURN

restore original Cntll value
restore original Cntl12 value

clear carry

COLUMN FOURTEEN

MORE ABOUT THE COCO DISK DRIVER

After in sending last month’s column I
had second thoughts about what I said about
the 0S-9 disk driver for the CoCo. I
didn‘t believe what I had written. The
gist of what I said was that Microware and
Microsoft together were to blame for the
non-standard disk driver included with the
CoCo 0S-8. The boot ROM in the CoCo loads
just 15 sectors from track 34 on the boot
disk into set locations in memory and jumps
to them. This 1is Microsoft’s idea of a
nice way to boot a computer. what 1 said
last month was that Microware managed to
squeeze all of 0S-9 into those 15 sectors
by extensive compressiorn of the code. This
sounded pretty extreme to me, but I thought
that was what I had heard from Ken Kaplan
out at Microware.

Later, I became certain that I misun-
derstood Ken. There is no way all the core
resident parts of 0S-9 could be squeezed
into that amount of disk, and, if all of
0S-9 was loaded by the ROM boot. why does
the CoCo have a two stage boot?

1 called Microware to check my facts.
I was wrong. In the first stage of the
boot the CoCo ROM does l1oad data from 15
sectors on track 34 into memory and jump to
it, but only a few important parts of 0S-9
are loaded: the kernal, the Init module,
and the 0S-9 bootstrap. These are the mod-
ules that are found in ROM on other 0S-9
systems. The next stage of the boot uses
the 0S-9 bootstrap which was loaded in the
first pass to do a normal 0S-9 boot. The
parts of 0S-9 l1oaded in the first phase of
the boot had to be squeezed hard, but much
of the disk driver is loaded in the second
phase of the boot.

There were a number of ways for Micro-
ware to get a full-featured disk driver
into the CoCo, but they didn’t. The
restrictions on the first phase of the boot
forced them to deviate from 0S-9 standards
in the boot module part of the disk driver.
I believe they couldn’‘’t find a way to
interest Tandy in the extra work (and memo-
ry) required to discard the boot after 1its
work was done and load a driver that worked
independently. That {s certainly reason-
able. Why should Tandy be interested in
making it easy for peopie to use non-Tandy
per ipherals?

In any case, the problem seems to be
solved. 0. P. Johnson is advertising
software that 1lets CoCo 0S-9 deal with
every disk format my Gimix can handle. 1
haven‘t tried his software, but 1 have
heard from satisfied customers. I also own
a 256K memory board made by Dan Johnson. 1
purchased one of the first boards he sold
and had the kind of difficulties one might

expect. I came to respect Dan Johnson
while we struggled together to fix the
problems which I discovered. He is gocd
with hardware and software and VERY consci-
entious. I can’t recommend the software
because I haven’t tried it (yet}. 1 do

recommend the man who sells it.

WHERE NEXT?

1 have two very different 0S-9 systems,
a very large Gimix Level Two system and a
CoCo. They fall at almost opposite
extremes of the spectrum of microcomputers.
The CoCo is so light and small that I think
nothing of tucking it under my arm and
walking a mile down to campus. The Gimix
is so heavy that I am daunted by the
thought of moving that stack of hardware
even a few feet. The CoCo can’t really
handle more than one concurrent user. I
routinely have two users on my Gimix and
know people whose Gimix machines typically

serve four or more concurrent users. The
CoCo includes full graphics and a "termi-
nal" protocol which 1is consistent across
all CoCos. This is a big issue for other

DS-9 users, particularly software develop-
ers who have to write programs which can be
configured for any terminal.

Noting the similarities and differences
between these computers has given me a 1ot
of ideas about the kind of hardware 1 would
like to see 0S-8 running on. 1 imagine all
computer users spend some time dreaming
about the system they would have if only...

My dream computer is a personal comput-
er, or, to use the popular phrase, a per-

sonal work station. I have grown used to
the idea of 0S-9 Level Two as a multi-user
operating system, but I still prefer to

think of it as a very powerful single-user
system. Sharing computers is a way to save
money. When I imagine the computer I would
like, 1 don’t consider money first.

Naturally, my dream computer runs 0S-9
Level Two. It includes a bit-mapped screen
(color optional), several dedicated proces-

sors, support for some graphics input
device (I haven‘'t chosen between a bit pad,
a mouse and a light pen), and more than

plenty of memory.

Many people seem to think that 128K is
the right amount to run 0S-9 Level Two 1in.
Now you CAN run Level Two in even less, but
you don‘t really appreciate it until you
get to at least 192K. My dream machine
would have at 1least 192K upgradable to
256K, better still, 512K. There are so
many uses for memory! Solid state disk
drives or caches give better access times
than hard disks but use a 1ot of memory.
Complex programs can take lots of memory,
but, when they are well written, they are
powerful and easy to use. Sometimes 1ots
of memory is needed for simple storage of
data. 1 know a woman who keeps running out
of space for her sprgad sheet on an IBM PC.
She has about 600K! So lets put lots of
memory 1in the dream machine.

Graphics hardware is never good enough.
At any rate that’'s the way 1 react to it.
If the resolution and the number of colors
is sufficient, the screen takes too long to
update. If data is displayed by fussing
with parameter 1ists and registers, the
system 1is too limited. If the screen is
bit-riapped, it takes too much attention
from the CPU to control the screen. The
best solution seems to be to have a sepa-

Of course, with that much RAM you need
extra high-capacity disks to save what
you’re working or.

Column Fourteen 87

rate processor that deals with a bit-mapped
oisplay. If the graphics processor has a
very high speed connection to the rest of
the system, and can be dynamically pro-
grammed to do more than just update the
screen, the result should be speed and
flexibility in graphics.

There is use for more than one special
processor in my dream computer. If graph-
ics support is included in the package, it
would be foolish to require a terminal to
be attached to the computer:; an attached
keyboard would be sufficient. A dedicated
processor to scan the keyboard would take
another 1l1oad off the main processor. The
other I/0 devices could also use their own
processors. My Gimix uses a 6809 on one of
its serial cards to take some of the inter-
rupt load off tne main processor. It
speeds my machine up a little, but doesn‘t
have any other use. If the software for
the 1/0 processor was loaded (and reloaded)
by the main processor it would let the
serial board be programmed to handle high-
speec networks and other applications where
timing is important. Even disk controllers
could use their own special processors. 1
don’t know of any programmable disk con-
trollers they could do for disk 1/0 what
smart seria cards has done for terminal
1/0. The Gimix intelliigent serial card con-
tains a good part of SCFMAN. By unioading
this work onto a special processor more
cycles are left for user programs. REBFMAN
is more complicated than SCFMAN and uses
more CFU time. If most of that work could
be done by a separate processor still more
of the resources of the main processor
would be available for the user.

In fact, why talk about the main pro-
cessor? In many cases 05-9 processes don‘t
share memory with one another. If the
dream computer had a bus where additional
processor boards with some memory and per-
haps I/0 could be inserted. 0S-9 could run
independent processes on their own proce-
dures. Most personal work station users
gon‘t need to run more than three or four
processes at 2 time, so including many of
what amounts to separate computers 1in the
package would be wasteful. But, if the pow-
er is available the applications will
arrive.

Mice are making a big splash these
gdays. The Xerox Star, the Apple Macintosh
and Lisa, and 1ots of more expensive work
stations are using them. I would definite-
ly pick a mouse over a joy stick. I have
more trouble deciding that a 1light pen or
graphics pad isn’t a better tool than a
mouse. The graphics pad is very precise
and the stylus can be used about 1like a
mouse. The arguments against graphics pads
are that they are expensive, reguire desk
space., and, for some applications, force
the person using them to mentally map from
the bit pad to the screen. The cost proo-
lem I will ignore -~ after all this is a
dream computer. The other two problems
apply to mice as well. A light pen doesn‘t
require desk space or a mental mapping, out
I don't find them very precise and my hand
Oobscures the screen when I am pointing. I
£8n‘t make up my mind.

A fancy computer 1l1ike this deserves
fancy software. The peanut-butter and jel-
ly programs now available for 0S-8 just
don‘t live up to the hardware.

BB 0S-9 User Notes Volume I

My pet peeve with 05-3 software has
always been its lack of excellent editors.
I like Dynastar fine., and I have heard nice
things about Screditor and Stylograph, but
these programs are at Jleast five years
behind the state-of-the-art. My dream
machine deserves something special. Do you
suppose EMACS could be ported to 0S-97

A real database program would be nice.
Something more than a filing cabinet or
stack of index cards metaphor.

I bet Knuth’s TeX would run on some-
thing like this. Some good graphics pro-
grams, especially a graphics editor would
make the graphics support a 1ot more use-
ful. A real statistical program 11ke SAS,
or SPSS would make some people happy. Oth-
ers need really good communications soft-
ware.

Languages aren’‘t as important as the
software written in them, but 0S-9 is still
painfully short of languages. I bet APL
would run well under 0S-9. Fortran is old
fashion, but we really should have it.
Those are the fundamental languages. but
there is an endless list, including: Pilot,
PL/1, Logc., Smalltalk, and others.

Networking it ancther sexy topic these
days. Expensive computers {which my dream
machine is turning out to be) are generally
used by people for whom communication is
terribly important. Electronic mail, elec-
tronic calendars, ana sharing of files and
other resources are important to them.
0S-9 doesn‘t 1include networking software,
but I think it will be at least as easy to
run over a network as any other operating
system.

Enough of the dreaming. Truly, my
dream machine is not so very far away. I1/0
processors exist, and 1 am sure more are
coming. I have heard talk about slave pro-
cessors. There are graphics boards avail-
able for the SS-50 bus that are a 1ot like
what I have in my dream machine. The CoCo
comes with bit mapped graphics standard.

For my Gimix 1 can hope for 1/0 and
slave processors and a better f(and less
expensive) graphics board. For my CoCo 1
can aim low and hope for a disk controller
with an onboard buffer, or aim high and
look for a real Level Two system with as
much done in hardware as possible {(I/0.
sound, and graphics). From my viewpoint as
a Level Two user I think Tandy would be
crazy not to offer a CoCo with Level! Two.
For a software person like me, it is fun to
think up lots of things that hardware peo-
ple should do for us, but the most impor-
tant part of any computer is its software.

Some of my software wish 1ist will have
to wait for better hardware, in particular
for more memory. Much of it can be done
now. I have done some primitive networking
myself. A really special database program
or editor would push a 6809 hard, but might
be possible. I have heard from people who
are wcrking on lots of nice things for
0s-9. Pretty near every piece of software
for my dream machine is a project someone
is working on now.

MORE NOISE FROM THE COCO

Last month 1 included a driver for the
Digital-to-Analog converter in the CoCo.
That driver was useful for low-speed D/A
applications, but it didn’t do very well at
sound generation. The highest pitch my
driver could manage was something of a gur-
gle. The speed probiem wasn’t in the driv-
er. It takes a long time for a character
to get through SCFMAN. Even when a block
of characters goes through together there
is enough delay in the transmission of each
character to make smooth. high- frequency
waves impossible. Fortunately, generating
music isn‘t the only purpose for an D/A
converter. Controlling 1lab instruments,
motors, and such are all fine applications
which only reauire a voltage to be changed
infrequently =-- 10 times per secong at
most.

I ended last month’s column with a few
suggestions for ways to make the D/A driver
better at generating sound. This month I

went ahead and took my suggestions. This
month’s A/D driver does a pretty good job
of mak ing music. It even makes nice
chords. I made the improvement 1 suggested

last month. If the driver receives a zero,
it places the next 360 bytes sent to it in
a special buffer. Characters that don‘t go
into the buffer cause the contents of the
buffer to be transmitted through the 0O/A a
number of times corresponding to the magni-
tude of the character written. Since 1t
takes a fixed amount of time to transmit
the buffer, each character from $01 to S$FF
will take a fixed amount of time to send.
This way each character sends a note of a
set duration whatever the pitch.

At first 1 used a buffer 128 byted
iong. That was easy to handle in BEEPER,
but it was hard to build a wave in. It is
important that a whole number of cycles fit
into the buffer. It was difficult to gen-
erate &2 wave that fit precisely into 128
values. Numbers 1ike 890 and 360 work bet-
ter when angles are measured in degrees (if
they are measured in radians it is hard to
make any 1integers come out evenly.) 1
tried a 90 byte buffer, but I found it hard
to store smooth, high-pitched tones in it.
After the buffer got over 128 bytes long, 1
used the D register to offset the index
into it so length didn’t make much differ-
ence. 1 chose 360 bytes as the length of
the buffer because it is an easy number to
work with when generating the wave.

Interrupts are a probiem to time-
dependent things 1ike music. 1 tried
BEEPER with interrupts masked and unmasked.
when interrupts are unmasked the sound is
definitely not pure; however , when the
interrupts are masked lots of bad things
happen. With interrupts masked nothing
happens except operation of the D/A. Time
doesn’'t get updated. the keyboard doesn’t
get scanned. and, if you are using the
RS-232 port, it comes to a halt. In the
version of BEEPER included with this column
I commented out the DORCC and ANDCC. Try it
both ways and choose ¥or yourself.

THIS MONTH'S DRIVER

I got a little carried away with the
test driver for BEEPER. The program calls
for a magnitude and frequency for a wave
(the numbers are only relative). The sine
wave generated with these numbers is added
to whatever wave has already been generat-
ed. The resulting wave is displayed. If a
Y is entered, the wave is loaded into BEEP-
ER’s buffer and a few beeps are sent, if an
A is entered another sine wave is prompted
for and added to the existing wave, and if
anything else is entered the wave is erased
and the program starts over with a clean
slate.

I am afraid that this test driver is
another program that needs work. BEEPER
truncates numbers greater than 63 to 63.
If the sum of the sine waves loaded into
BEEPER‘s buffer is greater than &3 at any
point the wave will be clipped (as hi-fi
people say). It would be good if TBEEP2
would check for this, 1 also get pretty
frustrated when I don’t like the last sine
wave 1 added to a wave I am building and
have to wipe out the entire waveform to get
rid of it. On the other hand 1 am rather
partial to the graphic display of the wave-
form.

THE USERS GROUP

Things aren’t moving as guickly for the
0S-8 Users Group as we hoped they would.
We published our first news letter (called
MOTD) months ago. By the way, if you are a
member and didn‘t receive a copy of MOTD,
send a note to the Users Group. Our system
for keeping track of members seems pretty
reliable, but it may have cracks in it. we
are working on the second issue. The most
important thing to most members seems to be
the software exchange. There have been a
numper of problems getting the software
exchange disks out. The most interesting
problem has been a disk incompatibility
between 40 track disks written by 80 track
drives on two different manufacturer’s sys-
tems. Watch for this problem!

There also seems to be some trouble
getting disks. Three dollars per disk
delivered to a member is a very low price.
It’s hard to be too impatient. In any
case, barring another serious hold-up, the
disks should be in the mail by late March.
Let me say again that we don‘t know the
disk format many users need. If 1 guess
wrong, send the Users Group a letter and
we’ll try to find a way to straighten
things out.

Column Fourteen 89

REEPER2

M-croware 0S-9 Assembler 2.1 03/13/84 20:31:36 Page 001
LZEPER - 0S-9 System Symbol Definitions
Y0001 NAM BEEPER
00002 IFP1 Use OSY9DEFS, SCFDEFS and IODEF
00004 ENDC and ENDC
00005 USE BEEP
00006 TTL DEVICE DESCRIPTOR
00007 NAM BEEP
00008 00F1 TYPE SET DEVIC+OBJCT
00009 0000 87CcD0027 MOD BPEND,BPNAM, TYPE,REENT+1, FMNAME ,DRVNAM
00010 000D 03 FCB READ.+WRITE. MODES
988%% 000E FFFF20 FCB S$FF,SFF,$20 PORT ADDRESS
00013 0011 01 FCB OPTL Length of options section
00014 0012 OPTIONS EQU *
(00015 0012 00 FCB DT.SCF
888%9 0001 OPTL EQU *-OPTIONS
00018 0013 FF23 CNTL1 FDB S$FF23 address of control byte 1
00019 0015 FFO3 CNTL2 FDB $FFO03 address of control byte 2
00020 0017 424545D0 BPNAM FCS /BEEP/ name of this module
00021 001B 5343C6 FMNAME FCS /SCF/ File Manager name
00022 00lE 42454550 DRVNAM FCS /BEEPER/ Device driver name
00023 0024 S8AEA3 EMOD
00024 0027 BPEND EQU *
00025 TTL DEVICE DRIVER FOR D/A
Microware 0S-9 Assembler 2.1 03/13/84 20:31:41 Page 002
BEEP - DEVICE DRIVER FOR D/A
00026 00E1l TYPE SET DRIVR+OBJCT
00027 0081 REVS SET REENT+1
00028 0000 87CDOOD8 MOD BPREND, BPRNAM, TYPE,REVS,ENTER,MEMSIZE
70029 D 001D ORG V.SCF
+0030 D 001D PORTA RMB 2 PORT ADDRESS
2031 D 001F CTLIV RMB 1 HOLD CNTLI VAL
3032 D 0020 CTL2V RMB 1 HOLD CNTL2 VALUE
§J033 D 0021 CTL1A RMB 2 HOLD CNTL1 ADDR
E0034 D 0023 CTL2A RMB 2 HOLD CNTL2 ADDR
035 D 0025 COFFSET RMB 2 OFFSET IN BUFFER

2036 0168 BUFLEN EQU 90*4

237 D 0027 BUFFER RMB BUFLEN

J38 D 018F MEMSIZE EQU .

339 000D 03 FCB READ.+WRITE. DRIVER MODE

+040 O00E 42454550 BPRNAM FCS /BEEPER/ Program Name
0041 0014 01 FCB 1 EDITION
30042 Fhkhhkhkhdk
0043 * Entry points
30044 *
00045 0015 ENTER
00046 W 0015 16000F LBRA INIT
00047 W 0018 160042 LBRA READ
00048 W 001B 160047 LBRA WRITE
00049 001E 1600A0 LBRA GETSTAT
00050 0021 16009D LBRA PUTSTAT
00051 0024 16009C LBRA TERM
00052 0027 INIT
00053 E3 .18 54
00054 * U ADDRESS OF DEVICE STATIC STORAGE
00055 * Y ADDRESS OF DEVICE DESCRIPTOR MODULE
00057 0027 AEA813 LDX CNTL1,Y Move the address of cntll byte
00058 002A AFC821 STX CTL1A,U from the D.Descriptor to stati
00059 002D A684 LDA , X save the value of the cntll by
00060 O002F A7C81F STA CTL1V,U
00061 0032 8408 ORA {#s08 set one of the bits
00062 0034 A784 STA , X that turns on sound
00063 0036 AEA815 LDX CNTL2,Y Move the address of cntl2 byte
00064 0039 AFC823 STX CTL2A,U from the D.Desc to static stor
00065 003C A684 LDA , X save the value of the cntl2 by
00066 003E A7C820 €TA CTL2V,U
00067 0041 84F7 ANDA #iSFF-508 set the other bit
00068 0043 A784 STa , X that turns on sound

69 0045 8D08 BSR INITBUF Initialize the sound buffer
- 70 0047 5F CLRB CLEAR CARRY

00071. 0048 E7C825 STB COFFSET,U Coffset is a two byte field
00072 004B E7C826 STB COFFSET+1,U
00073 O0O04E 39 RTS RETURN

90 0S-9 User Notes Volume 1I

Microware 0S-9 Assembler 2.1 03/13/84 20:31:51

00074

Page 003
BEEP - DEVICE DRIVER FOR D/A

% ookt ok ol ob K deskeot

* Put something that won't sound too bad

: into the sound buffer
004F INITBUF
004F 30C827 LEAX BUFFER,U
0052 CCO167 LDD #BUFLEN-1
0055 INITLOOP
0055 E78B STB D,X
0057 830001 SUBD #i
0054 2CF9 BGE NITLOOP
005C 39 RTS
005D READ

etk ok ok

* U ADDRESS OF DEVICE STATIC STORAGE

* Y ADDRESS OF PATH DESCRIPTOR

: RETURN CHARACTER READ IN A
005D AE4] LDX V.PORT,U)
005F A684 LDA X get the value in the D/A regis
0061 44 LSRA
0062 44 LSRA Shift out the low order bytes
0063 5F CLRB Clear carry
0064 39 RTS
0065 WRITE

Fokkdodkkx

(=]l)

— e s = = = O
[e)elelalalalel)Ne)

[olelolelolololalelelelelololelalalelelelolelelo o ol o]
[elalolalslelalolalolalalalala/alalalelelelo o}
S WRN—OWVOYON L WN O VRN WN—OWVOIAULEWN—HOOVRIUNEWN—OO

s 1 1 1t 1 bt s b bt s e b et 0 st b b b bt 0 b b ot b et b
L DWWWWWWWWWWRINRNRNNNNNNIN = = = = = = = O O

OO00000000000O000000
0000000000000 0O0000O

* U DEVICE STATIC STORAGE
* Y PATH DESCRIPTOR
* A VALUE TO WRITE

6DC826 TST COFFSET+1,U If coffset isn't zero)
263F BNE DEFINE we are in the process of filli
6DC825 TST COFFSET,U buffer. We have to tst both C
2634 BNE DEFINE o
4D TSTA If the character to write 1s 0O
272F BEQ SDEFINE the sound buffer
FhFhAEx%
: LOOP THROUGH BUFFER
30C827 LEAX BUFFER,U the address of the sound buffe
3402 PSHS A SAVE COUNT
* ORCC #INTg¢E§g Shut off interrupts
CC0167 LDD KBUFLEN-I Offset in buffer
3406 PSHS Save offset

WLOOP
A68B LDA DX get a byte out of buffer
giig PSHS X

on second thought it would have been

%%* petter to just do a leax BUFFER,U later instead

of saving this value here

AE4] LDX V.PORT,U The address of the D/A registe
3402 PSHS A Build the byte to store in the
A684 LDA X register
8403 ANDA {%00000011
AAEQ ORA S+
A784 STA X Store the new D/A value
3510 PULS X recover the buffer address
***** see note .
ECE4 LDD S ﬁet the new offset in buffer
830001 SUBD {1 ecriment the offset
EDE4 STD ,S
2CES5 BGE WLOOP if it isn't negative send the
3262 LEAS 2,S Clear stack
6AE4 DEC ,é decriment repeat count
26DA BNE CYCLE cycle if not zero
* ANDCC #SFF-INTMASKS
3261 LEAS 1,S CLEAR STACK
5F CLRB
39 RTS
SDEFINE
CCO168 LDD #BUFLEN
EDC825 STD COFFSET,U
SF CLRB CLEAR CARRY
39 RTS

Column Fourteen 91

Microware 0S-9 Assembler 2.1 03/13/84 20:31:58 Page 004
BEEP - DEVICE DRIVER FOR D/A
00150 Fook ok e bk styest e oot
0151 ¥ Load the Sound buffer
0152 *
00153 00A9 DEFINE
00154 00A9 48 LSLA Prepare the value
00155 00AA 48 LSLA
00156 00AB 3402 PSHS A save it
00157 00AD ECC825 LDD COFFSET,U Current offset
00158 00BO 830001 SUBD #1
00159 00B3 EDC825 STD COFFSET,U Update offset
00160 00B6 30C827 LEAX BUFFER,U
00161 00B9 308B LEAX D,X location to store this byte at
00162 0O0BB 3502 PULS A get the byte
00163 OOBD A784 STA , X store 1t
00164 OOBF 5F CLRB
00165 00CO 39 RTS
00166 00C1 GETSTAT
00167 00C1 PUTSTAT
00168 00C1 5F CLRB
00169 00C2 39 RTS
00170 00C3 TERM
00171 Ik Aok Yeokak
88%;% : U DEVICE STATIC STORAGE
00174 00C3 AEC821 LDX CTL1A,U
00175 00C6 A6C81F LDA CTL1V,U
00176 00C9 A784 STA , X restore the original ctll valu
00177 00CB AEC823 LDX CTL2A,U
00178 00CE A6C820 LDA CTL2V,U
00179 00D1 A784 STA . X restore the original ctl2 valu
00180 00D3 5F CLRB
00181 00D4 39 RTS
00182 00D5 A60D8D EMOD
00183 00D8 BPREND EQU *
90000 error (s)
20003 warning(s)
"70FF 00255 program bytes generated
.21172 00370 data bytes allocated
516D2 05842 bytes used for symbols
TBEEP2
PROCEDURE TBEEP2
0000 @ ({* —————————————— e
0032 * TBeep?2 is a test driver for the device driver
0062 ﬁ BEEPER. It loads BEEPER with a wave form
882; ; then sends 1t a few more characters to test the tone.
00F9 *
OOFC * Note is an array which contains the values which will be sent to
013F * the D/A to form a note
0158 *
015B DIM NOTE (360) :BYTE
0167 DIM I,J,K:INTEGER
0176 DIM SOUND: INTEGER \(* Path number for A/D
0193 DIM M AGNITUDE%FREQ INTEGER \(* variables used to form the waveform
01C4 DIM C:BYTE \(¥t111t one-byte variable
8%53 DIM CMD:STRING \(waveform command
0204 OPEN fSOUND "/BEEP":WRITE
0214 DEG (* Use degrees for angles
022F (* Initialize Note to zeros
024A FOR I=1 TO 360
025B NOTE (1)=0
0266 NEXT I
0271
0272 *
0275 * Build waveform
0286 *
0289 LOOP
OR8B RUN GFX("ALPHA") \(* make screen printable
Q280 (* Get parameters for a sin wave
"‘0EZD0 INPUT "MAGNITUDE* " ,MAGNITUDE
g%;g‘ INPUT "FREQUENCY: " , FREQ
Hyv30Y * add the sin wave to the wave in NOTE

Tz 0S-9 User Notes Volume I

100

(-k

FOR I=1 TO 360
NEQ%T§(I)-NOTE(I)+HAGNITUDE*(1+SIN(I*FREQ))
¥

: Display the graph

RUN GFX("MODE",0,1)
FOR I=1 TO 180

J=NOTE (I*2)-2

K=J+4

IF J<O0 THEN J=0

ENDIF

J=J*2

K=K*2

IF J>192 THEN J=192

NDIF

E
IF K>192 THEN K=192
ENDIF
RUN GFX("LINE",1,J,1,K)

NEXT 1

* Display a little bit of the next cycle
: to demonstate the the wave is continuous

FOR I=181 TO 255
J=NOTE(¢I~180)*2)-2
RK=J+4
IF J<0 THEN J=0
ENDIF
J=J3%2
K=K*2
IF J>192 THEN J=192
ENDIF

IF K>192 THEN K=192
ENDIF

RUN GFX("LINE",I,J,I,K)
NEXT I

* There is no prompt because the screen is full of
* %raphzcs, but enter Y<CR> A<CR>, or N<CR> after
: he graph has been drawn

INPUT CMD
EXITIF CMD="Y" THEN
ENDEXIT
IF CMD<>"A" THEN
FOR I=1 TO 360 \(* The waveform is bad,
NOTE(I)=0 \(* zero it and start over
NEXT I
ENDIF
RUN GFX("CLEAR')
ENDLOOP
RUN GFXE"ALPHA")
RUN GEX("QUIT™) ‘
C=0 \(* a zerp tells the driver to use the next 360 characters
PUT #SOUND,C \(* to build a new form
PUT #SOUND,NOTE \(* send the new form
P&IN "“STARTING SOUND"

: Send a few beeps of different lengths
FOE %=100 TO 250 STEP 50

PUT gSOUND,C

GOSUB 100
PRINT "END OF LOOP ",I

NEXT I
END

*
g: Delay a little

FOR J=1 TO 500
NEXT J
RETURN

Column Fourteen

93

94 0S-9 User Notes Volume I

COLUMN FIFTEEN

THE 0S-9 SEMINAR

I went to the 0S-9 users seminar last sum-
mer, so did ailmost every person I‘ve heard
of in the 0S-8 community. It was interest~-
ing walking through the exhibit bhall and
listening to the speakers. The thing that
makes me willing to go halfway across the
country to take part in the seminar this
summer is the fun I had 'ast year talking
with other 0S-9 people. Most of us, myself
included, spend our lives in a world where
every other microcomputer user thinks the
world ends right past PC-D0OS and CPM. Last
summer I fairly wallowed in the pleasure of
being with hundreds of people who shared my
interest in 0S-9. wWe argued, agreed, com-
plained, puzzled, and applauded about
things that are dear to 0S-S users (and not
many others). :

If you need a practical reason to spend
a long weekend in Des Moines. bring a ques-
tion with you. If you have been itching to
show the person on the Microware hotline a
problem that he can‘t reproduce, he’'ll be
there. Go demonstrate the problem your-
self. If you want to suggest that (S-S
badly needs a WALL command you can probably
find someone important and back him into a
corner about it.

A1l the 1important vendors were there
last year -- 1 assume they‘11 be back. If
they come, you’ll be able to check the
Smoke Signal version of 0S-8 for compati-
bility with other versions. Try a few
things on the GIMIX III. I hope Privac
comes again; their graphics board is much
more impressive in motion than in an adver-
tisement. 1 imagine there’ll be a bunch of
new vendors there showing CoCo products.

The vendors and Microware staff not-
withstanding, the best piace to .look for
answers will be standing or sitting beside
you (very likelv at breakfast or some other
improbable time). Last year 1 found the
other users at the Seminar a mine of useful
information. If you are a vendor, go to
the Seminar even {if you don’t have a booth.
It is a great place to test the water.

The Seminar is a businesslike affair,
but it is also something of a party: Jeanne
Kaplan’'s party. Everyone who has dealt
with Microware for any length of time knows
that Jeanne 1is &a consummate organizer.
Last year everything ticked along smoothly
despite the fact that she must have been
slowed down a little by the child she wa$s
about to have. Last year Microware hosted
a banquet and a fancy brunch. The Governor
of Iowa came and gave us a little talk over
dinner. Ken Kaplan handed out prizes to
individuals who had made particularly dis-
tinguisned contributions to the 0S5-9 commu-
nity. At the brunch more prizes were hand-
ed out. I wonder what is in store for us
this year.

Microware 18 going to give the Users
Group some software for a raffle. I don’t
know just how it will be organized yet, but

the plan is to hand the prizes out at the
Sunday morning brunch.

Last year we heard a 1ot about the new
68000 version of 0S-9. This year we may be
able to see one in action. That’s not
official from Microware, but there are
signs that it may be ready.

I guess it sounds l1ike I’‘'m advertising
the Seminar. I suppose I am. I wouldn’t
miss it for the world, and I hope 1’11 see
you there.

OFLEX

Just today I received a copy of OFlex.
This program runs Flex as a process in an
0S-8 Level Two system. I'm afraid it’'s
been too long since 1 used Flex with any
regularity for me to give the program a'
good workout. Still, I ran a few Flex pro-
grams and checked out the interface to
0s-9.

I remembered from *“The Soul of a New
Machine" that Adventure was an important
test used on new hardware. I have a ver-
sion of Adventure which runs under Flex, soO
I ran through a dozen rooms or so with it
and grabbed two or three treasures ... no
problem. I compiled a Pascal program using
the TSC Pascal compiler with no difficul-
ties except some trouble remembering how to
use Flex.

Part of the OFlex package is a program
called XCOPY that runs under OFlex. XCopy
can copy from 0S-9 files to Flex files and
back . I tried every combination 1 could
think of and couldn‘t make it fail. That
brings up the one important failing I could
find in OFlex; there is no FORMAT utility.
I guess FORMAT is too near the hardware to
run in what amounts to a virtual machine.

OFlex can read and write Flex disks.
It can also format files on an 0S-8 disk so
the files can be treated as Flex disks by
OFlex. The files are accessed through a
command called ASNDISK. Using ASNDISK,
files can be associated with each disk num-
ber (1 through 4). This is a useful fea-
ture for Flex. I shudder to think of the
problem it would be dealing with a hard
disk full of Flex files. With OFlex the
hard disk can be broken up into many small-

er virtual disks giving manageable bunchs
of files to work with.

OFlex isn‘t reentrant. This is sad,
but, as I remember it, many Flex programs
change flags and pointers inside Flex.
Because it 1isn’t reentrant, each instance
of OFlex running under 0S-8 needs a full
60K, but, if the memory is available, many
users can run DOFlex on the same machine.
This could be viewed as an easy way of get-
ting multi-user Flex.

OFlex 1is 1icensed from TSC and Frank
Hogg Labs. As far as 1 can tell {1t is reg-
ular Flex with modified 1/0 which feeds
into 0S-9. It ran the programs 1 tried
flawlessly, but 1 know of several Fiex pro-
grams (I‘ve written some myself) which use
memory-mapped 1/0 directly instead of going
through Flex. They won’‘t work under OFlex.
Anyhow, If you have 0S-S and you wish you

Column Fifteen 95

¢ould run most of your old Flex programs,
‘r at least read the old disks, DFlex will
< what you need. If you have no particu-
iar need for 0S5-9 but figure DFlex might be
an improved way to run Flex, you must be
very brave. It is an improvement over reg-
ular Flex 1in several ways, but one day a
program you desperately want to run won‘t
work with this mutation of Filex. In any
case try OFlex with your software before
you rely on it.

NEW MANUALS

I got a stack of new 0US-2 Manuals last
week . I'm not an authority on most of the
0S~-9 Manuals, but I‘’ve practically memor-
ized the System Programmer’s Manual. The

new manual 1s a big improvement over the
old one. There is a section on memory man-
agement for Level Two and a section on
pipes with a few assembly language exam-
ples. The Level Two Service Reguests are
in with the other requests, not isolated in
an appendix. Speaking of Service Requests,
the manual goes 1into a good deal more
detaii than it used to on some of them.
The explanation of Chain takes more than
two pages. Exit takes about a page and a
quarter, as does Intercept.

The new manual contains lots of useful
snippets of code demonstrating tricky
points. I was particularly pleased to see
five chunks of about ten 1ines each that
cover the most obscure parts of an inter-
rupt driven device driver. 1 believe those
chunks of code were taken straight out of
+the ACIA device driver.

Microware has been producing steadily
ocetter manuals for the last two years. The
~ew Systems manual is their best so far.
f it had been available last January, I
+ight never have seen a need for this col-
amn .

C FUNCTIONS

1 have been working on a program to
mocdel a problem in distributed systems for
a course I am taking. I needed some func-
tions to manipulate floating point numbers
as a separate mantissa and exponent. 1
spent most of an evening fussing around
with assembler before 1 gave up and wrote
the functions mostly in C. It was such a
frustrating experience that 1 decided to
include them in this column. I wrote frexp
and modf to duplicate functions that are
part of the UNIX math 1library.

Frexp returns the mantissa of val as a
double less than one, and stores the expo-
nent in the integer pointed to by eptr.
The exponent s for a power Of two; that
is, the number was (val=x*2%*exp).

Modf separates a double into an integer
part and a fractional part. The integer
part is stored at the address in ptr (as a
double), and the fractional part is
returned {also as a doutie).

I wrote most of the code for these

functions in C because 1 couldn’t do it in
assembler. I certainly triad, but Micro-

96 0S-9 User Notes Volume I

ware C uses lots of internal subroutines
and a special statiC Storage location
called flacc (floating point accumulator)
to do floating point calculations. I bhad
lots of trouble finding the floating point
number and returning the number to the
caller. As you can see from the progranms,
my solution was to use C to do everything
in modf, and to find val and return a value
in frexo.

THE BUTTERFLY

It looks 1ike the Computer Science
Depar tment here at the University of
Rochester is going to get a computer called
a Butterfly. It is named after the network
used to connect 1its processors together.
The Butterfly that will be coming here has
128 68000 microprocessors. Each 6800C has
at least 512K of memory and, potentially,
its own buss. They are all able to read and
write one another‘s memory. I hear that
this computer will have the fastest
instruction rate in the world. Df course,
instruction rates are an almost meaningless
measure, but won’t that be a marvelous com-
puter to develope parallel algorithms on!
‘It‘s coming with a UNIX-1ike operating sys-
tem. but I can‘t help but wonder whether it
could run DS-9.

DYNASPELL

Last summer at the 0S-8& Users Seminar 1
met Dale Puckett at dinner -- bpefore we
were both elected as Users Group officers.
I had been a 1loyal user of Dynaspell, a
program written by Dale Puckett, but I
wasn’t entirely happy with it. In fact 1
had written a very mixed short review of 1t
in this column. During dinner I made Dale
sit through a careful expianation of my
criticism of his program, anc a long dis-
cussion of what I thought a spelling check-
er should do.

Dale was very patient with me. He even
encouraged me to go into more depth about
my ideas for the perfett spelling checker.
I told him that I would write a new, more
complete review of Dynaspell {f he would
send me a version that deserved fresh con-
sideration. Some months Jlater 1 got a
package from Dale including something pret-
ty close to my dream spelling checker. we
went through some iterations working out
various problems. Now 1 owe Dynaspel® a
review. I have been very siow apout writ-
ing that review, sO let me summarize here.
I‘11 go 1into more depth another month.
Dynaspell isn‘t perfect. but I haven’t been
able to find any bugs in the latest ver-
sion. It is much faster than the early
version I had. It is able to l1ook near
misses up 1in 1its dictionary and suggest
corrections when: - it suspects a spelling
error.

My remaining complaint about Dynaspell
is that the new features don’t go far
enough. The "look up" feature 1isn‘t as
selective as a would 1like. It often finds
more possible spellings for a word than it
can fit on the screen. On the other hand
it sometimes doesn’‘t search widely enough
to find the correct spelling for me. 1

also wish it would give me the features of
a screen oriented text: editor when it finds
a spelling editor. Dynaspell has a mode in
which spelling errors can be viewed in con-
text, but the context it shows is a screen-
full of the document up to and including
the word in error. I would 1ike to be able
to move forward and backward throught the
document, and to change words other than
the one in error.

1 used my early copy of Dynaspell
because I need a spelling checked badly and
it was the best I had. I use it more often
and more happily now. It is one of the
best spelling checkers I know: mainframe
programs included.

A NICE EXPERIENCE

Early last summer 1 bought a TeleVideo
870 terminal. They were jus: becoming
available on the market; in fact. I had a
hard time finding one. It seems the boat
bringing a large shipment in from overseas
had sunk. I’'m not certain] believe that,
but it was definitely difficult to find one
to buy. I finally found one, got it home,
and started using it. Nice terminal. Big
screen, nice keyboard. Almost too flexi-
ble.

After about a week ! started finding
bugs. A few commands didn’‘t work right. 1
called the number in the manual and talked
to an engineer. The next day I got a pack-
age via Federal Express with new firmware
ROMS . That wasn’t the end of the problems
with the terminal. I‘’'m one of those annoy-
ing people who reads the entire manual then
tries ail the strange combinations of com-
mands just to see what they will do, and
the 970 has a manual about two thirds of an
inch thick. The last time I called them I
told them that I needed a feature which was
documented 1in the manual, but which the
errata with the manual said was not imple-
mented (downloadable fonts). Without a com-
plaint they sent me a whole new logic board
which supports that feature.

1 don‘’t think I would recommend the
Televideo terminal to most 0S-9 users. The
terminal costs over a thousand dollars.
That makes it hard to justify when a ade-
guate terminal only costs five or six hun-
dred doilars. For those who take terminals
seriously, it is worth what it costs. It
supports ANSI standard and VT52 control
sequences, and includes about every feature
1 can imagine except full graphics (they
say that‘s coming).

The best thing about the 870 is the
excellent support TeleVideos gives. Many
large vendors seem to lose interest after
they sell you their product. TeleVideo has
gone out of their way for me again and
again.

TRICKS FOR LEVEL TWO

I just learned about 0S9P3 in the new
0S-9 System Programmer’'s Manual. 1 have
often wished for an easy way to add System
Service Requests to 0S-9. Under Level One,
it isn‘’t too hard, but under Level Two it

has required either slight of hand or very
strange practices. Only modules running in
the system address space can add Service
Requests, but 0S-9 doesn’t include a way to
run a process in the system address space.
1 have run device drivers and file managers
just to add Service requests, and consid-
ered renaming 0S9P2 as 0S9P21 and adding my
own 0S9P2 which will 1ink to and call
osepP21.

Microware has included something 1ike
that last trick in Level Two. After 0S9P2
is finished initializing (all it does is
set up a list of Service Requests) it tries
to find 0OSSP3. There is no O0S9P3 unless
the user adds it to the boot file. so it
generally fails to find the module, but if
it finds OSS9P3 it executes it as a system
module. This opens up lots of interesting
possibilities.

Other interesting possibilities are
suggested by the SS.SIG and SS.Relea SetS-
tat codes. SS.SIG instructs 0S-9 to send a
specified signal when data is ready from a
path. The easy use for this is to wait for
output from several paths at once. This is
especially good for things 1like "modem"
programs that need to wait for input from
two paths simultaneously. without this
SetStat the only way to handle that problem
was to poll both paths.

It isn’t difficult to write a program
that polls a number of paths. In fact,
polling is the way most of the more primi-
tive microcomputer operating systems work.
The problem with polling is that it wastes
tremendous amounts of CPU power. I seldom
type faster than 2 characters per second.
If a program has to poll for my input it
will look for something to read thousands
of times before it gets anything.

With SS.SIG it should be possible to do
a couple of SetStats and wait for a signal.
while an 0S-9 program waits it uses essen-
tially nothing but memory. This should
make modem programs ang other programs with
similar problems much more efficient.

The other use I can think of for SS.SIG
is to solve the problem that devices can’'t
be preempted. If you have a system with
more than one terminal you have probably
noticed that {f you send a message to
another terminal, the message waits until
the user at the other terminal types a car-
riage return. That’'s because there is a
program (e.g. the shell) trying to read
from that terminal. Until the read is fin-
ished 0S~-9 won‘t allow any process to write
to it. SS.SIG gives us a way to break that
deadlock by not leaving a read active.

I have included a trivial program which
demonstrates the use of the SS.SIG setstat
with this Column. It doesn’t do anything
useful =~- just copies lines from standard
input to standard output. The exciting
thing is that it works! I ran tstssig on
one terminal; typed a few lines into it to
make certain that it worked; left it at its
prompt, and went to my other terminal. I
typed

Echo Hi there >/term

on the other terminal and it appeared imme-
diately on the terminal running tstssfig. I

Column Fifteen 97

went back to the terminal running tstssig
and typed a blank. The blank caused a Ss19-
nal to be sent to tstssig letting it pro-
ceed to the I1%$ReadlLn. Once the read was
“up" /term was ‘locked. 1 tried to send
another message to /term and found that 1
tad to wait until 1 typed a carriage return

98 T-9 Urar Notes Volume 1I

on /term before the message was delivered
and the echo command completed.

I wonder whether the SS.SIG trick
should be used as a matter of policy when
long waits for input are expected.

TSTSSIG

Microware 0S-9 Assembler 2.1

tstssig - Test SSIG set stat

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
000

000

oooo

04/11/84 21:58:57

Page 001

nam tstssi
. ttl Test SSIG set stat *
* Test SS.SIG SetStat Service request. *
* This program will copy lines from standard input *
* to standard output without tying the device x
* used for standard input up with a read, or using *
i excessive amounts of CPU time by polling the *

%
*

standard input

tstssig has no

Type
Revs
StdOut
Stdln
SSCode
LineSiz
Stacksiz

87C€D0072

54737473 TstNam

01 Edition

3D3DBE Prompt

. PromptlL

*

%
IntNo
Line
MemSize

Sekkdkdedek Entry

*

%*

308D0050

103F09
Loop

308DFFF2

108E0003

8601

103F8a

2536
StrtRead

8600

C601

103F8D

2516
DoEcho

3041

108E0064

8600

103F8B

2520

8601

103F8C

2519

20D2
DoSSIG

Cé6lAa

8E0004

103F8E

8E0J00

103F0A

00

Cl04

27CD

43

2000

path.

*
b

practical use that I can think of. *

IFP1
ENDC
set
set
set
set
set
set
set
mod
fcs
fcb
fcs

rmb
rmb
rmb
equ

leax
0S9

cmpb

coma
bra

t+1

use os9defs

bé t+Prgrm
n

code used to indicate input wa

TstLen,TstNam,Type,Revs,Entry,MemSize

{Tst551g/
[==>/

*-Prompt

LineSiz
Stacksiz

Set up signal intercept trap

Trap,PCR
FSIcpt

Prompt,PCR
PromptL
StdOut
SWrite

Error

?Stdln
#SS.Ready
I$GetStt
DoSSIG

Line,U
f#LineSiz
#StdIn
ISReadln
Error
{{StdOut
ISWritln
Error
Loop

#/55.5SSIG
#SSCode
ISSetStt
#0

SSleep
IntNo
{#{SSCode

trtRead

Error

Save the signal from the trap
Storage for a line to echo

Address of Interrupt trap code

Write the prompt

any data ready?
No; wait for a signal

Read a line

and echo it back out

Go prompt for the next line

setstat function code

Sleep until an interrupt comes

set carry

Column Fifteen 99

Microware 0S5-9 Assembler 2.1 04/11/84 21:59:04
tstssig - Test SSIG set stat

Page 002

EOF isn't an error

save the interrupt code

00073 0064 Error
00074 0064 C1D3 cmpb #ESEof
00075 0066 2601 bne Exit
00076 0068 SF . clrb
00077 0069 Exit
00078 0069 103F06 0S9 FSExit
00079 7‘r7\'7\'7“*3’ % ook ook dle ok o ok
00080 * Trivial Interrupt trap
00081 *
00082 006C Trap
00083 006C E7C4 stb IntNo, U
00084 006E 3B rta
00085 006F 8AD34F emod
0co86 0072 TstLen equ *
FREXP
1 double
2 frexg(val siptr)
2 dog e ga K
nt *iptr:
s 1 P
6 register double *rp;
g inf exp;
9 rﬁ = &val;
%? P at this point U contains the address of val */
asm
12 '1db 7,U §et C exponent
13 addb Jl
14 sex
15 std save exp
16 1lda %12
17 sta
18 #endasm
20 *
= exp.
21 fegurn(valg;
22

MODF

and stores the in

y by ptr.

#define MAXLONG 134217727

double
modf (val,ptr)
double val, *ptr;

double tmp;:
if(gal > MAXLONG)
*ptr = val;

) return(0.0);

= yal - th9
return(tmp)

BN NI A DD 1 1 s b b st b s
R O\OO IR W= OW OO~ I L B WNI—

Q0 -9 User Notes Volume I

/* modf returns the gosxtxve fractional part of val.
eger part in the double pointed to

tmg = (long)val; /* truncate to int by coercion to long™/
r

COLUMN SIKTEEN

STANDARDS

Several months ago I mentioned Smoke’s
special version of 0S-9 Level Two in this
column. The questions I posed about its
compatibility with Microware 0S-9 stirred
up a lot of commotion, but thanks to Don
wWilliams’ intervention no blood was shed.
Smoke Signal has agreed to give customers a
choice of the accelerated Smoke version of
0S-9 or the Microware version. 1 think
Smoke Signal deserves much credit for
offering their customers this alternative.
Some, perhaps most, people who use 0S-9
need extra speed enough to take the risk
associated with a version of 0S-9 not just
l1ike everyone else’s. Cautious people
(1ike me) can ask Smoke to send them the
Microware version of 0S-9.

It probably seems strange that I, a
person who 1ikes to fuss with operating
systems, should get so worked up about
changes to 0S-9. After all, I enjoy adding
non-standard features to 0S-9; I even pub-
1ish some of them in this column.

Let me examine the question of stan-
dards from a few points of view. There are
things to be said for ignoring standards:
mostly that ignoring existing standards is
the way new, improved ones are born. How-
ever, consumers find standards convenient,
and producers typically find standards cru-
cial.

Good examples of standards that beg to
be ignored can be found in the busses
invented in the early days of microcomput-
ers. Engineers I know agree that the S-100
bus is poorly designed. They would love to
be able to make a few changes to its speci-
fications. Our own SS-50 bus has gone
through some evolution, but extending the
address space beyond a megaby te will
require further changes to the standard.

I don’t know hardware very well, but I
imagine electrical engineers learn to work
around standards about the same way pro-
grammers do. Strict adherence to standards
even when they have been outgrown often
results in a "kludge." Either the old code
is left there and a new structure built on
top of it, or it is entirely replaced with
code that does things “right." and adher-
ence to the standard is added on as a spe-
cial case, something ugly hanging off the
side of the new idea. Both of these solu-
tions 1ook like poor design.

IBM is a good example of a company, in
fact an industry, caught on a horns of a
standard. Years ago they invented the 360
architecture, a computer architecture that
they used for all their computers. The
idea of having a 1ine of compatible comput-
ers caught on nicely. Later, they extended
the 360 architecture to include virtual
memory and a few other goodies, giving the
370 architecture. It was also Quite suc-
cessful. Customers seemed tO appreciate
being able to move to more powerful comput-
ers without rewriting any software. Most
recently, IBM produced XA, an extension of
the 370 architecture which 370 customers
can move to relatively painlessly.

While these hardware changes were going
on, operating sysStems were being improved.
Programs that ran under MFT (an old operat-
ing system for 360s) should run with no
important changes under the latest version
of MVS. This level of compatibility exists
only because IBM has stuck grimly to its
standards. This practice has brought them
success, but not critical acclaim. I know
operating system experts who pretend to
feel sick when MVS is mentioned =-- with
some justification. That operating system
contains layer after layer of history. In
some places the complexity is so thick it
is practically impossible to figure out
what the programmer was trying to do. 1
imagine that, if the effort which goes into
adapting MVS and 370 architecture to modern
needs were directed toward designing new
hardware and software, the result would be
much faster and more useful thar IBM's cur-
rent 370-type products. 1 bet there aré
numerous engineers and computer scientists
at IBM who yearn to junk the old standards
in favor of something better.

Standards 1ike S-100, SS-50, and
360/370 architecture have tied manufactur-
ers to dinosaurs. They can’t depart from
their standards without hurting, and per-
haps 1losing customers. The big computer
and software manufacturers probably have
mixed feeling about standards. The consum-
ers of their products feel about the same
way.

It is hard to resist a sexy new comput-
er or piece of software. The non-standard
offerings are frequently faster and in var-
ious ways better tham the more conservative
ones. The problem is that non-standard
computers or operating systems are risky.
The excitement of being the only person in
the state with some fast, elegant operating
system fades fast when you have troubles
with software availability.

We are lucky to be using hardware and

sof tware that have good standards. CoCo
users are dealing with only one vendor and
one machine. It is a shame Tandy didn’t

decide to use the same disk format all the
other 0S-S9 systems do, but at least that
problem is well known. It should be easy
to exchange software and hardware between
CoCos.

The S5SS-50 bus is also a good standard
which has been carefully respected by the
vendors that support it. I ran my Gimix
disk controller board with a SWTPc CPU
board and memory boards from three differ-
ent sources for about a year with no trou-
ble. If all those manufacturers hadn’t
respected the SS-50 standard, I couldn’t
have done that.

Microware 0S-9 is solid across all the
machines 1 know of. It is even possible to
move from Level One to Level Two without
changing software (provided the programs
were written to appropriate standards). An
0S-9 user can trade from a CoCo to a Helix
to a Gimix III system without rewriting any
programs excepi where they use special 1/0
features of each computer (1ike graphics on
the CoCo). A software house can use their
Gimix IIl system with its high speed and
debugging facilities to develop software
which will run on a CoCo. Usually we can
order software without paying attention to
the manufacturer of our machine.

Column Sixteen 101

The standards within 0S-9 are as 1mpor-
ant as the 1interface to user programs.
e device drivers and other system modules

include with the column occasionally

“~ould run on any 0S~9 system with suitable
hardware. I rely on Microware to stick
¥with the interfaces between system modules
that they have specified. If 1 ever find
the money for {it, I will be able to buy a
graphics board for my system. If the ven-
dor is selling it for the 0S-9 market, it
will come with software to hook it into my
system. That software will almost certain-
ly work because its author wrote it and
tested it on a system with the same i1nter-
faces between system modules as mine.

Programmers have the most to gain from

carefully followed standards. If someone
buys a program that doesn’t run on his com-
puter, he will complain -- maybe return the

program. This §is a problem for the consum-
er, but for the author of that program it
is a disaster. Imagine what it woulc feel
11ke to spend *thousands of hours creating a
masterpiece of a program, then discover
that it would only run on a few of the com-
puters you had counted on for your market.
wWith Microware 0S-9 on any supported com-
puter a programmer can be confident that
that won‘t happen.

Programmers would 1ike to see more
s tandards tn the 0S-89 world. I have wished
and worked for a standard terminal inter-
face for a year now. It is a shame that
each programmer who wants to sell his pro-
grams has to invent a way to adapt his pro-
gram to whatever kind of terminal it might
encounter. A standard here would save days
in program development time for each pro-
aram that used it, encourage more program-
mers to use terminal features supported by
the standard, and give purchasers confi-
dence that a program would work with their
terminals.

STANDARDS THAT ARE THE USER'S
RESPONSIBILITY

If your system comes to you non-
standard in some way, you should complain
to the person responsible. Once you have
it, it’s your baby. You can generate addi-
tional standards to simplify your system,
or let chaos grow in your system.

Several areas come to mind as good
places to institute standards. Directory
structure is an especially good place to
devise a standard. If you write a 1ot of
programs, you may need 2 naming convention.
A set of standards for documentation might
help keep it up-to-date.

There are two policies that can be used
to guide the construction of directory
structures. The directories can be
arranged by what the contents are (pro-
grams, text, spread sheet info.), or by
what they are for (sort programs, house-
hold, User Group files}. Each method has
its charm. 1 use both, each where it seems
appropriate, but I wish I had decided early
which way I wanted to go and stuck with it.
Somet ' mes I have to search for minutes
before 1 find a file I haven’t used in a
few months.

102 0S-9 User Notes Volume I

It is a good question whether documen-
tation for a project should be in the same
directory with the source of programs for
that project, in a sibling of that directo-
ry dedicated to documentation for several
projects (or just for a single project), or
in a directory which is the child of the
directory with the source in it.

Some people think that directories
should contain either only other directo-
ries, or only data files. 1 don’‘t think 1
like that idea, but I can see some value in
it.

Program names deserve serious thought.
The shorter they are the faster they can be
typed. It is easier to type L than LIST,
but the shorter names are the more cryptic
they become. LOOK or LOGOFF could also be
abbreviated L. It has to be clear what the
abbreviation stands for. It makes sense toO
me to give short names to frequently used
programs. The names of the commands will
stay fresh 1in the mind if they are fre-
quently used even if they aren‘t very mne-
monic. Less frequently used programs
should have longer names both to save short
names for more freguently used commands,
and to jog the memory about their function.

THE USERS GROUP

The 0S-9 Users Group plans to submit a
1ist of "regquirements” tc Microware at the
05-9 Seminar this summer. If you bhave
spotted a flaw tn Microware’'s software that
you think is of general interest, or would
like to suggest that a new feature should
be added to one of their products, this
would be a good way to bring it to Micro-
ware’s attention. Submit your suggestion
in writing to the Users Group early enough
that it will reach us at least a few weeks
before the Seminar. Please keep it to
about a page or less. We will have copies
of all the suggestions available at the
Users Group booth at the seminar. The sug-
gestions will be discussed at the Users
Group meeting and those about which we can
reach a consensus will be given to Micro-
ware. we will try to get an official
response to each suggestion from Microware
-- something like: impossible, not inter-
ested, will do, wonderful suggestion, or
already done.

There has been some call recently for
information for the beginning user of 0S-8,
Color Computer users new to 0S-89 feel
swamped by the number of details involved
in the operating system. This column is an
attempt to make 0S-8 seem Simpler to new
users.

The DS-9 operating system has started
to cevelop a reputation for complexity and
obscurity =-- in other words, user hostili-
ty. It is an unjust accusation. The thing
that makes D0S-9 appear confusing is the way
it 1is presented. There are many subtle
features in the operating system, and a
large array of utilities. The manuals that
come with it could help but don’t. The
0S-8 manuals were written as reference man-
uals, not tutorials. They drop everything
on you at once. A new 0S-9 user who is
experienced with computers or very brave
should read the manuals, wrap his mind
around the whole thing. and sit down at the
computer to enjoy 0S-9. That is the quick,
brute force, way to learn 0S-9, but if it
doesn’t work for you, 1 recommend a gentler
approach.

My copy of CoCo 0S-8 includes about
fifty commands. A1l these commands are
important to at least some people, but most
of them are only confusing to to new 0S-9
users. The entire English 1anguage
includes more than a hundred thousand
words, but most people only use fewer than
twenty thousand of them, and it is possible
to communicate with a vocabulary of a thou-
sand words or less. Dperating systems 1like
Unix and 0S-8 are much 1like English in that

respect. Of all the commands available
under 0S-9 about a dozen are really neces-
sary. The bare minimum set of 0S-9 com-

mands are:

. backup
. copy

. del

L4 dir

. edit

. format
. free

. list

. rename
. shell

The shell is the program which processes
the commands you type into 0S-9 and runs
the other commands. Several commands are

buiit into the shell. They are:
. chd

. chx

. ex

» W

. kil

® setpr

The only shell commands that you really
need to know are cho and chx, If you mean
to do assembly language programming Yyou
will also need:

. asm

. debug

If you will be using Basic0OS you will need:

. BasicQ8
. RunB
° GFX

Of all these commands there are four
that need explanation especially badly.
Format needs to be discussed because it is
dangerous; if it is used carelessly it can
destroy important information. BACKUP is a
relatively fast way to copy an entire disk
(it is a good thing to get into the habit
of doing this); perhaps a careful discus-
sion of BACKUP will encourage people to use
it more. Explaining DIR is a good excuse
to say a few things about directories: an
important feature of 0S-9. CHX ano CHD
also relate to directories, and seem
straightforward. what they are supposed to
do matters less to a person with a 0S-9 on
a small computer than their unofficial side
effects.

FORMAT

The format command is the first one to use.
Until a disk has been formatted it is unu-
sable to 0S-8. The format command writes a
pattern on the disk which marks the disk
off into sectors (which amount to pigeon-
holes for 0S-89 to store data in). After
writing the pattern format checks the disk
to make certain the pattern is recorded
correctly on the disk. If it isn’t, format
will note that the sectors where the errors
occurred are faulty, and those sectors
won’t be used to store data. Format also
writes some information which will be used
to manage files on that disk. In the pro-
cess of doing all this the format program
completely erases the disk. If the disk is
fresh out of a box of new disks you can
feel certain that there is nothing on the
disk that you care about, but, if it is one
you are recycling, be careful. After for-
mat is started any data that was on that
disk is gone forever.

Put the disk you want to format in the
drive you aren‘t using for the system disk
(I‘'m going to assume you have your system
disk in the drive 0%-9 calls /DO, and the
disk you want to format in drive /D1).
Invoke the format command by typing FORMAT
/Dt at the 0S-S prompt. The command 1ine
should look 1like:

0S9:FORMAT /D1

to which you should get the response:

Column Seventeen -- The First Step Into OS-9 103

COLOR COMPUTER FORMATTER
FORMATTING DRIVE /DI
Y (YES) OR N (NO)
READY?

this is format giving you a chance to
change your mind. It is also a way for you
to format disks if you only have one drive,
by asking format to format the disk in
drive /DO and replacing the system disk
with the disk you want to format in at this
point. In e:ther case double check that
you are about to format the correct disk.
If you want to be especially safe take your
svstem disk out of drive /DO at this point
even 1if you are formatting the disk in
drive one. There is no danger of format
writing on the wrong disk, but you can’t be
too careful, If you reply N to the READY?
prompt format will quit immediately leaving
the disk 1intact. If you reply Y, there
will be a pause (23 seconds on my CoCo),
then format will prompt you for a2 name for
the disk. The prompt will look 1ike:

DISK NAME:

At this point enter the name you have
assigned to the disk. The name can be up
to 32 characters 1ong and may include
blanks. Follow the disk name with an
ENTER. Format will now check the disk. As
it cnecks each track on the disk it will
write the track number to the screen in
hexadecimal (base 16). If you have a thir-
ty five track drive, the numbers will be
from OO0 to O22. Then format will print
the message:

NUMBER OF GOOD SECTORS: $000276

if the numper is smaller than 276 (a base
16 numper which is 630 in decimal) some
sectors were faulty.

If you want to demonstrate to yourself
2t format did something to the disk try
e FREE command on the new disk. Enter

ne command FREE /Di. The command 1ine
should l1ook 1ike:

0S9:FREE /Dl
The response should be something like:

disk name CREATED ON 84/01/24
CAPACITY; 630 SECTORS (1-SECTOR
CLUSTERS)

620 FREE SECTORS, LARGEST BLOCK
620 SECTORS

where "disk name" in the first l1ine of the
response will be the name you gave the disk
when you formatted it.

BACKUP

The next command to use after the format
command is BACKUP., It is crucial to have a
backup copy of each software distribution
disk you have. If you make an error that
damages the only disk with an significant
piece of software on 1t you will have to
wait until you can get a replacement for
the disk before you can use your computer
again. Even if the time wasted waiting for
the replacement disk 1isn’t importart to
you, consider that replacement disks cost
money .

102 0S-9 User Notes Volume I

Backup is a relatively fast way to cre-
ate an exact copy of a disk. It has many
options, but the simplest way to use the
command is to just give the command BACKUP.
The command 1ine should look 1ike:

0S9:BACKUP The resgonse will be:
§EADY TO BACKUP FROM /DO TO /DI

At this point put the disk you want to copy
in /PO ancd a formatted disk which has noth-
ing you want to keep on it in drive /D1.
Then check the disk in /Dt BACKUP will
erase anything that’s on that disk. when
you are certain everything is OK type VY.
Now BACKUP will double check with you by
telling you the name of the disk in drive
/D1. The message will look 1ike:

THE DISK
IS BEING SCRATCHED
OK 7: ’

If you reply Y to this, the backup from the
disk in /DO to the disk in /Dt will take
place. The disk in /Di will become an
exact copy of the disk in /DO right down to
the disk’s name.

The BACKUP command takes what seems
like a long time to run. There are two
things that can speed it up. One is to use
the -V option which prevents the copy from
being verified. I don’t suggest that any-
one use this option. The other way to
speed BACKUP up is to instruct 0S-9 to give
it extra memory to run in. BACKUP can use
extra memory to run more qguickly. BACKUP
ran for one minute 58 seconds when I start-
ed it with the command l1ine:

0S9:BACKUP

Normally BACKUP uses 19 pages of memory.
If you give it more -~ say 100 pages --
with the command 11ine:

0S9:BACKUP #100

it runs in one minute 48 seconds. It is
also quieter because the heads on the disks
don’t load and unload as often.

DIR

The command which tells you what files are
one your disks is the the Dir (short for
directory} command. If you just type DIR
after booting 0S-9 you will get a response
1ike

DIRECTORY OF . 23:55:08
OS9BOOT CMDS SYS
DEFS STARTUP

This means that you are listing the current
directory which is known by the pseudonym
"." at 11:55:08 in the evening. The files
in that directory are O0S9BOOT, CMDS, SYS.
DEFS. and STARTUP. Now , in fact only
0S9BOOT and STARTUP are normal files, the
other three files are subdirectories. Sub-
directories are such an interesting topic
that they were the subject of their own
column some months ago. and won’t be cov-
ered any more than absolutely necessary

here. To find out more about the files than
their names use the command DIR E.

0S9:DIR E
which will respond:

DIRECTORY OF . 23:59:57
CREATED ON OWNER NAME
ATTR START SIZE
83/06/02 1921 0 OS9BOOT
------ A 3032
83/06/02 1956 0 CMDS
D-EWREWR 3c 6A0
83/06/02 2002 0 SYS
D—-EWREWR 164 AQ
83/06/02 2002 0 DEFS
D—-EWREWR 17F co
83/06/02 2003 0 STARTUP
—-—=-R-WR 1F5 E

then it will stop because the screen is
full. when you are ready to continue hit
any key I usually press the space bar.
That was the end of the directory., so all
you get after you let the output continue
is 3 few blank l1ines and a new 0S89 prompt.

Two of the fields in the OIR E output
are of no special interest until you become
an advanced 0S-9 user: OWNER, and START.
The first two fields for each file are the
date and time the file was created. The
date is in the usual YY/MM/DD format and
the time is in HHMM format with hours rang-
ing from OO to 23. The attributes field
contains information about what the file
can be used for. The main thing now 1is
that files with a D as the first character
in the attribute field are directories.
Files with a dash as the first character in
their attribute field are normal files.

The other option which can be used with
the OIR command is X. The X option is a
short hand way to get the directory of the
execution directory; that is, the directory
0S-9 searches for programs, like the com-
mands, you ask it to run. The command
line:

DIR X

will give you a rather long 1ist of all the
files in your execution directory. If you
haven’t written any of your own programs,
this will be a 1ist of all the commands and
utility programs which came with 0S-9. You
will probably have to press the space bar
in the middle of the output of this com-
mand. It is more than one page long.

CHX AND CHD

Chx stands for Change Execution Directory,
Chd for Change Data Directory. 0s-8
expects to find all commands, whether they
are part of the operating system or some-
thing you wrote, in the execution directo-
ry. A1l files that you don’‘t mean to exe-
cute are looked for in the data directory.
(There are ways around both of these
restrictions, but let‘s skip that for now.)
After you boot 0S-9 you will find that the
execution directory is /0O0/CMDS and the

data directory is /DO. If you have a sec-
ond drive (I have been assuming that you
do) you will probably want to use that for
data. The command:

CHD /D}

will cause all future references to data
files to look for them on /Di.

To speed 0S-9 up, the location of the
directory file on the disk is kept in memo-
ry. This leads to the side effect of the
Chd and Chx commands. when you read the
directory 05-9 goes directly to the direc-
tory’‘’s location on disk and starts reading

imagine what would happen if you fooled
0S-9 by changing disks. You change disks
and type a command 1 ike

LIST FOO

or even just OIR. Your operating system
will start reading where the directory is
supposed to be. Since the disk with a
directory at the selected spot is sitting
in its envelope and some other disk is 1in
the drive, 0S-9 will find something unex-
pected where the directory was. The result
could be any of several error messages.
The solution to this problem is to always
give 0S-9 a chance to find the directories
on a new disk by giving it Chd and Chx com-
mands as necessary when you change disks.

There 1is one last tricky thing about
the Chx/Chd commands’ special use. If you
keep things simple it will seem that vou
only need to use the Chx command, but this
is just a special case. I suggest that you
learn how to make directories and use them
when you can, but, until you start using
them, the new disks you use to store data
will only have the directory FORMAT auto-
matically creates (called the “root direc-
tory"). The root directory is always at
the same location on a disk. Because of
this special fact about the root directory
0S-9 is always able to find it, and chang-
ing disks that only have the root directory
on them won’t cause any trouble. The exe-
cution directory is usually not the root
directory, so this special case doesn’t
generally apply to it.

The set of commands I have mentioned in
this column might be considered a "starter
set" for 0S-9. The dozens of commands I
left out are certainly worth learning, but
you can get 05-9 working with these few.

OOPS

I neglected to mention a few months ago
that OFlex as reviewed in this column is
available only from Gimix. Richard Don,
the salesman for Gimix, explained the gen-
eology of OFlex to me. It is Flex by TSC
adapted by Richard Hogg to run under 0S-9.
Gimix provides enhanced disk Device Drivers
to support Flex’s requirements, and made
some enhancements to Richard Hogg’s design.
Anyone whu takeus out licanses from TSC and
Richard Hogg cam sell OFlex, but tne ver-
sion 1 reviewed has features added by
Gimix.

Column Seventeen -~ The First Step Into 0S-9 105

106 0S-9 User Notes Volume I

COLUMN EI1GHTEEN

MY LIFE

I‘m afraid this month’s column will be a
little short. I just bought a house.
Nothing major wrong with it, but I'm living
in the first floor while I fix up the
upstairs. Piles of boxes are everywhere,
and it seems 1ike everything I need is in a
box at the center of an unknown pile. This
disorder has not helped me get a 1lot of
computing done.

I don’t mean to turn this column into a
diary, but there are a few other important
items. A kitten is helping me write this.
I got him to help make my house seem home-
like, but he likes to help type. I enjoy
his help, but I hope he will switch to
sleep-in-the-lap mode soon.

This fall I will finally become a full-
time graduate student. I have been stuay-
ing Computer Science part time for years,
but i1t seemed that the field was moving
ahead faster than I was learning it. It is
a scary business gcing back to college
after being a working man for years, but

I'm fairly guivering with eagerness. I
have one more column to write as a free
man, then I will be a student. I think 1

can get permission to keep writing this
column. I hope my studies add some spice
to my writing.

NON-STANDARD HARDWARE

A fair amount of the 0S-8 mail 1 get
asks about special versions of 0S-S. Many
people have old SWTPc systems they would
like to run 0S-8 on. There are also a few
people with home-brew 68089 systems who’d
like to port 0S-9. The news for these peo-
ple is mostly bad.

There used to be a SWTPc version of
0S-9 Level One, but I don’t think it 1is
sold any more. 0S-8 Level Two is sold only
through hardware manufacturers, and SWTPcC
hasn’t licensed it. If you have your own
home~-brew design, you can 1icense 0S-9 from
Microware, but the price 1is ridiculous
uniess you mean to sell it.

Two years ago (or more) Microware used
to sell a generic version of 0S-9 Level
One. You could buy it directly from Micro-
ware and adapt it to whatever system you
wanted. I guess a few people must have
purchased that version of 0S-9 and tied up
Microware’s hotline for days with the trou-
ble they had getting it going. The effort
they had to put into helping people uUse the
generic 0S-9 was more than Microware could
afford, so they dropped the product. This
policy seems to be mainly a way of avoiding
piracy. The theory 1is that if the people
who sell the hardware have to buy the right
to sell 0S-9, they will see to it that peo-
ple buy an operating system insteac of
stealing it.

Officially there is no way to get 0S-9
for your SWTPc, or home-brew machine.
Unofficially, there are ways. An important
features of 0S-8 is its hardware indepen-

dence. The clock and 1/0 devices are han-
dled by drivers. The interfaces to the
drivers are gemneral enough that any reason-
able hardware can be accommodated. Micro-
ware will sell the source to several device
drivers and a few clock drivers. wWith a
copy of 0S-9 for any machine, a working
0S-9 to build the new 0%-89 on, and a col-
lection of source from Microware it should
be possible for an experienced programmer
to adapt 0S-8 to any €6809-based machine I
have heard of.

It isn‘t hard to buy a copy of 0S-9 to
customize. Try a few manufactures. When I
was building crazy systems I did a lot of
business with AAA Chicago. Computing; they
might be able to help you. You don‘t care
what version of 0S-8 you get unless you can
get one that is already partly compatible
with your system. You‘ll have to write a
clock driver, a disk driver, and, if you
use an unusual serial chip, a SCF driver. '
If you want to adapt Level Two, you’ll have
to buy a version of 0S-9 that is designed
for the memory management hardware you
have. Memory management is done in the 0S-S
kernel (0SSP1}. It isn‘t easy to adapt
without lots of source code the kind
of source Microware sells as part of an DEM
1 icense very expensive.

If anyone has 0S-8 running on unsup-
ported nardware le* me know. Microware
doesn‘t officially want to support you, but
they might not object if we set up a func-
tion of the Users Group to help you out.
If there is enough interest, maybe we can
find a reliable source of adaptable 05-9.
In any case, 1’11 report any tips you send
me in this column.

DIRECTORIES AS FILES

A directory is a special type of file,
If they are handled correctly, they can be
opened and used without much trouble. If
you try to list or dump a directory file,
you will have troubie. Directory files can
only be opened using the directory access
mode; and Dump, List, Copy, and most other
0S-9 utilities don‘t use this mcde.

The easiest thing to do with a directo-
ry is to simply read it and copy it to
standard output. The program cailled DLiSst
copies the current directory to standard
output. You can see the contents of the
current data directory by assembling DList
and typing

0S9: DList ! Dump

Directories contain many unprintable char-
acters, so if you don’t use Dump to format
the output you will get gibberish on the
screen, You may even make your terminal do
strange things.

It occurs to me that Radio Shack sells
the least expensive 0S-9 around. Micro-
ware has a few versions of Level One for
Motorolla systems that they can sell.
The Radio Shack 0S-9 has a non-standard
disk format that you can avoid by buying
the more expensive Motorolla software.

Column Eighteen 107

I have a directory with only the file
containing DList 1in it. I ran DList with
the commang 1ine:

0S9:DList ! Dump >tmp

The contents of Tmp are listed in Figure 6.

addr 01 23 45 67 89 AB
0000 2EAE 0000 0000 0000 0000 0000
0010 0000 0000 0000 0000 0000 0000
0020 AEQO0 0000 0000 0000 0000 0000
0030 0000 0000 0000 0000 0000 0000
0040 746D FOO0 0000 0000 0000 0000
0050 0000 0000 0000 0000 0000 0000
0060 444C 6973 F443 4830 B700 0000
0070 0000 0000 0000 0000 0000 0000

Hex dump of a directory

CD EF 02468ACE

- o i oy . e e . e . s T 2 o

0000 01B9cevvnnn.
0000 0000 +.ivvvuvnunnnnnn

®re e e cec e
.

054D vunvnennnnii N
0000 tmp.....vunsnnss

0765iiunnnn
0000 DListCHO7.......
0763

seeesssasecesesl

Each entry in the directory takes two 1lines
in the dump. The first two entries are
self~-referencing. The .. entry is first;
the name ".." (2EAE) is at the beginning of
the entry. The disk address of the file
descriptor {(Q001B9) for the parent of this
directory is at tne end of the entry. The
second entry is for “.* (AE) which is the
alias for this directory. The address
associated with that (000540} points to the
file aescriptor for this directory.

The entry for tmp is for the file I put
the dump into. The last entry looks 1ike
it is for OListCHO7, but if you l1ook at the
hex part of the dump you will see that the
hig~ bit of the "t" is on, meaning that it
is the last character in the string. The
charzacters "CHO7" are an artifact of a pre-
vigus use of the entry for the file
SCRATCHCT.

DLyst could be changed to edit the con-
tents of the directory before passing it to
standard output. The first two entries are
ailways for *." and "..". There is usually
no need to notice them. There can also be
null entries in the directory. When a file
1s deleted the first byte in the airectory
entry is set to $00 making it into a null
entry. DList could check for null entries
and suppress them.

DList2 is an enhanced version of DL1i1st.
It uses 11%Seek to skip the first two
entries, then copies all entries that don’t
start with $00 to standard output.

The next feature to add would be for-
matting the output so it could be reaa
without wusing Dump. The address of the
file descriptor isn‘t likely to be worth
seeing often, so the final program, 1d,
just prints the file names. A useful
directory list program needs to be able to
list the contents of directories other than
the current default SO0 I added that func-
tion. Ld can take a directory name on the
command 1ine. It wouldn‘t be too hard to
add the x option by opening the directory
with the execution attribute, but that’s &g
function 1 didn’t add. The program deter-
mines whether a directory name was given by
checking the length of the parameter area.
If the parameter area is only one byte
long, it only contains a carriage return,
otherwise it contains a directory name ter-
minated with a carriage return.

lo8 05-89 User Notes Volume I

It would be nice to add the "e" option
to the 1d command., but an extended directo-
ry involves lots of numbers and dates. The
code to format all that information would
make a long program. Instead, I have writ-
ten a BasicO9 program that takes the output
of DList2 and generates a more extensive
report. There is room for l1ots of improve-
ment in DFormat; I only print tne file
name. creation date, last modified date,
and file size, and I don’t sort the 1ist in
any special order. Improvements 1ike these
are, as they say. “left for tne reader."

Each directory entry contains the disk
address of the file descriptor sector for
the file. The file gescriptor contains all
the interesting information about a file.
wWe need to read the fi1le aescriptor, but
all we know 1is its disk address. and the
only way to get at & particutar sector on a
disk is with physical-sector 1/0. Normally
physical-sector I/0 is done by opening a
device; e.g. dump /DO&. Since there is no
easy way to find out the name of the drive
the directory is on, the /D06 type Of trick
isn‘t useful. There is an interesting var-
jation on physical-sector I/0 which I
haven’t been able to find documented any-
where. If you open the file €, it will
open the drive the data directory 1s on for
physical 1/0. If you open it for execu-
tion, it will open the drive with the exe-
cution directory on it for physical 1/0.

Since DList2 is feeding this program,
and OList2 can only read the current data
directory, DFormat assumes the directory is
on the same disk as the data directory.

I ysed a useful trick from the UNIX 1s
command. Directory files are indicated by
a "/" after them in the 1:sting from DFor-
mat.

If you have a UNIX-1ike sort program
available the combination of DList2 and
DFormat can be made even more useful. By
sorting on the various fields in the output
from OFormat you can get the 1isting alpha-
betically by name, by increasing size, or
in chronological order.

If you have RunB type DFormat in, save
1t, ang pack it. Then use it with a com-
mand l1ine like:

0S9:DList2 ! DFormat

If you don‘t have RunB, you’ll need to use

something 1ike:

DLIST PROGRAM

Microware 0S5-9 Assembler 2.1
DList - List the Current Directory

OO0 000000O
OOO00O00000O
000000000
e e et b b et b et
(VeTo . ENTo YU, ¥ JUS] N o

00000
00000

004
§OOE9 00233 data bytes allocated

0000 87CD0043

ovooo
o
o
o
—

000D 8?4C6973
2EAQ

FF8

ooy O—WOo0o
e =le kel
00"
&S

m
[o]==]
\le]en]

N

o

(o)
>

o= OOUVLOOVLOOO YNYUOOO
owv'N—wTm

o

o

N

oo
NO DON—ONH-W ON—=Woo
oo ECDCM»CHDU’
—Ww

o
o
w
m
U
e

003D 103F06
0040 69C250
0043

error(s)

warning (s)

type
Revs

DPath
Buffer
Stack
Mensize
Name
Yersion
Dirname

Entry

RLoop

TEof

Error

MEnd

nam
ttl
IFP1
ENDC
set
set
mod

rmb
rmb
rmb
egu

fcs
fcb
fcs

lda
leax
0s9
bcs
sta

leax
1d
0Ss
bcs
lda
0s9
bcs
lda
bra

cmpb
bne
clrb

0S9
EMOD
equ

7 program bytes geherated

223F 08767 bytes used for symbols

0S89:DList2 ! basic09 DFormat

07/13/84 12:07:52

DList

List the Current Directory

PRGRM+0OBJCT
REENT+1

MEnd,Name, Type,Revs,Entry,Memsize

1 Directory path number
buffer for directory entries

32
200
DList/

/
1
/. /
#DIR . +READ.
irname, PCR
1SOpen

Error
DPath

Buffer,U
#32

ISRead

}%Of Std tput
outpu

fswrite P

Error

DPath

RLoop

gESEOF

rror

FSExit
*

return

Column Eighteen

Page 001

109

JLIST2 PROGRAM

1icroware 0S-9 Assembler 2.1
.;iist2 - List the Current Directory

nam
10002 ttl
00003 IFPl
$0005 ENDC
00006 0011 type set
00007 0081 Revs set
00008 0000 87CD0057 mod
00009

00010 D 0000 DPath rmb
00011 D 0001 Buffer rmb
00012 D 0021 Stack rmb
00013 D OOE9 Memsize equ
00014

00015 000D 444C6973 Name fcs
00016 0013 01 Version fcb
00017 0014 2EAO Dirname fcs
00018

00019 0016 Entry

00020 0016 8681 lda
20021 0018 308DFFF8 leax
00022 001C 103F84 0s9
00023 001F 2530 bes
00024 0021 9700 sta
00025 0023 3440 shs
00026 0025 CE0040 du
00027 0028 8ED000 1dx
00028 002B 103r88 0s9
00029 002E 3540 uls
00030 0030 251F ts
00031 0032 RLoop

00032 0032 3041 leax
00033 0034 RLoop2

00034 0034 108E0020 1d
00035 0038 103F89 05
00036 003B 250F bes
00037 003D 6D4] tst
00038 003F 27F3 beq
(00039 0041 8601 lda
00040 0043 103F84a 0s9
00041 0046 2509 bes
00042 0048 9600 lda
00043 0044 20E6 bra
00044 004C TEof

00045 004C C1Dp3 cmpb
00046 004E 2601 bne
00047 0050 5F cirb
00048 0051 Error

00049 0051 103F06 0S9
00050 0054 C80070 EMOD
00051 0057 MEnd equ

00000 error(s)

00000 warning(s

$0057 00087 program bytes generated
SO00E9 00233 data bytes allocated
$224E 08782 bytes used for symbols

110 0S-9 User Notes Volume I

07/13/84 12:08:17

Page 001
DList2 .
List the Current Directory
PRGRM+0OBICT
REENT+1 .
MEnd,Name,Type,Revs ,Entry,Memsize
1 Directory path number
32 buffer for directory entries
200
{DListZK
/. /
}DIR.+READ. file access mode
irname,PCR file name "."
1SOpen
Error
DPath save the path number
U save U
{82*2
ISSeek skip over . and .. entries
U restore U
Error
Buffer,U
32
ISR ead
TEof
Buffer,U null entry?
RLoop2 es: skip 1t and read again
/2! td output
ISWrite
Error
DPath directory path
RLoop read again
#ESEOF Is this EOF?
Error no; error
yes; return happy
FSExit return

%

LD PROGRAM

Microware 0S-9 Assembler 2.1 07/13/84 12:08:29 Page 001
1d - List Files in a Directory

00001 nam 1d) . .

00002 ttl List Files in a Directory

00003 IFP]

00005 ENDC

00006 001! type set PRGRM+OBICT

00007 0081 Revs set REENT+l

88888 0000 87CD0072 mod MEnd,Name,Type,Revs,Entry,Memsize
00010 D 0000 DPath rmb 1 Directory path number
00011 D 0001 Buffer rmb 32 buffer for directory entries
00012 D 0021 Stack rmb 200

00013 D OOE9Y Memsize equ .

00014

00015 000D 6CE4 Name fcs /1d/

00016 OO0OF 01 Version fcb 1

00017 0010 2EAQ Dirname fcs /. /

00018

00019 0012 Entry

00020 0012 10830001 cmpd #1 length of parameter string
00021 . 0016 2204 bhi irNGivn

00022 * If more than one byte of parameters) "
00023 * assume file name on command line. Otherwise use ".
00024 0018 308DFFF4 leax Dirname,PCR use ""." as directory
00025 001C DirNGivn

00026 001C 8681 lda ?DIR.+READ. file access mode

00027 OOlE 103F84 0S9 Open

00028 0021 2532 bes Error

00029 0023 9700 sta DPath save the path number

00030 0025 3440 shs U save U

00031 0027 CE0040 du #32%2

00032 002A 8E0000 1dx 0

00033 002D 103F88 0S9 ISSeek skip over . and .. entries
00034 0030 3540 uls U restore U

00035 0032 2521 cs Error

00036 0034 RLoop

00037 0034 3041 leax Buffer,U

00038 0036 RLoop2

00039 0036 108E0020 ld #32

00040 003A 103F89 08 SRead

00041 003p 2511 bes TEof

00042 003F 6D41 tst Buffer,U null entry?

00043 0041 27F3 beq RLoop2 es: skip it and read again,
00044 0043 8D13 bsr Edit repare ¥1le name for printing
00045 0045 8601 lda 1 Std output

00046 0047 103F8C 0S9 ISHritLn

00047 004A 2509 bes Error

00048 004C 9600 lda DPath directory path

00049 O004E 20E4 bra Rloop read again

00050 0050 TEof

00051 0050 C1D3 cmpb {ESEOF Is this EOF?

00052 0052 2601 bne rror no; error

00053 0054 5F clrb yes; return happy

00054 0055 Error

00055 0055 103F06) 0S9 FSExit return

00056 0058 Edit

00057 0058 5F clrb

00058 0059 ELoop

00059 0059 6D85 tst B,X

00060 0058 2BO7 bmi ELoopX .

00061 005D 270B beq EError A name can't end in a null
00062 QO05F 5C inch

00063 0060 Cl1D cmpb #29

00064 0062 25F5 blo Loop A name can't be more than 29 b
00065 0064 ELoopX

00066 0064 860D lda #S0D <CR>

00067 0066 5C incb

00068 0067 A785 sta B,X

00069 0069 39 rts

Column Eighteen 111

Microware 0S-9 Assembler 2.1 07/13/84 12:08:32 Page 002
id = List Files in a Directory

Q0070 006A EError

00071 0064 860D 1da #S0D

00072 006C A784 sta i3 Return null line for errors
00073 006E 39 rts

00074 006F 6FABBC EMOD

00075 0072 MEnd equ *

00000 error(s)

00000 warning(s)

$0072 00114 program bytes generated
SO0E9 00233 data bytes allocated
$2299 08857 bytes used for symbols

DFORMAT PROGRAM

PROCEDURE DFormat
0000 TYPE dirfmt=name:STRING[29]); 1sn(3):BYTE
001B TYPE SegLFmt=SLsn(3):BYTE; Seglen:INTEGER
0031 TYPE fdimt=attr:BYTE:; owner:IRTEGER: ModDate

(5), LinkCt,
FileSize(4),CDate (3) :BYTE; SegList (48):

SeglFmt

0070 DIM DirEnt:dirfmt

0079 DIM FD:fdfmt

0082 DIM Real LSN:REAL

0089 DIM 1i,ertnum: INTEGER .

0094 DIM PPath:BYTE \REM Physical IO path number

00B6 OPEN #PPath,'@'":READ

00C2 LOOP

00C4 GET #0,DirEnt

00CD ON ERROR GOTO 10

00D3 REM Change name from assembler string format to

0102 REM Basic09 string format by plunking a SO0 at the end of it.

013E FOR i=1 TO 29 .

014E EXITIF ASC(MIDS (DirEnt.name,i,1))>127 THEN

0164 DirEnt.name=LEFTS (DirEnt.name,1i)

0177 ENDEXIT

017B NEXT 1

0186 REM change the LSN of the FD sector from three bytes

01B9 REM to a real number . .

01cc Real LSN=DirEnt.l1sn(3)+256* (DirEnt.1sn(2)+256%

- DirEnt.lsn(1))

0lF4 SEER gPPath,Real LSN*256

0203 GET #PPath,FD ~

020D PRINT DirEnt.name;

0216 IF FD.attr>127 THEN

0225 PRINT "/";

0228 ENDIF

022D PRINT " "; FD.ModDate(1): "/"; FD.ModDate(2); "/";
FD.ModDate(3):; ' '": FD.ModDate(4): ,

0265 PRINT "-"; FD.ModDate(5); " ™; FD.CDate(1): "/";
FD.CDate(2); "/"; FD.CDate(3);

029C PRINT " "; FD.FileSize a)+256*(FD,FileSizeSP)+256*
(FD.FileSize (2)+256*FD.FileSize (1)))

02D2 ENDLOOP

02D6 10 REM error handler

02E9 errnum=ERR

02EF IF errnum=211 THEN \REM end of file

0309 CLOSE #PPath

030F END

0311 ELSE

0315 PRINT "Error number '"; errnum

032A END

032C ENDIF

032E END

112 0S-9 User Notes Volume I

COLUMN NINETEEN

MORE GAMES WITH DIRECTORIES

Last month I discussed reading from direc-
tory files. This month 1’11 stay with
directories and add some additional tricks.

The directory formatting command at the
end of this column is a useful version of
the DIR command. It doesn’t illustrate any
ideas that weren’t covered in last column,
but it is a single program that is faster
to use than the pipeline of programs 1 pre-
sented last month.

I have found that C is a good language
to write quick system level programs. of
course, assembly language still has some
advantages over any high-level language;
not least that almost everyone with 0S-9
has an assembler. A functional directory
command in assembler would be just too long
for one month’s column, and not interesting
enough to devote several months to. So the
first program for this column is an inte-
grated directory formatting command. It is
written in C. It could be translated to
BasicC8 without too much trouble, but that
would require loading Basic09 every time
you want to 1ist a directory. Sorry, peo-
ple witnout C,

Radio Shack is selling Microware C at
an impressively low price. It is a good
investment.

Think of dr as a good starting point.
It is easy to get it to sort 1its output.
Adding the ability to select only files
that meet certain criter:a for display is
harder but useful enough to be worth the
effort. working this up into a full-screen
command environment is something I‘ve been
promising myself time to do ..., but I
haven’t yet.

You can write directories as well as
read them. There are good reasons to do
this. Renaming files is one reason, The
rename command simply writes a new name
over the old one in the directory. Delet-
ing and creating files are other reasons to
write into directory files, but RBFMan
takes care of those operations. Most other
things you would want to cnange about a
file involve writing into the file descrip-
tor sector for the file. That‘s just as
easy as writing the directory. Easier.

Tnere 1s an easy way to make C read a
directory file, but there is no eguivalent
method for updating directory files. The
combination of attributes required to write
into a8 directory can be used from assem-
bler, or from the lower level parts of C,
but it seems Microware wanted to make it a
bit tricky to mess with directories.
Before I continue let me add to their
implicit warning. If you are not brave and
experienced don’t even think of updating a
directory file!

wWriting on directory files is a danger-
ous thing to do. If you make a mistake you
can loose files, or even mess up tne struc-
ture of the entire disk. DON‘T jump 'n and
try programs that write to the directory on
an important disk.

After making certain that your program
doesn’t damage the directory under normal
circumstances, think about extraordinary
situations. How does the program behave if
the system crashes right in the middle of
the change? Can trouble start if two pro-
grams try to make a change at the same
time? what will a program reading the
directory while you make your change see?

Another area where you can get in trou-
ble and discover interesting new possibili-
ties hidden in the 0S-8 file structure is
the possibility for having several directo-
ry entries pointing at the same file.

There s a 1ink count in each file
descriptor sector. This count will always
be one in normal 0S-8 systems, but the
field offers a way to tell 0S-8 (RBFMan)
that there are two or more directory
entries pointing at a file.

This trick will certainly cause DCHECK
to have fits. If you 1ink two directory
files to one another {not just witn the
file name)} DCHECK will loop between the two
directories forever. Even if you don’t get
this extreme DCHECK will note that more
than one file is using the clusters belong-
ing to the file with which you‘re playing.
1 have a deadly fascination with this trick
of linking to a file several times. The
parts 1o put it togetner are all there, but
for some reason Microware hasn‘t built it
into 0S-9 yet.

My bet is that the reasom for multiple
links to files remaining dormant in 05-9 is
the recovery problem this feature creates.
It is impossible to update the link count
in the file descriptor and change the num-
ber of directory entries pointing to a file
simul taneously. There i{is always some way
to crash the system between the two opera-
tions -- pulling the plug will work.

If the 1ink count is greater than the
number of directory entries actually 1inked
to the file, the file will eventually be
left around with no directory entries
pointing at it. The disk space for the
file will be allocated and there will be no
easy way to return tnem,

If the 1ink count 1s smaller than the
number of directory entries linked to the
file the result is worse. Eventually tnere
will be a directory entry pointing to a
file that isn‘t there. The sectors that
used to belong to the file could be part of
another file or just free; in eitner case
the result is chaos.

It looks impossible. There is trouble
whether the file descriptor is updated
before or after the directory. There are
two solutions.

One possibility is to 1live with the
problem. An experienced user can fuss
around with the allocation map and directo-
ry entries, and repair a damaged disk.
Most of the work can be automated. Comput-
ers don‘t crash often. Chances are they
won’t crash in the middle of a directory
operation. ...

The alternative is to use "stable stor-

age" tricks. Every time 0S-89 starts up
look for evidence of a crash, and every

Column Nineteen 113

time Yyou update a directory prepare for
one. This slows directory updates, systems
startup, and even disk mounts; but it pre-
vents users from having to worry about
recovery.

Neither method sounds 0S-9-1like. I use
the "live with the problem" method. I've
never had reason to regret it, but I am
prepared for the worst. The "stable stor-
age" method is 1nteresting ... worth a
brief discussion.

Here is 2 way to reliably update a
directory:

1. Copy the entire directory including
file descriptors to a special spot,
with its address known to recovery
routines (in a table 1located at
some known spot).

2. Update the copy of the directory.

3. Put the address of the old directo-
ry in the same table as the address
of the new one with a mark indicat-
ing that it is old.

4. Put the address of the updated
directory in the directory’s
parent.

5. Remove the new directory from the
table.

6. Delete the ol1d directory removing

it from the table.

114 QS-9 User Notes Volume I

Step 4 1invoives a single operation that
changes the directory structure visible to
the public. Until step 4 is executed no
program knows about the change. Af ter step
4 there is a consistent updated directory.
Recovery works as follows:
. IF THERE ISN'T ANYTHING IN THE *"TABLE”
NnoO recovery necessary

. IF THERE IS A POINTER MARKED "OLD" AND
NO NEW PCINTER

delete the old directory

. IF THERE IS ONLY A NEW DIRECTORY IN
THE TABLE
delete it.

. IF BOTH POINTERS ARE IN THE TABLE

continue from step 4 in the update
procedure

Things fall apart again if two process-
es might simultaneously update the directo-
ry, or the file descriptors attached to it.
If that is permitted the protocol gets com-
plicated. Too complicated for this column.

I‘'m not going to try to present a pro-
gram implementing stable storage this
month. Just a simple program to squeeze
the null entries out of a directory.

DR PROGRAM

?@nclude <stdio.h>
include <ctype.h>
f@nclude <modes.h>
finclude <direct.h>

static struct dirent Dirgntrx;

7£at1c FILE *fopen(), *dir, %*disk; .
* dr) directory read *
* Read and format all the important fields in a *
* directory entry and the attached FDs. *

To allow formalting, sorting, and searching programs*
the best access to this data it is just pr1n€ed *
* without titles. *
There are no options. A directory name may be given™

* as a command line argument. If it isn't the current®

* data directory will be listed. *

N e e e e */
main(argc,argv)

int argc;

?har *argv(];
har temp[120];
char temp %301;

char devicel3(
register int 1,

pflinit O; .
argv++; /* bump past program name in args*/
if (arge > 1)
strcpy (temp, *argv) ;
else
strcpy (temp,"."); /* default directory */

if(idir = fopen(temp, "d")) == NULL) /* open the directory */

fprintf(stderr,"%s can't be read as a directory\n",temp);
exit(1);

strcpy(?gfice,"@?g; /* default device is data directory device */

if ({emp m= !
i = 0;
do

device[i] = temp[i]'
vhile isafnum(tem ++11) || templil == '.' || templi] == '_");
device [i++] = '@';
device(i] = '\0';)
fprintf (stderr,"Device: %s\n'",device);

1.

Open the device containing the directory *
we're about to list. *

if((?isk = fopen(device,'"r'")) == NULL)

fpg%?}f(stderr,"Error %d opening device s\n",ferror(disk) ,device);
exi :

}

fread%&D@rEntry, sizeof DirEntry, 1, d@r}; /* skip . entry */
fread (dDirEntry, sizeof DirEntry, 1, dir); /* skip .. entry */

* Read and format directory entries until EOF*
: Null entries are ignored by putEntry.

while (fread(&DirEntry, sizeof DirEntry, 1, dirg != NULL)
putEntry(DirEntry.dir_name,DirEntry.dir_addr);

O\U‘bwND—IO\OQ\JO\MwaHO\O@\IO\UIwaHO\OW\!O\U\bWNv—'O\OQ\JG\UIwal—-O\OCb\JO\'J!waO—-O\O&\JONU\bwNO—IO\om\jC!\U\waD—-

AUAUINNNO AR NN NS S L DL LA R BWWWWWWWWWWIRNNRRNRNNRNNNIN e e s i

exit(0);
7
78
79

80 putEntry(Name,Address)

Column Nineteen 115

RN = OV~ B WN—OVOIAN WOV IONNEWN—OO

et et B b et B 3 b bt e et et e e et e
oo unbnbnnbnuvbnbninbn s

o]
H
s

ihar *Name, *Address;

char CName[30];
long LSN;

if (Name [0] == '\0')
return; /* Null entry */

fixname (CName,Name) ; /* change 0S-9 string (high-bit)
to C format string */

13tol (§LSN,Address,1); /* make LSN usefull */

printf ("%s",CName); /* reformatted file name */
expansion(LSN); /* rest of the information */
return;

}
static struct fildes FD;

expansion(LSN) /* print everything interesting about a file */
ong LSN;

if(iseek(disk, LSN*256, 0) == EQF)

fprintf (stderr, "Disk seek error %Zd\n",ferror(disk));
exit(1);

if(iread(&FD, sizeof FD, 1, disk) == NULL)

fprintf (stderr,"Disk read error %d\n",ferror(disk));
exit(1);

format_attr (FD.fd_att);
rint£0" %u",FD.fd own);
ormat date (FD.fd aate,SQ;
grinth” %d %1d",FD.fd link, FD.fd fsize);
ormat date(FD.fd_decr,3); -
printfT'"\n");
return;

fixname(§oodname,badname) /* convert from 05-9 string to C string ¥
?har goodname, *badname;

register int i;

(o]
{

*goodname++ = *badname & '\x7f';
while ((*badname++ > 0) && (++i <= 29));

*goodname = '\0';
return;

}

format attr(attr) /* print file attributes */
?haF attr;

if(attr & S ITDIR} /* is it a directory? */
printf ("7 [d");

else

printf (" [');

if (attr & S_ISHA E)
printf (" ps");

if(attr & S_IOEXEC)
printf (" pe");

if(attr & S_IOWRITE)
prxntf (H—Pwn) ;

0S-9 User Notes Volume I

(oY)
\0 0o

\D 0000000000 0000000000 ~J~J I IIY

Pt Bt e o ot b ot e e e et e et Bt Bmd b o B e d bt B d et ek el
WOV WOV YLV BWN+O

\O\0\0\0\0

BORINIRIRINY b b= b= =
[=leTlalalalala N o N
AN EWN—OWVRIWL

if (attr & S_IOREAD)
printf (""pr');

if(attr & S_IEXEC)
printf (""e");

if(attr & S_IWRITE)
printf (""w'");

if(attr & S_IREAD)

printf("7r");
printf("]");
return;

}

*/

format_date(date,x) /* print a_date in readable form */
chaT *date; /* yymmdd (hhmm)

1nt x; /* numbeTr of entries in the date array */

char *month name();

printf (" (%d %s 19%02d",date[2], month_name(date[1]), date([0]);

1if(x >= 5

printf (" %d:%02d", date[3], date(4]);

printf(")");
return;

}

nt n;
staiic char *name(] =

"illegal month",
"January"
"February",
"Mar(_:h" .

lloc \
"Novemberh,
"December"

)

return((n < 1 || n > 12) ? name[0]

char *month_name(n) /* return name of n-th month */

: name[n]);

Column Nineteen

117

DIRSQZ PROGRAM

0o ~JOhn

[IS Yea)iVelo ANTo NW,F-SVA] XY an)l o]

"11B3

LRI O\ 00 ~J O Ui £ L R = OO 00 ~J O\ £ LI R OO 00 ~JON U B NI —= OO 08 ~J AN LA L W R
A

ffinclude <stdio.h>
‘include <direct.h>
#finclude <modes.h>

static struct dirent DirEntry;
static int dir; /* path number */

/* DirSqz */

/* This program can be used to press the null
entries out of large directories that have
ny been hit with many deletions.

m?in()

long strt_ptr, end_ptr, backup();

pflinit (),
if((dir = open(".", S_IFDIR+S_IREAD+S_IWRITE)) == NULL)

fpgi?§§(stderr,"£rror opening the directory %d\n",ferror(dir));
ex1t s ’

strt_ptr = sizeof DirEntry * 2; /* point past . and .. */
getsTat (2, dir, &end Etr); /* length of the file */

end ptr ~= sizeof DiTEntry; /* point back from end */
end_ptr = backup(end ptr,strt_ptr);

for{;strt_ptr < end_ptr; strt_ptr += sizeof DirEntry)

lseek(dir,strt ptr,0);)
read(dir, &DirEntry, sizeof DirEntry);
if(?irEntry.d;r_name[Of == '\0"')

end ptr = backup(end ptr, strt gtr); .
- /™ leaves DirEntry with good data */
if(end_ﬁtr <= strt ptr)
break; -
lseek(dir, strt ptr, 0);)
write(dir, &DirEntry, sizeof DirEntry);
l1seek(dir, end ptr, 0);
write(dir, , M
end_ptr = backup(end_ptr,strt_ptr);

LR

'}
exit (0);

long backup(end ptr,strt ptr)
?ong end_ptry strt pt¥;
for(;end_ptr >= strt_ptr;end_ptr -= sizeof DirEntry)
lseek(dir, end_ptr, 0);)
read(dir, &DirEntry, sizeof DirEntry);
1f(§1r£ntry.d1r name[Oi = '\0")
reak; -

return(end_ptr);

0S-9 User Notes Volume I

Part 2 REVIEWS

Reviews 119

12D 0S8-9 User Notes Volume I

A REVIEW OF O-F

A few weeks ago I spent most of a Saturday
hooking my old SWTPC FLEX machine to my new
machine as a remote computer so 1 could use
it to write a FLEX-format disk. It felt
rather odd using my "smart terminal®™ pro-
gram to communicate with a machine Jless
than a foot away. The process involves
shuffling disks drives back and forth, and
much openting and shutting of cabinets. I
don’t 1like it much. My new machine has
GIMIX software switching, so I can run FLEX
on it, but even the remarkable GIMIX CPU
board can’t run both operating systems at
once. On occasion 1 have uploaded a file
from one 0S to an IBM and then downloaded
it with the otner 0S, accomplishing a
change of disk format from FLEX to 0S-8 or
vice-versa, These methods are all ineile-
gant, ad hoc solutions to a problem. Dr.
Matthew Scudiere has come up with a much
cleaner solution: He has written an
0S-8/FLEX copy program called O-F.

GENERAL SYSTEM DESCRIPTION

This O0OSS/FLEX copy program is a BASICOS
program which allows the user to convert an
0S~8 format disk into a hybrid form which
can be read and written by FLEX. In the
process of doing this it makes the disk
inaccessible to 0S-9 except as an entire
disk (i.e. /Dne) but O-F is able to copy
files to and from the hybrid disk, and read
the FLEX directory. Tne disk that results
from the reformatting is enough like stan-
dard FLEX format that FLEX goesn’t know the
disk isn‘t one of its own,

LIMITATIONS

Only freshly formatted, single sided 5§ or 8
inch disks with no bad sectors can be used,
and there is no way to use a disk which is
in real FLEX format (formatted by the FLEX
NEWDISK or FORMAT program). The FLEX to
0S-8 copy part of the program expands tab
characters into strings of blanks by
default, but there is an option which caus-
es the file to be copied intact. Of course,
this program doesn‘t make any attempt to
convert FLEX programs into 0S-S programs.
That is work for other programs.

OPERATION

In order to run O0-F you must first start
Basic08. The version 1 tested was in source
form, so I had to load it and run it. If it
is distributed as Basic0OS I-Code it should

be possible to 3just run it.
lists 7 options:

The program

(o} Directions
1 FLEX Directory
2 Copy FLEX text file to 0SS
3 Copy 0S8 path to FLEX
4 Delete FLEX File
5 Reformat 0SS Disk
6 Exit program
and prompts for a selection. YDirections"

produces a Quick summary of the function of
the program, about half a screen full.
"FLEX Directory" 1ists the basic informa-
tion in the directory of a pseudo-FLEX
disk: file name, Begin, End, Size, and
date. It also gives the number of sectors
used on the disk, and the number of sectors
left. The "Copy FLEX text file to 0SS" dia-
logue is:

FLEX Compatible source Drive ID

FLEX file name to copy --
Copy to 0OS9 destination path ~--

The "Compatible source Drive ID*" 1is the
device name for the disk that has been ref-
ormatted; that wasn’t too clear to me. The
"Copy 0SS path to FLEX"” dialogue is:

Drive ID --
FLEX File name to write (Caps)

Copy FROM 0S9 SOURCE path --
To delete a FLEX file, select 4, then:

Flex compatible source Drive ID
FLEX file name to delete (use
proper case) —-—

The dialogue for reformatting a disk 1is
very cautious:

Drive ID -—-
Are you sure? --
Overwrite -—- <old volume name>

Are you sure? -
5-in or 8-in disk? --

1 tried reformatting and writing on 5 inch
disks (SS/sD, SS/DD, 40 track and 80
track), and 8 inch disks of all permuta-
tions. It worked on the 5 inch disks, and
on SS single and double density 8 inch
disks. I was able to read psuedo-FLEX files
created by O-F from FLEX without any trou-
ble. O0~-F had no trouble reading files
written by FLEX on disks reformated by O-F.
The reformatted disks were also fully usa-
ble in FLEX. FLEX truly thinks the refor-
matted disk is one of its own. One nice
touch is that the program puts two entries
in the 0S-8 root directory of the reformat-
ted disk:

[%% NO 0S89 Files Allowed **

(This is a FLEX copy disk) J

These entries appear if you do a DIR com-
mand on the reformatted disk, lettirng you
know very Qquickly that this disk is spe-
cial.

EVALUATION

This is a competent and very useful pro-
gram. It is especially well equipped with
error messages and informative text. In
fact, although it came without a manual, I
was able to follow the built-in directions
without any trouble. 1 do hope that a manu-

A Review of O-F 121

al 1is available by the time this program
hits the market. A program without a manual
seems somehow unbalanced even if it is usa-
ble without documentation. A nice extra is
*—at it appears that this program may be
Jdistributed in source form.

O-F works by tricking FLEX. This
togetner with the variety of disk formats
that FLEX might use forces the program have
some oad restrictions. The most serious
limitation 1is the restriction to specially
formatted disks. It certainiy would be nice
to be able to drag out a four year old FLEX
cisk and read it with this program. The
restriction to single sided disk$ 1is rea-
sonable in the context of copying files
from one format to the other. for some
people the most important limitation will
be the language reguirement. Since this is
a Basic0Dg program, you must have BesicDS to
pe able to run it. It could be a measure of
the desperate need for a program l1ike this
one that it is being hustled out in BasicOS
form.

One of O-F’s strongest points is the
cautious approach it takes to the user.

122 0S-9 User Notes Volume I

This program doesn‘t know how to deal with
double sided disks, but it doesn‘t just
tell you so, it won’t let you use them. You
get a message clearly telling Vyou that
double sided disks are not-ok if you try.
Similar messages appear if you try to use a
disk that is flawed in a numpber of other
ways .

SUMMARY

O-F is available from DATA-COMP. It isn’t
really a program of general interest
there are probably some 0S-9 users who
don‘t have FLEX or friends with FLEX.
Those people have very little use for this
program. The group of people this program
should prove most useful to are the owners
of software-switching machines. Using this
program they can conveniently transfer data
between operating systems. There are a lot
of FLEX users out there -- our close rela-
tives in the computer world. It is good to
be able to exchange disks with them even if
we have to be tne ones to provide the
disks.

REVIEW OF 0S-9 CIS COBOL

OVERVIEW

COBOL is a big language, an old lan-
guage. and an extremely popular 1language.
Some languages were designed to be compiled
and run on small computers: COBOL was not.
COBOL is vehemently detested by many people
involved with computers, but, despite all
the nasty publicity it gets, COBOL is prob-
ably the most used computer language in the
world. If you need to hire an experienced
programmer for a business application, you
will find the hunting best if you snoo* for
a COBOL programmer. COBOL was one of the
first compiled languages developed for com-
puters (around 1960), and it has been being
(arguably) improved since then. The fully
“improved" version of COBOL is an enormous
language whose compiler is fully capable of
needing the best part of a megabyte of mem-
ory to run properly.

There are standards against which any
version of COBOL should be measured. ANSI
(American National Standards Institute) has
defined a COBOL standard which constitutes
the official definition of the 1language.
CIS COBOL was written to conform to the
ANSI standard definition of COBOL.

To quote the manual: "CIS COBOL is ANSI
COBOL as given in ‘American National Stan-
dard Programming Language COBOL’ (ANSI
X3.23 1974)." It includes level 1 of the
ANSI definition of COBOL along with a -few
parts of level 2. This doesn’t mean that
CIS COBOL 1is the version of the language
you may have used on a mainframe computer,
but it does mean that if vou don’t use the
enhancements that CIS COBOL includes. the
programs you write using it will run essen-
tially unmodified on any other computer
that runs level 2 or higher of ANSI COBOL.
Also, since CIS COBOL is compiled to inter-
mediate code, programs written in it can be
run on any computer that has the appropri-
ate interpreter. If you read the adds in
BYTE, you will see that CIS COBOL is imple-
mented for many computers.

I didn‘t test CIS COBOL exhaustively
for conformance to the standard, but I did
write a few programs in f{t. I am used to
IBM‘s VS-COBOL, and a version of UNIVAC
COBOL; both are highly enhanced versions of
higher levels of ANSI COBOL than CIS COBOL.
It took me a while to learn whicn of my
favorite programming tricks aren’t possible
under level 1 of ANSI COBOL, but, after 1
learned the limitations I had to live with,
I found that I could write programs with no
more difficulty than I usually experience
when writing in COBOL. I wish I had been
able to transfer a program from the IBM to
my micro and compile it, but I don’t know
of any real programs written to be compiled
by ANSI level 1 COBOL. Transferring a pro-
gram in the other direction is no problem.

There is far too much to CIS COBOL for
me to say with certainty that it all works,
but I wunderstand that the language has
actually been successfuily tested against a
set of standard test programs.

ENHANCEMENTS

Standard COBOL doesn‘t support the
interactive microcomputer environment very
well, but CIS COBOL inciudes enhancements
to the ACCEPT and DISPLAY statements that
make it relatively easy to display screens
of data, and accept data from fields
defined on the screen. Information can be
accepted from, or displayed at, a particu-
lar cursor location. An input field can be
defined as numeric only, in whicn case any
inappropriate characters (like "A") won‘t
be accepted. when a field is filled with
data, the cursor automatically jumps to the
beginning of the next field. There are
special keys which jump the cursor forward
and backward a field at a time. Special
function keys can be defined. They act
like a carriage return (terminate entry
into a screen), but a program can determine
whether a screen was terminated by a car-
riage return or a function key. and which
function key was used. The location of the
cursor when carriage return was pressed is
also available. Tne net effect of these
enhancements is that it is fairly easy to
write CIS COBOL programs that accept and
display screens of data.

In addition to the wusual COBOL file
organizations (including ISAM), CIS COBOL
allows an organization they call "1ine
sequential." Line seqguential files are
variable length record files, in which the
records are terminated by carriage returns.
This makes it easy to read and write files
tnat Pascal would call “files of text." The
most generally important examples of files
of this type are files created by text edi-
tors, and 1ine by line output to a terminal
or printer,. The other access modes Sup-
ported by CIS COBOL are: seguential, rela-
tive, and indexed. The names of files can
be specified at run time using statements
like:

SELECT FILE~15 ASSIGN TO
FILE-15-NAME.

ACCEPT FILE-15-NAME.
OPEN INPUT FILE-15.

In addition to the standard ANSI debug fea-
tures, CIS COBOL has a respectable interac-
tive debugger. The commands available
under this debugger are:

Review of 0S-9 CIS COBOL 123

- Set a breakpoint
- Single ste

- Set
- Display block

- Change bytes in block
- Trace paragraphs

~ Write R,L§

Define a debug macro

- Chang§ memory (AS
o

NP OXxXO'T
|

e OV
)

~ precedes a comment

- Displag the current program counter |
r

Display daga at 58§§§fied offset in data division

ck for display or change

- End a macro definition
- Display a specified character
(for describing macros)

The interactive debugger can be used on any
COBOL program by including +D on the com-
mand line that invokes the program, e.g..
“unC 4D test.int. This means that you can
use the debugger on a program without hav-
ing to do anything special when you compile
it.

Microware has included eight subrou-
tines 1n the COBOL run time system which
can be called from a COBOL program.
MOVE-BLOCK is a procedure that can be used
to do a high speed move of a block of data.
£#BORT terminates the program with an error
code. CHAIN makes the standard 0S-9 FiChain
system call available. The FUN-KEY subrou-
tine can be used after a ACCEPT statement
to find out if a function key was pressed
instead of the carriage return key, and
which one. OATE returns the date and,
optionally, the time. SHELL invokes a
shell, passing it a specified string. CHX

d CHD change the execution and data
. rectories for the program.

The subroutines in the run time system
are called by number. CIS COBOL can also
call subroutines which are either COBOL
I~-code, or object code. The CALL statement
1ooks like:

CALL "/DO/SUBLIB/TEST.SUB.1"
USING ...

G
ON OVERFLOW

The called program is loaded into memory if
1t is not already there, and, depending on
whether the module header indicates that it
is I-code or object code. interpreted or
executegd. If there is no room 1in memory
for the new module, the ON OVERFLOW clause
in the CALL statement gets control. The
CANCEL verb unlinks a subroutine. freeing
the memory it is using.

In addition to these methods of calling
external subroutines, CIS COBOL supports
program segmentation, which can be used to
divide the program into sections that will
remain on disk until they are needed. Seg-
ments use memory efficiently at the cost of
extra disk I1/0 by sharing a common pool of
overlay memory.

In addition to supporting ANSI COEOL
level 1, including:

124 0S-9 User Notes Volume I

The Nucleus

Table Handling

Sequential Input and Output
Relative Input and Output
Indexed Input and Output
Segmentation

Library (Copy)
Inter-program communication

debug
CIS COBOL supports parts of level 2 of ANSI COBOL
including:
. Nested IF
. PERFORM UNTIL
. The START statement for Relative and
Indexed 1/0
. Full level 2 Inter-program communica-
tion
LIMITATIONS

1 was disappointed with some of the
restrictions of the 1low Jevel! of COBOL
implemented for CIS COBOL, but not very
surprised. 1 am more upset by some prob-
lems with terminal support, and the CONFIG
utility that 1is used to customize the run
time package for a particular type of ter-
minal.

Tne features of advanced levels of
COBOL that I missed most were AND and OR in
IF statements. It is possible to do with-
out boolean operations in IF statements,
but I am not used to having to work around
a limitation like that. Another very popu-
lar feature which 1is missing in CIS COBOL
is the SORT statement:. A surprising number
of production COBOL programs include at
least one sort, and it would be hard to
eliminate a sort from a program without a
major redesign.

The run time system which interprets
the COBOL intermediate code also includes
routines for terminal control. It is cus~-
tomiZzed for a terminal by a utility program
called CONFIG. 1 was not impressed with
CONFIG. My favorite terminal uses the ANSI
standard termina?l control sequences
CONFIG was clearly not written with my ter-
minal in mind. I struggled for two eve-
nings trying to get RunC configured for my
Televideo with no success. Finally, I gave
up and turned toc my H-18, which was much
more 1like what CONFIG wanted ... I had
COBOL running in ten minutes. There were

three fundamental problems with CONFIG'S
handling of my TeleVideo’s control sequenc-
es. CONFIG expected most terminal control
strings to be no more than three characters
long; several of the ANSI strings are long-
er than that. CONFIG simply can‘t deal
with the ANSI direct cursor positioning
sequence; I circumvented that problem by
pretending that my terminal didn‘t have a
direct cursor positioning command, and
specifying relative positioning. CONF1IG
can only deal with commands that move the
cursor one row or column at a time in rela-
tive positioning mode. Since the ANSI
strings that cause the cursor to move one
row or column are three characters 1ong,
this is a slow way to adjust the cursor
position. The clear-screen sequence for my
terminal is four characters 1long; so I

couldn’t wuse it. RunC tries to fake a
clear-screen somehow, but it makes a real
mess of it. The clear-screen sequence

somehow came out as a string of thousands
of <bell> characters. I understand that a
more recent version of CONFIGC than the one
I have allows a four character string for
the clear-screen sequence. I think that
would have made it possible for me to get
my Televideo working with COBOL.

CONFIG forms a trap for the unwary
user. Once you start into it there is no
turning back. If you change your mind
about the response you just keved 1in, you
have to wait until you reach the end of the
entire (long) string of questions, and ask
to be allowed to change a large subset of
vour answers. when you are going through
CONFIG to fix a mistake or change an exist-
ing terminal description to fit a new ter-
minal, you have to fill in the correct
answer to each question. There is no way
to select a default, or keep the old value
It is true that CONFIG is not likely to be
a heavily used utility, but I found it so
hard to use that I would much rather have
written a few subroutines to support my
terminals.

Once I got the screen support working,
I found that 1 wasn’t pleased with the way
it worked. 1 believe that when the cursor
leaves a numeric field, the field should be
right justified and zero filled. The
screen handling package in CIS COBOL seems
to agree with me to some extent. If you
enter a "“." in an integer field it will
right justify and 2zero fill, but 1if you
exit the field with a carriage return (end-
ing the entire screen) or down arrow (mov-
ing to the next field), a test for numeric
in the program will indicate that the field
1s not numeric. If the field has editing
characters in it the field is inclined to
end up left justified and zero filled.

I am used to getting useful, english
error messages from COBOL; CIS COBOL gives
error messages with numeric codes in them
indicating what the error is. Even after 1
looked up the error, it wasn’t clear what
the problem was. For instance. when I
hadn’t declared a variable it told me that
there was a type mismatch in the statement
using the undeclared variable. when 1
tried to use AND and OR, it gave me the
same error. 1 ended up treating the error
message as "something’s wrong around here."

BENCHMARKS

I ran two benchmarks against this COBOL:
one fer speed at numeric processing (the
sieve), the other for speed in handling

ISAM files. I adjusted the prime number
program from the January 1983 BYTE slightly
to fit ANSI level one, and ran it. This

version of COBOL would have fallen nearly
at the bottom of the chart given in that
BYTE, between Microsoft COBOL and RMCOBOL.
It took 541 seconds to find the first 1899
primes. I could have made the program run
somewhat faster by using indexing instead
of subscripting, but that would have
spoiled the benchmark. I have to admit
that I felt silly writing a Eratosthenes
Sieve program in COBOL. Testing COBOL for
its ability to find prime numbers is 1ike
testing programmers for their ability to
read Latin; they may be able to do it but
it is hardly relevant. 1 ran that bench-
mark because it is the most used benchmark
for microcomputer languages, but I also ran
another non-standard, but, I think, more
relevant, benchmark.

I constructed a benchmark program which
gives a good measure of the speed with
which the language handles indexed 1I/0.
Indexed 1/0 is very important to the group
of users who might use COBOL. Interpreting
the results of a benchmark that involves
I/0 is a little tricky. Certainly the file
structure the language uses is very impor-
tant, especially with a large indexed file;
but the access time for the disk is an
important factor, and the time the operat-
ing system takes for a context switch is
somewhat important.

I built a file 10,000 records long of
S5 byte records with five byte keys and
then read it randomly reading two records
al ternately from each end. It took 2615
seconds to build the file and 3233 seconds
to read the file (it would, of course, have
been possible to read it faster if 1 had
read sequentially). I ran these benchmarks
on a GIMIX system with a CM 5000 Winchester
(a file that size would not have fit on my
8" floppies). 1 used 0S-9 Level Two on a 2
mhz ©6809. The performance would have been
muct worse if 1 had used a floppy instead
of a Winchester, and somewhat better if 1
had used GMX-1II.

I compiled three COBOL programs on the
same machine I ran the benchmarks on. A
simpie merge program which I haven’t
included with this review took 45 seconds
to compile. the sieve compiled in 35 sec-
onds, and the ISAM test program took 43
seconds.

SUMMARY

It is possible to get past the probiems
with CONFIG, to 1learn to 1live with the
primitive error messages, and to feel com-
fortable with the screen handling conven-
tions. what 1s left s a substantial
implementation of an old, but useful lan-
guage. I don‘t think everyone should run
out and buy this package, but, for a few
people, it could be unigquely useful. If
you want to use a group of COBOL programs
on microcomputer, it would certainly be
easier to convert them from one level of

Review of 0S-9 CIS COBOL 125

CO8B0OL to ancother than to translate them
into an entirely different 1anguage. CIS
COBOL would be a good teaching tool for
schools unable to afford time orn a machine
with a full-blown COBOL compiler. It
should be relatively easy to find program-
mers who can work 1n COBOL. with CIS
COEOL, a microcomputer could be used as a
develiopment environment for COBOL programs,
though the 1ow level of CIS COBOL would
prevent this in most cases. Perhaps the
most significant advantage of CIS COBOL
over other 1anguages is that programs writ-
ten in CIS COBOL can be moved 11n I-Code
form to a variety of other machines and
operating systems, and run without source
code. UCSD Pascal has shown that this is
ar asset even though 1t can’t generaliy run
under a normal operating system.

CIS COBOL was written by Micro Focus
Limited. Microware wrote a run time pack-
age for it that allows any program written
in CIS COBOL, including CIS COBOL itself,

COBOL TEST PROGRAM
** CIS COBOL V4.4

sesk
IDENTIFICATION DIVISION.
PROGRAM-1ID. FIRST-TEST.PROGRAM.
AUTHOR. PETER DIBBLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE-COMPUTER. GIMIX.
OBJECT-COMPUTER. GIMIX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-1 ASSIGNK ":CI:"

Test.CBL

to be run under 0S-9. By writing a run
time package for CIS COBOL, and arranging
to license it for 0S-8, Microware made a
large collection of business software
available to 0S-9 users. If you are l1o0k-
ing for a nice accounting system, payroll,
MRP system, or whatever, check with Micro-
ware. They have a 1long list of vendors
offering programs which run under the CIS
COBOL run time system.

Some small number of people will find
Microware’s version of CIS COBOL just what
they need. If you think you are one of
those people, I recommend that you get the
manual before you commit to the 1language.
The manuals won’t be any help to you if you
don‘t know COBOL, but, if you do, they will
leave you with an accurate impression of
the language. and either leave you impa-
tient to get the software, or disappointed
about some important missing feature {(most
1ikely sort). '

PAGE: 0001

ORGANIZATION IS LINE SEQUENTIAL.

SELECT MERGE-FILE ASSIGN MER

E-NAME.

SELECT TEMP-FILE ASSIGN "MERGE.TEMP",

DATA DIVISION.

FILE SECTION.

FD INPUT-1;
RECORD 40;
BLOCK 5;

LABEL RECORDS ARE STANDARD.

01 INPUT-1-LINE

FD MERGE-FILE;
RECORD 20;
BLOCK 10;

LABEL RECORDS ARE STANDARD.

01 MERGE-LINE
FD TEMP-FILE;
RECORD 203
BLOCK 10;

LABEL RECORDS ARE STANDARD.

01 TEMP-LINE

WORKING-STORAGE SECTION.

01 IN-THIS

01 LINE-FMT REDEFINES IN-THIS.
02 KEEP-THIS.

04 FILLER
04 CARRIAGE-RETURN
02 FILLER

01 MERGE-THIS

01 FILE-STAT
PROCEDURE DIVISION.
START-UP.

PIC X (40).

PIC X(20).

PIC X(20).
PIC X(40) VALUE SPACES.

* PARAMETERS ARE GIVEN IN THE FIRST RECORD OF STD. INPUT

OPEN INPUT INPUT-1.

READ INPUT-1 INTO MERGE-NAME.

OPEN INPUT MERGE-FILE.
OPEN OUTPUT TEMP-FILE.

DISPLAY "MERGING STANDARD INPUT WITH ', MERGE-NAME.

126 0S-9 User Notes Volume 1

*% CIS COBOL V4.4 Test.CBL PAGE: 0002

READ INPUT-1 INTO IN-THIS;
AT END MOVE HIGH-VALUES TO IN-THIS.
PERFORM FIX-IN.
READ MERGE-FILE INTO MERGE-THIS;
AT END MOVE HIGH-VALUES TO MERGE-THIS.
MAIN-SECTION.
PERFORM MERGE-LOOP UNTIL FILE-STAT EQUAL TO "1".
MOVE "O" TO FILE-STAT.
CLOSE MERGE-TFILE.
OPEN OUTPUT MERGE-FILE.
CLOSE TEMP-FILE.
OPEN INPUT TEMP-FILE.
PERFORM READ-TEMP.
PERFORM COPY-TEMP-TO-MERGE UNTIL FILE-STAT EQUAL TO "1".
STOP RUN.
MERGE-LOOP.
PERFORM PICK-NEXT.
WRITE TEMP-LINE.
END-MERGE-LOOP.
EXIT.
PICK-NEXT.
IF KEEP-THIS < MERGE-THIS
THEN
PERFORM FIX-IN
MOVE KEEP-THIS TO TEMP-LINE
READ INPUT-1 INTO IN-THIS;
ELSE AT END PERFORM END-IN

MOVE MERGE-THIS TO TEMP-LINE
READ MERGE-FILE INTO MERGE-THIS;
AT END PERFORM END-MERGE.
PICK-NEXT-END.

EXIT
END-1I
MOVE HIGH-VALUES TO IN-THIS.
IF MERGE-THIS = HIGH-VALUES
THEN
MOVE "1" TO FILE-STAT.
END-MERGE.

MOVE HIGH-VALUES TO MERGE-THIS.
IF IN-THIS = HIGH-VALUES
THEN
MOVE "1" TO FILE-STAT.
FIX-IN.

MOVE X"OD" TO CARRIAGE-RETURN.
COPY-TEMP-TO-MERGE.

WRITE MERGE-LINE.

PERFORM READ-TEMP.
END-COPY-TEMP-TO-MERGE.

EXIT.
READ-TEMP.

READ TEMP-FILE; AT END PERFORM END-TEMP.

MOVE TEMP-LINE TO MERGE-LINE.
END-READ—TEHP.

END- TE

MOVE "1" TO FILE-STAT.
END-INPUT.

MOVE HIGH-VALUES TO IN-THIS.
END-MERGE-IN

MOVE HIGH-VALUES TO MERGE-THIS.
END-PROGRAM.
EXIT.

*% CIS COBOL V4.4 REVISION 0O
** COMPILER COPYRIGHT (C) 1978,1981 MICRO FOCUS

URN rp/

*% ERRORS=00000 DATA=00791 CODE=00489 DICT=00654: 01229/01883 GSA FLAG

Review of 0S-9 CIS COBOL

127

COBOL SIEVE

** CIS COBOL V4.4 siev.chl PAGE:
IDENTIFICATION DIVISION.
PROGRAM-ID. SIEVE.
AUTHOR. PETER DIBBLE.
ENVIRONMENT DIVISION.
WORKING-STORAGE SECTION.
77 PRIME PIC 9(5) COMP.
77 PRIME-COUNT PIC 9(5) COMP.
77 1 PIC 9(4) COMP.
77 K PIC 9(5) COMP.
01 BIT-ARRAY.
03 BIT OCCURS 8191 TIMES PIC 9 COMP.
PROCEDURE DIVISION.
START-UP.
DISPLAY "TEN ITERATIONS".
PERFORM SIEVE THROUGH SIEVE-END.
DISPLAY "PRIMES FOUND: ", PRIME-COUNT.
STOP RUN.
SIEVE.
MOVE ZERO TO PRIME-COUNT.
MOVE 1 TO I.
PERFORM INIT-BITS 8191 TIMES.
MOVE 1 TO I.
PERFORM SCAN-FOR-PRIMES THROUGH END-SCAN-FOR-PRIMES
8191 TIMES.
SIEVE-END.
EXIT
INIT-BITS.
MOVE 1 TO BIT (I).
ADD 1 TO I,
END-INIT-BITS.
EXIT.
SCAN-FOR-PRIMES.
IF BIT (I) = O
THEN
GO TO NOT-PRIME.
ADD I I 1 GIVING PRIME.
* DISPLAY PRIME.
ADD 1 PRIME GIVING K.
PERFORM STRIKOUT UNTIL K > 8191.
ADD 1 TO PRIME-COUNT.
NOT-PRIHE.
ADD 1 TO 1.
END-SCAN-FOR-PRIMES.
BRIT
STRIKOUT.
MOVE 0 TO BIT (K).
ADD PRIME TO K.
END-PROGRAN.
EXIT.
*3i CIS COBOL V4.4 REVISION O URN rp/

128

0S5-2 User Notes Volume I

0001

COBOL BENCHMARK PROGRAM
#* CIS COBOL V4.4

IDENTIFICATION DIVISION.
PROGRAM-ID. ISAM-BENCHMARK
AUTHOR. PETER DIBBLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. GIMIX.
OBJECT-COMPUTER. GIMIX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

Bnch.CBL

SELECT ISAM-FILE-1 ASSIGN "ISAM.FILE";

ORGANIZATION IS INDEXED;

ACCESS MODE IS SEQUENTIAL;

RECORD KEY IS ISAM-KEY-1.

SELECT ISAM-FILE-2 ASSIGN "ISAM. FILE";

ORGANIZATION IS INDEXED;
ACCESS MODE IS RANDOM;
RECORD KEY IS ISAM-KEY-2.

DATA DIVISION.
FILE SECTION.
FD ISAM-FILE-1;
DATA RECORD ISAM-RECORD-1.
01 ISAM-RECORD-1.
03 ISAM-KEY-1
03 FILLER
FD ISAM-FILE-2;

DATA RECORD ISAM-RECORD-2.

01 ISAM-RECORD-2.
03 ISAM-KEY-2
03 FILLER
WORKING-STORAGE SECTION.
77 KEY-NO
77 HI-NUMBER
77 LO-NUMBER
77 DATE
01 WORK-DATA.
03 WORK-KEY
03 I-DATA
01 SYSTEM-DATE.
03 YEAR
03 MONTH
03 DAY
01 SYSTEM-TIME.
03 HOUR
03 MINUTE
03 SECOND
PROCEDURE DIVISION.
START-UP.
OPEN OUTPUT ISAM-FILE-1.

PIC 959) COMP-3.
PIC X(50).

PIC £9) COMP-3.
PIC X(50).

PIC 9(9 COHP 3 VALUE O.
PIC 9(9 P-3.

PIC 9(9 COMP-

PIC XXX VALUE ''004".
PIC 9%9) COMP-3.
PIC X{50).

PIC 99.

PIC 99.

PIC 99.

PIC 99.

PIC 99.

PIC 99.

MOVE "ASSORTED DATA: NAME, ADDRESS, ETC, OR WHATEVER" TO

I-DATA.

ADD 1 KEY-NO GIVING LO-NUMBER.

MOVE KEY-NO TO WORK-KEY.
DISPLAY "START BUILD".

DISPLAY "TIME " HOUR, ":"

CALL DATE USING SYSTEM-DATEH S%STEH TIME.

":", SECOND

Review of 0S-9 CIS COBOL

PAGE: 0001

129

** CIS COBOL V4.4 Bnch.CBL

PERFORM ADD-RECORD 10000 TIMES.

CLOSE ISAM-FILE-1

DISPLAY "BUILD DONE'.

CALL DATE USING SYSTEM-DATE, SYSTEM TIME.

DISPLAY "TIME " HOUR, ":', MINUTE, ":", SECOND -

’

MOVE WORK-KEY TO HI-NUMBER.
DISPLAY "READ STARTING'",

OPEN INPUT ISAM-FILE-2,
PERFORM TEST-READS 2500 TIMES.
CLOSE ISAM-FILE-2.

CALL DATE USING SYSTEM-DATE, SYSTEM-TIME.

DISPLAY “TIME ' HOUR, ":", MINUTE "+, SECOND
DISPLAY "READ DONE".
STOP RUN.

ADD-RECORD.

ADD 1 TO WORK-KEY.
WRITE ISAM-RECORD-1 FROM WORK-DATA;
OR-1 INVALID KEY PERFORM ERROR-1.
ERROR-1.

DISPLAY "INVALID KEY: ", ISAM-KEY-1.
TEST-READS.
PERFORM READ-HIGH.
PERFORM READ-HIGH.
PERFORM READ-LOW.
PERFORM READ-LOW.
READ-HIGH.
MOVE HI-NUMBER TO ISAM-KEY-2, WORK-KEY.
READ ISAM-FILE-2; INVALID KEY PERFORM ERROR-2.
SUBTRACT 1 FROM WORK-KEY GIVING HI-NUMBER.
ERROR-2.
DISPLAY "INVALID KEY: ", WORK-KEY.
READ-LOW.
MOVE LO-NUMBER TO WORK-KEY, ISAM-KEY-2.
READ ISAM-FILE-2; INVALID KEY PERFORM ERROR-2.
ADD 1 WORK-KEY GIVING LO-NUMBER.
END-PROGRAN.

EXIT.
#% CIS COBOL V4.4 REVISION O
** COMPILER COPYRIGHT (C) 1978,1981 MICRO FOCUS LTD
% ERRORS=00000 DATA=00705 CODE=00703 DICT=00612:01271/01883 GSA FLAG

3w

0S-9 User Notes Volume I

PAGE:

URN rp/

0002

REVIEW OF SOFTWARE BY
CLEARBROOK SOFTWARE GROUP

DEDIT

Overview

DEdit is a screen-oriented editor which is
intended for use on non-text files. It
displays the contents of a file {(or an
entire disk) in what amounts to "dump® for-
mat for inspection and modification. I
think it should be possible to configure
DEdit for any terminal that has direct cur-
sor positioning support.

Details

DEdit is a minimal, but adeguate, editor.
It nas a set of 16 one-keystroke commands
consisting of five cursor control keys
(up,down, left,right, and home), eight edi-
tor control keys {exit, reread sector, next
sector, previous sector, write sector, and
read specified sector), three keys to con-
trol a "find" facility (find, again, and
aport find). The remaining two commands
control the edit “"windows. *

DEdit can display either two or three
windows at a time. The main window is a
hexadecimal format display of a sector of
the file being edited. To the right of the
hexadecimal display is an ASCII display of
the printable characters in the sector. The
third window, positioned near the top of
the screen, is the binary representation of
the character which the cursor is posi-
tioned to. There is a command to move the
cursor from window to window, and a command
to turn the binary window on and off.

The characters corresponding to the 16
commands are specified by a table in the
DEdit program who'’s Jlocation is given in
the documentation. I found the choice of
command characters strange, and promptly
changed them to something I could remember;
it was fairly easy to change the table with
debug (I could have used DEdit),

Another table 1in the DEdit program
describes the characteristics of your ter-
minal, DEdit is supplied configured for the
TVI 910, but can be altered to work with
most other terminals. The terminal must
support direct cursor positioning, and a
clear screen/home cursor sequence that is
no more than four bytes long.

Limitations

There are no serious drawbacks to
DEdit. It works reliably, and has enough
features to be useful. DEdit seems to have
been designed to be used for emergency
repairs to directories, and other special
purposes. This kind of use doesn’t call for
a feature packed editor; still, I am disap-
pointed in the bare~bones approach Clear-
brook took to this problem.

The three main uses I would have for
this kind of editor are placing special
characters in text files, fussing with
directories (unerasing files), and zapping
modules. For zapping text files it would
be nice to be able to eliminate the hex
window for quick scanning of a file. Per-
haps a one byte hex window could be kept at
the top of the screen the way the binary
window 1is. Fussing with directories would
be much easier if the editor would format
the directory in a meaningful way =-- the
format 1is right there in the System Pro-
grammer’‘s Manual, but I appreciate programs
that make things easier for me. The module
format is another one that could be dis-
played more meaningfully, The module header
could be separated from the rest of the
module and the parts of it labeled. Disas-
sembled format would be another nice fea-
ture.

Even a bare-bones editor needs a good
manual. DEdit’s manual is not good. For
anyone but a brave and experienced hacker
the poor documentation could entirely rule
out use of this program. The commands are
all described on one page together with
directions for changing the command charac-
ters. The terminal description table is
described in two and a half pages in suffi-
cient detail that any experienced assembly
language programmer should be able to con-
figure the program for a termina) ..
eventually. I spent quite a while learning
that the numeric fields were unsigned.
Despite the fact that one- byte fields are
almost always signed in 6809 machine lan-
guage, the unsigned nature of these fields
was never mentioned. Perhaps it should have
been obvious to me {after all, cursor posi-
tions are never negative), but I used about
ten minutes figuring this out.

Summary

For someone who needs a disk editor right
now, DEdit would be a useful utility. For
anyone who can wait, I would recommend
hanging on; this program has more features
than the various free ones I know of, but
not enough to make it worth the money to
someone who will only use it occasionally.

BT9

Overview

BTS is a module which maintains files in a
binary tree format. The BT9 module can be
called from BasicO2, or any other Jlanguage
which can use the Basic0S9 calling seguence.

Details

Fourteen commands can be passed to BTS
al-owing random access, and sequential
access (forward or backwards) to files
built and maintained through BT9. The com-
mands are:

Review of Software by Clearbrook Software Group 131

- Read file header
(done after open)
- Write file header
(done before close)
- Read a record
- ¥Write a record
- Add a record
- Quick add
- Update current record
- Delete current record
- Find = key
- Find >= key
- Find record with lowest key
- Find record with highest key
- Find next higher record
- Find next lower record

The documentation is marginal, but there is
a demonstration program which is a great
help.

Limitations

There is a tremendous problem with this
program. They picked the wrong file struc-
ture. A binary tree 1isn’t even the data
structure of choice for use in high speed
memory when the data is not static. A plain
binary tree like what BT9 uses will struc-
ture data in the worst possible way when
the data is added in sorted order. On disk
the idea of a binary tree is just horrify-
ng.

Trees from a family called bichromatic
trees have the characteristic that they
dor’t grow long branches causing poor per-
Ffarmance. Most data structures texts
include AVL trees and 2-3 trees from this
family. The most popular, and probably the
best, type of tree to use on disks is the
E-tree. A B-tree is something 1ike a binary
tree, but it coesn’t have nasty habits 1ike
the binary tree. and 1t is much faster than
the binary tree when the data 18 on disk.

After accuqing this program of using
the wrong data structure i1t hardly seems
reasonable to bother with any other prob-
lems, but there is one other major problem
that would be & good deal easier to fix.
BTS takes a rather casual attitude toward
disk errors. They are reported to the user,
out not reflected to the calling program 1n
2ny way. This sloppy treatment of errors
makes it impossible for 2 program to
attempt any form of automatic recovery from
disk errors.

Summary

can only imagine using this module to
tive a problem in a quick and dirty way.
It would not be very difficult to write a
module which was upwardly compatible with
this one but used a B-tree data structure.

Since this review was written Clearbrook
has announced a package that supports
BE-Trees.

132 0S-9 User Notes Volume I

D-SERIES UTILITIES -- DDIR,
DDEL, DCOPY AND DATTR

Overview

1 bet every DS-9 user has been waiting for
these programs. They are generalizations on
the DIR., DEL, COPY, and ATTR commands which
work on multiple files.

Details

A1l the D-Series command include a <file
spec> option as one of the parameters. The
<file spec> can include part of a file
name, an attribute of the file (1e D S PR
PWw PE R W and E), a user number, or 0 to
indicate the user’s own files. These can be
combined with ANG, OR, NOT and parenthesis.
The <file spec> is used by the D-Series
ccmmands to select the files which will be
acted on.

The DDIR command gives a simpie (one
column) 1list of all the files which meet
the selection criteria in a specified
directory and, optionally, in 1lower level
directories. The output of of DDIR is for-
matted by indenting for each level into the
directories which makes it quite readable.

The DDel command deletes all the files
meeting the selection criteraa. It can
optionally prompt before deleting each
file. list the files as they are deleted,
and search the specified directory and all
lower level directories.

The DAttr can change the attributes and
owner of files meeting the selection cri-
teria. The options are the same as for DODel
with the addition of a set of options to
specify the new file attributes and owner.
Only a superuser (user O) can change the
owner of files he doesn’t own.

The DCopy command copies all files
meeting the selection criteria from a
selected directory to another selected
directed. The options are:

. prompt before copying

. list files as they are copied

. copy files 1in specified and Ilower
directories

. make directories

. deiete files which already exist in

destination directory

Problems and Limitations

The file selection criteria used with these
commands are not as elaborate as the cri-
teria the equivalent UNIX commands use. In
particular there are no wiid cards or pat-
tern matching options.

If any command line parameters are
specified for the DDir, DDel, and DAttr
commands the directory name must be includ-
ed on the command line. Most 0S~8 commands

use “." as the default directory, and the
D-Series commands do if no parameters are
given. It seems inconsistent that they
don’t always allow the directory to be
defaul ted.

The DDIR command sometimesareturns with
an error 211 (end of file). It is my
theory that this is returned from the last
read of the directory, and is entirely
innocent, but shouldn’'t be returned to the
shell.

minor complaint about the documenta-
tion: every time “pr pw" should have been

in the documentation, "p~ pr" was there
instead.
Summary

The D-Series commands are very useful. They
are not without faults, but, especially for
systems with large capacity disks (lots of
files), they are almost essential.

Reconsideration

I sent this review to Clearbrook Software
Group for their comments. They returned
the letter which I have included with this
review, revisions to the documentation for
the editor, a new edg;or. and a config
program for the editor.

The documentation is much improved,
although it still suffers from nhaving been
written by a knowledgeable person. They
incluade directions for recovering a deleted
file which are useful, and what appears to
be a screen dump of a dedit screen which s
also nice to have. With the original docu-
mentation, I spent a while trying to use
Dtdit before I realized that I had it con-
figured wrong.

I had trouble with the “config_dedit"
program they sent me: it sometimes just
stopped. It was a packed BasicOS program
so I couldn’t tell whetner :t was an imncom-
patibility with my BasicOe2, or something
else.

The new version of DEdit is identical
to the one I already had. I ran the 0S-89
compare utility, cmp, against them and
found they only differed in the bytes that
are changed when the terminal configuration
is done.

The improvements to the documentation
are nice, and the configuration program
seems like it might make it a good deal
easier to set DEdit up for & terminal, if
it would work.

This problem (error 211) has since been
fixed

The letter isn’t included here, but it
detailed the improvements they had made,
and said that DEDIT did what it was
intended to do very nicely.

Review of Software by Clearbrook Software Group

133

134 0S-3 User Notes Volume I

A REVIEW OF DYNACALC FOR
0s-9

OVERVIEW

DYNACALC is a very
spread sheet program. It is enough 1i1ke all
the other spread sheet programs (visi-
clones) so anyone familiar with one of them
should be able to adjust to DYNACALC very

capable electronic

quickly. DYNACALC is not a great leap
beyond all other electronic spread sheets,
but it is a very good example of the cur-

rent state of the art.

A electronic spread sheet program makes
the terminal appear to be l1ooking at a sec-
tion of a large grid. The “cells" in the
grid can each contain a number, equation,
or character string. The equations usually
operate on the contents of other cells (A
column of cells might contain monthly
expenses, and another cell somewhere on the
grid might contain the sum of all the cells
in the column of expenses.) The special
thing about electronic spread sheets as
opposed to paper spread sheets is that when
a number or equation on an electironic
spread sheet is changed. all the cells that
depend on that value are updated to reflect
the crange. This is a simple idea, but such
a good idea that I know of many people who
have purchased computers just to be get at
this kind of program.

SOME DETAILS

DYNACALC is a large 6808 assembly language
program which has beerl available under FLEX
since last year. It is now also available
under 0S~9. The 0S-9 version doesn’t seem
like warmed over FLEX code; it seems to
have been designed for 0S-9. It is reent-
rant {(the same module can be used by any
number of simultaneous wusers), and uses
standard input and output. Practically any
CRT type terminal can be supported. 1In
fact, the warranty for DYNACALC says that
i¥ you have a CRT terminal with at least 8Q
characters per line and direct cursor
addressing:

If your terminal has the
required characteristics, but
you are unable to configure

DYNACALC to work properly
(using the INSTALL utility),
send us your original DYNACALC
diskette and a copy of the

operator's manual for your
CRT. We will either make it
work on your terminal, at no

extra charge to you,
your full
price.

or refund
DYNACALC purchase

That is a very impressive commitment! If
you have several users or your system with
different types of terminal, you can get
DYNACALC to support them all concurrently
if you have each terminal type use a dif-
ferent data directory, and put the appro-
priate terminal file in each directory.

DYNACALC can save the contents of a
spread sheet in a file that can be read by
other programs. 1 wouldn’t call the files
easy to use, but they aren’t impossible to
use either, and the format is clearly docu-
mented. DYNACALC’s saved data is hard to
use because the format of the file reflects
DYNACALC’s flexible attitude towards the
user - it will take any sort of data scat-
tered around anywhere you like. If you want
to create a file for DYNACALC to use as
data for a spread sheet, you don‘t have to
cope with the vicissitudes of humans. It is

a relatively simple 3job to create data
files for DYNACALC.
An excellent help facility is an inte-

gra) part of the program, though you can
remove it to save space if you want. Most
of the time you can type a "?" to access a
screen of terse explanations of your

options. The help screens do not take the
place of reading the manual, but they can
provide a quick jog of the memory. There
are also 12 error codes which I wish all

visiclones had. Spread sheets can take on
some of the attributes of complicated pro~
grams, especially hard to find bugs. Imag-
ine trying to debug a program with only one
error message iike *Sorry, 1 can‘t do
that," "Say wha?" or whatever.

My copy of DYNACALC came the terminal

files 1listed in Figure 7. I recognize
SWTPC, Hazeltine, Adds, Heathkit/Zenith,
ADM, and Televideo 1in there. Even if your
terminal isn’t in that 1ist, you can use

the INSTALL.DC utility to build a terminal
file for your terminal.

ct 82 ct 82 92 c8200
c8Z w c8Z w92 h 1400
h_1500 adds_¥vpt adds_3a
act iv adm 3a ansi”
pe_3550 info_100 ig_120
Figure 7: Dynacalc Terminal Support

c8200 92
h_1420
h~19
tv 912
tv7950

A particularly strong point of DYNACALC
is the set of powerful functions it sup-
ports, including basic math (trig, log/exp,
square rgoot, max/min, pi, int, round, ang
absolute value), *group" functions ({(sum,
average, standard deviation, net present
value, choose, lookup, and index), and a
punch of miscellaneous functions. Choose
selects the nth entry from a 1list, lookup
is the standard visiclone 1l1ookup function,

AjReview of DynaCalc for 0$8-9

and index 1is 1ike 100kup except that it
scans for an exact match instead of greater
than. Many of DYNACALC’s functions work
witn either character strings or numbers.
This expands the usefulness of the func-
tions substantially.

DYNACALC has commands which move rows

and columns around, and do insert and
delete operations on them. The fanciest

135

command in this family is the sort command,
which allows you to sort rows or columns
based on the values in a column or row
respectively.

I have never been entirely pleased with
he speed of any program. Of course I wish
DYNACALC ran faster, but 1 don’t remember
using a spread sheet program on a microcom-
puter that ran faster.

LIMITATIONS AND PROBLEMS

The only real probiem with DYNACALC is with
its terminal support, and I'm not sure it
could have been done much better without
losing generality. The terminal support
problem is not a major one. In fact, 1
imagine that after a few months of using
the program I will feel nothing but affec-
tion for it.

It is hard to choose characters to use
as arrow -keys. DYNACALC wuses curly and
square brackets as cursor control keys by
oefault. This is a good choice if you want
to arive it with a disk file, but not very
intuitive. 1f you like this choice as 1it-
tle as 1 did you can change it with
INSTALL. Unfortunately install only allows
you to use single characters as control
keys; my terminal, 1like most terminals,
sends escape seqguences when the arrow keys
are pressed.

Screen updating s not as fast and
smooth as it is on machines that have inte-
gral screen support. I. understand that a
9600 baud terminal can‘t possibly compete
with memory mapped video, but 1 believe
that, if the 1insert and delete character
and line facilities on my terminal were
used, the screen could be updated more

136 0S-9 User Notes Volume I

auickly. It would have been hard to make
DYNACALC support more advanced terminals
while still supporting "dumb" terminals,
but 1 wish it had been dcne.

SUMMARY

DYNACALC is a fine program, but although it
seems to have been written by a programmer
familiar with 0S-9, i1t doesn’t make the
fuilest use of the power of 0S-9. I wish
DYNACALC could use all available memory
instead of just 64K, and I wish printing
was handled by a separate process so I
could start a copy of a sheet printing,
then continue work on the original. Extend-
ed memory probably could bhave been used
under Level Two without degrading the pro-
gram under Leve! One, and multiple process-
es are supported by both levels of 0S-9.

I find myself expecting a great deal of
DYNACALC. My carping at its terminal sup-
port (which s in many ways unusually
good), and pushing for support of fancy
0S-9 features is a reflection of my very
high opinion of the program.

I know people who find it reasonable to
buy a personal computer just to have an
electronic spread sheet. DYNACALC 1is an
excellent spreac sheet program. It can help
with any number of business problems, sim-
ple problems in the sciences, and just
plain showing off the computer to the unin-
itiated. 1 think DYNACALC 1is a program
which should be included in the toolkit of
most 0S-9 users. One warning, spreadsheet
programs tenc to be popular. I am afraid
that I will have to wait for a crack at my
machine more often now that I have DYNACALC
on it.

REVIEW OF DYNAMITE

OVERVIEW

Dynamite is a disassembler for the
6809/6800 sold by Computer Systems Center.
The version I tested runs under 0S-9, but
there are other versions for FLEX and Uni-

FLEX. Disassemblers are able to convert a
file of executable object (machine) code
into a program in assembly language. It is

important to realize that Dynamite won't
work on intermediate code, such as BasicO9
packed files, and it won’t always convert
object files into the original language.
Dynamite can convert an executable object
module generated by any language into
assembly language. Even if the program was
written in a higher 1leve! language 1ike
Pascal or C, Dynamite will only produce
assembler.

If you have reliable software and don’t
like to dig around in your system much, you
have no need for Dynamite. Don’t waste
your money. If you would like to fix (mod-
ify) your software, or just want to under-
stand it as only someone with the source

code can, Dynamite, or some other disassem-
bler, 1s valuable. 1 have disassembled
many pages of code by hand. Those hours of
work qualify me to say that disassembly is
just the type of work which should be left
to computers.

SOME DETAILS

Dynamite can be used to get a quick look at
source that could have generated an object
file. The command:

DYNAMITE filename a

will disassemble the module 1in the file
called filename and send its output, which
looks like the the output of an assembler,
to the terminal. The "a" option tells
Dynamite to give the ascii equivalent of
each printable character it encounters dur-
ing the disassembly. This simple disassem-
bly is enough in many cases. 1f the module
is more complicated than is easy to under-
stand without meaningful labels, the next
step is to help Dynamite do a better job of
decoding the module until its output tis
understandabtle.

Table 2:

Direct references
PCR references
Extended references
Hex constant
Decimal constant

ASCII constant
System function name

-) @RWvXr T

Dynamite Label Classes

Decimal or Hex constant depending on magnitude

Table 3:

Dynamite Addressing Modes

{1 - one byte immediate (any register)
- Immediate with Accumulator
{X Y, gU ,#S - Immediate with other registers
Indexed by X,Y,U, or SP
D - Dzrect page
E - Extended addressing
-~ Relative

Dynamite doesn‘'t distinguish between Names for immediate data and offsets are

data and instructions while disassembling. useful. Names for offsets in PCR instruc-
This results in some very strange output as tions are VERY useful because, although
blocks of constants are disassembled. Even different references to a location will
the name of the program pointed to in the have different PCR of fsets, Dynamite
module header is decoded into assembly lan- resolves them to the same name.

guage instructions. Tne "a" option makes

it easy to find the data areas, and Dyna-

An assembly language program more than
mite can be told where they are either

about a page long is hard to read unless it
through its standard input or 1n tts com- has meaningful names. Dynamite gives names
mand file. Once Dynamite knows where the that consist of a 1letter and a number.
data areas are, it will stop disassembling More meaningful names can be assigned by
them as instructions. Instead, it wil) using a label file.

label the entries in the data area, and

disassemble them into constants Dynamite can use two classes of files
(fcb.fcc,...). with label definitions in the form of
equates. It always uses a "system name"

when Dynamite is run without any gui- file which contains the names used for each

dance, it invents names for everything it 0S8 call. When the instruction:
encounters that might have had a name in
the original program. Addresses, offsets, 0S9 1SOpen

and immediate data all are given names.

Review of Dynamite 137

is decoded the "I$0pen" comes from the sys-

tem name file. The second file ful)l of
label definitions is the "label file." The
label file‘s name has to be given in the
Cynamite command 1ine. Each l1ine in the

label file is of the form:

label EQU value class

for example:
Init EQU $24 L

where Init is the label, %24 is the value
and "L" s the class. Initially eight
label classes are defined: see Table 2.
These classes are sufficient for a simple
disassembly, but I found myself defining
additional classes very soon. A class is
defined by putting some labels in the 1abel
file with that class. A1l the unused let-
ters A..Z can De used as new classes. For
example., when I disassemble modules from
0S-9, 1 usually have to define labels for
offsets in the System Direct Page. and the
process descriptor. For the System Direct
Page the D class is fine, but for the pro-
cess descriptor 1 have t& define a new
class. I usually use P.

Dynamite will use its default classes
of labels wherever tney are appropriate
unless it 1is given instructions to use
another class of label. A good disassem-
bler needs to be able to assign labels to
values very specifically. Although 8 is
the offset of the P$User in the process
descriptor control block, it wouidn’t gen-
erally be 2 good idea to assign the name
tsUser to tne value 8 throughout a program.

—~amite gives you two ways to limit the
.upe in which a label is used. & class of
abe! is activatec by a command of the

form:

<mode> <class> [<offset>)]
<range>

The modes are listed in Table 3. The class

is a default class, or one defined in the

label file. The offset is added to a value

before the proper label is looked up, then
~cluded in the disassembly listing. Tnis
.'¢ be wused to generate instructions
-~ e

lda #CR+$80

n the disassembly. The range gives the
range of offsets from the start of the mod-
ule being disassembled over which the map-
ping given by this command is in effect.

Commands can come either from standard
input after Dynamite is started, or from a
command file.

If the reason for disassembling a mod-
ule is to learn how it works, the 1isting
generated by Dynamite should be enough. If
the goal is to revise the original program,
Dynamite can generate a file which contains
source Wwhich can be assembled with the
Microware standard assembler, or any com-
patible assembler to give a module identi-
cal to the original.

The 0S-9 version of Dynamite expects to
disassemble 6802 instructions from a file
with modules in 0S-9 format, bu? there is
an option which causes it to disassemble a
file into 6800 1nstructions and another

138 0S~9 User Notes Volume 1

option which tells it tc expect to find the
module in Motorola or FLEX format instead
of the usual 05-9 format.

OPERATION

I use Dynamite to sort of chew away at the
edges of a program until I have it reduced

to an understandable 1listing. First 1 let
Dynamite have its head, and produce a list-
ing using all its defaults. Using this

listing, I start building the 1labels and
commands files. At first I just define the
data areas and a few Jlabels. Then 1 go
through a cycle of running Dynamite then
using the output to refine and extend the
contents of the cocmmands and labels files
until the listing satisfies me. Then I ask
Dynamite to generate a file with the source
in it This file is the best I can do with
Dynami te. It isn‘t well formatted, and has
no comments. The final polishing has to be
done with an editor.

Piease realize that if you disassemble
proprietary sof tware {such as Dynamite
itself) tne same laws and moral obligations
that should prevent you from passing out
copies of the or:ginal program apply to the
disassembled program.

LIMITATIONS

when 1 first tried to use Dynamite, 1 had a
terrible time. !l blamed the documentation.
Determined not to be unfair, I sa* down and
read the manual from start to finish. I
won’t say it was easy readcing, but onze 1
rad chewed my way through it 1 understood
how to use Dynamite. The manual is a 1lit-
tle brief for the manual! of a program that
does such tricky work, but it is complete.
It is not set up to be skipped through!

Dynamite’s advertising might 1lead a
person to believe that disassembling a mod-
ule with Dynamite is easy. You run Dyna-
mite against a file and it falls apart into
neat code. This is not true at all...
disassembling a module is hard. You have
to figure out all the tricks the person who
wrote the program used. This 1is not too
hard to do for a short, simple program, but
long tangled modules are much harder to
disassemble than they are to read itn com-
mented source form, and some modules are
hard to understanc even when the original
source is in front of you.

It seems a little silly to design a
disassembler with the ability to insert
comments 1in its output, but Dynamite 1is
such a complete product that I am a little
disappointed that there is no way to
include a "comment file" in the input for
Dynami te. I understand that Computer Sys-
tems Center is working on this shortcoming.

SUMMARY

1 am very impressed with Dynamite. It does
about as good a job of helping a person to
disassemble a module as it can do. For
example, if Dynamite finds that a label
falls in the middle of an instruction, it

throws in an ORG to adjust the PC so the
label falls at the start of an instruction.
This keeps data areas from tnrowing the
disassempdly out of whack; usually if there
ts a data area in a program, there 1is a
reference to the first instruction after
the data area which Dynamite can use to get
itself lined up again if 1t hasn’t been
told that the data area is there and has
gotten itself wrapped around the axle by
trying to turn data into instructions.

Dynamite is designed to be wuseful for
several different types of disassembly.
The Qquick disassembly can be done without
building any files. The most important

information Can be supplied interactively.
Used this way Dynamite can produce a usable
listing in just a few minutes. The full
power and flexibility of the program shows
up when a higher quality 1listing is the
goal. Dynamite lends itself to the process
of successive refinements that leads to a
clear disassembly.

1 don‘t recommend Dynamite for every
0S-2 user. In fact, 1 imagine there are
not+ many 0S-9 users whe have a need for
this type of software, but for those who
need a disassembler, Dynamite is everything
it should be.

Review of Dynamite 139

14D O©S-9 User Notes Volume I

A REVIEW OF RMS

RMS (Record Management System) is a primi-
tive, but useful tool for organizing and
processing data. It isn’t a database sys-
tem, or even a polished record management
system, but, nevertheless, I rather 1like
it.

OVERVIEW

RMS stores data using at least two files.
The _rms file contains data. It must be
formatted in advance using the RMSNEW util-
ity. The _dic file contains a description
of the data in the _rms file. The _dic
file must be created with a text editor
before any data can be placed in the _rms
file. A third file type _ndx (index) is
used when a _rms file must be sorted on
some key other than the one designated in

the dictionary file. Many _ndx files can
be generated, one for each ordering of the
file. Index files can be created with the

INDEX utility, or any other program that
generates a file with a key value on each
line.

RMS has to know many things about your
terminal before it can be used. A file
called rms_trm must be build with a text
editor and placed in the root directory of
/DO, or the directory whicn will be the
default data directory when RMS is run.
The rms_trm file must contain the hexadeci-
mal representations of 88 bytes of data
including 31 terminal characteristics and
command codes.

SOME DETAILS

RMS saves information in record groups con-
sisting of one "“primary" record and any
number of "secondary" records related to
the primary record. The secondary records
aren’t required, but they are important
when a variable amount of information is to
be associated with each primary record.

1 use primary and secondary records in
the database of Prairie Home Companion {an
excellent program on PubliCc Radio each Sat-
urday evening) programs I keep. Some
information about each week’s show fits
nicely in the primary record: a date., and a
comment to act as a title for that week’s

show. I maintain seZfondary records to save
the names of the guests, notes on each mon-
olog, and notes on each "advertisement." I

use the secondary records because although
I could probably put a ceiling on the num-
ber of guests, monologs ana adds that might
occur in a program, the ceilings would have
to be much higher than the usual numbers,
RMS assumes that all fields will have data
in them when it allocates space for a
record; so Jleaving space for data that
isn’t usually needed would waste 1lots of
file space. Since I only use as many sec-
ondary records as I need, they use space
comparatively efficiently.

The dictionary file associated with
each RMS file defines the structure of the
data in the fiie and the way the records
are displayed on the screen. If secondary
records are used, the dictionary file con-
tains the formats for primary and secondary
records.

The first line in the dictionary file
contains the title for the primary records.
This title is displayed on the screen when
the RMS editor is being used to edit a pri-

mary record. Lines following the title
line are used to define fields in the
record, one field per 1line. The first

field is the "key" for the record. The key
can be used to select records for editing
very quickly. The line defining a field
contains the name of the field, the length
of the field, the type of data to be stored
in it (alphanumeric, numeric, money, or
date), the prompt to use in the editor, and
various data validation options. The field
can be made optional, a minimum length can
be specified, and a range or l1ist of accep-
table values can be given.

The dictionary file I use for my Prai-
rie Home Companion file demonstrates some
of the features of RMS. I include it here
as an example.

"Prairie Home

DATE 8 D "Date aired:" ;
COMMENT1 50 A¥ "Comments. H
COMMENT2 50 A% :
FOINTI! 15 A% "Specxal Notes:
POINT2 15 a*

"Metails"

DATE 8 D "Date a1red'" ;
TYPE 1 A gp Sponsor
SUBJECT 50 A* "Su Ject' "o
SUBJECT2 40 A*

EUBJECTS 40 A% ;

Figure 8: Sanple RMS Definition

Com pan i on"

Powdermilk,Monolog, Guest, Other):" [S,P.,M,0,G]

J

The only fields on which I used valida-
tion are the date fields, which RMS vali-
dates for possible dates, and the TYPE
fieid, which I only permit to take one of
five values. RMS formats the data on the
screen UJUsing a few Simple rules. The

fields are placed in order starting in the
upper left corner and working left-to-right
and top-to-bottom. RMS won‘t split a field
and its prompt between two 1lines. It is
possible t0 have some effect on the screen

A Review of RMS 141

-
¥

format by adding leading blanks to prompts,
mut not much. Trying to do something radi-
cal -- like add a blank 1ine =~-- makes a
terrible mess on the screen.

The dollar signs mark the end of each
racord definition.

The lengths of the primary and secon-
cary records are 138 bytes and 139 bytes.
I kept the lengths about the same because
RMS allocates only one siZe of record. It
must leave space for the largest possible
record; so, when two record formats are
used, the difference in siZe between the
two records is wasted for each small record
stored in the file.

I used an important trick on the secon-
dary record. Since RMS only understands
two record formats, 1 used the secondary
format for five different types of records.
The TYPE field in a secondary record indi-
cates the meaning of the information in the
rest of that record.

The RMS editor is used to add, delete,
and update records in an RMS file. It is
also able to search through the file either
seouentially, or by key.

The RMS report writer is powerful, but
not versatile. It takes as input an rms
file, a report specification file, and
sometimes an index file. The report speci-
fication file is something like a program
"me language used reminds me of RPG. It
can contain commands which select or
excluoce records. Any number of 1ines can
be printed for each record selected. Spe-
cial lines can be printed at the start of a
report, at the end of a report, at the end
<f a group of records. and at the top of
aach page. Page breaks happen when a page
is full, or (optionally) after each prima-
ry, or secondary record is processed.
Tnere are no aritrhmetic commands in the
report generator, but various accumulators
are kept: the number of selected records,
the number of selected groups., the number
of selected secondary records, and totals
and subtotals for each numeric field.

By default reports are generated with
records sorted in ascending order on their
key . Dther orders canrn be specified bky
using an index file.

Index files can be generated by the
LJNDEX utility. INDEX produces a file that
contains a 1ist of record key values. If
records are selected from the RMS file in
the order specified in the 1ndex file they
will be in the order specified when INDEX
was run to create the index file. For
example:

INDEX phc Points Pointl

would generate an tndex file called Points
which could be used to sort the phc RMS
file 1n ascending order on the POINT1
field. Index files can be edited to gener-
ate orderings that are beyond INDEX‘s abil-
ities.

The RMSCOPY utility can be used to copy
RMS files, but it can also do much more.
RMSCOPY can be used to add fields to a
file. remove fields, or merge similar RMS
files.

142 0S-9 User Notes Volume I

FLAWS

Setting RM3 up 1is exceptionally difficult.
It took me hours to get the _trm file

right. The worst part of my problem was
that RMS didn‘t help me uncover problems,
it just wouldn’t work. I have a terminal

which uses ANSI standard control sequences
which some programs have +trouble with.
Other people might not have qguite as hard a
time as I did.

The documentation keeps referring to
file names with dots in them, but RMS
always uses underscores. I called the pro-
gram’s author to ask about this. It seems
that when RMS was written for 0S-89 dots
weren‘t allowed 1in file names. I assume
that there is a FLEX version of RMS which
uses dots where the manual says they should
be. Since 0S-9 now permits dots in file
names, RMS could be adjusted to fit its
manual, or the document could be updated to
reflect the use of underscores. That nei-
ther of these things has been done indi-
cates a negligent attitude that is disturb-
ing. ’

It is practically impossible tc format
the screen any way other than the way RMS
wants it. This would be easier to take if
I Yiked the way RMS formats the screen. 1
prefer to use up the whole screen, and RMS
packs the fields as close together as pos-
sible.

RMS’s file structure is wasteful of
disk space. Since it can’t handle
variable-length fields or records, it uses
more space per record than is necessary in
almost every case. It also has to format
the entire file before any records can be
placed 1n it. It would be more consistent
with 0S-9 conventions to start off with a
small file and enlarge it as required.

Index files aren’t automatically updat-
ed. That means that if you generate an
index file, then insert or delete records
in the _rms file, the index file is out of
date and has to be made over again. It is
easy to forget to make new index files, and
RMS doesn’t do anything to make it easier.

SUMMARY

I find RMS useful, but frustrating. It is
not a database program; it doesn‘t even
pretend to be. Before I couid discover how
useful RMS is I had to get it set up and
got used to its limitations. These were so
discouraging that I almost gave up on the
program. I‘m glad I didn‘t. 1 use the RMS
edi tor as tool for searching quickly
through large files, and generating reports
on the contents of those files. I wish RMS
could deal with multiple keys, but, for
many applications., one key is plenty. As a
report generator RMS is quite good, includ-
ing all the most commonly used features.
It would be better if there was some way to
do arithmetic, but I‘m surprised how weil I
can make do with what’s there.

I had heard that RMS was 1inctined +to
crash, but I haven’‘t been able to get it to
do anything unexpected except when I messed
up its _trm file, or tried to get it to
format the screen in a way contrary to its
nature.

RMS is not a highly potisned program.
In fact, it’s primitive. Not primitive in
a sloppy sense more simple and rough-
hewn ... like a well build log cabin. It
makes me want to write a real database pro-

gram for 05-9, but, since 1 probably won‘t
get around to that, I expect that RMS will
continue to get a moderate amount Of use

around here.

A Review of RMS

143

144 089 User Notes Volume I

Avad Y AAIVY WL DN DIV RLLIND

RMA (Relocating Macro Assembler) and RLINK
(Relocating Linker) are new programs from
Microware. They are required for C (and
probably for future languages from Micro-
ware), and are currently bundled with C.
Those who already have the C compiler from
Microware shouldn’t consider purchasing
RM4A/RLINK -~ they already have them under
the names c.asm and c.link.

OVERVIEW

It is easier to explain RLINK’s purpose
than RMA’s. RLINK takes one or more files
created by RMA and tur~ns them into an exe-
cutable module. RMA is a tool which makes
writing large programs easier with a moder-
ately good macro facility and a variety of
tools which permit a program to be divided
into several pieces which can be assembled
separately.

This separate assembly is the really
important part of RMA . wWith separate
assembly it is easy to build a tibrary of
procedures which can be called from any
program. Structured programming requires
that each procedure be as independent of
other procedures as possible. It 1is much
easier to do this when each module has
clear connections to other modules -- in
particular, any shared data should be not-
ed; RMA makes it easy to isolate proce-
dures, and makes it hard to hide shared

data.

SOME DETAILS

RMA includes the usual conditional assembly
statements:

. FAIL

Generates an assembler error and a
message.

. IF/ELSE/ENDC

Do just what they should. ELSE 1is
optional.

. REPT/ENDR

repeats a set of statements a speci-
fied number of times.

These statements can be used in the body of
a program, or in macros. Macros amount to
procedures, or specially defined irstruc-
tions which can be used very much as if
they were 6808 instructions. A macro is
defined by the MACRO/ENDM statements. A
macro can be given parameters which are
referred to within the macro by a backsiash
followed by a number: \{1 would be the first
parameter. \2 the second, etc. The number
of parameters given is available through
the special operator \#, and the length of
any parameter is available through the
operator \Ln where n is the number of the
argument whose length is in question.

Tihs AB,X,Y
shs A

eas -1,§"
leax \1, U

1db f\3

ble \@Lx
\€éLp 1lda B,X

sta ,S

lda B,Y

sta B,X

lda ,§

sta B,Y

decb

bne \ELp
\@Lx leas 1,S

puls 4,B,X,Y

NDM

Figure 9: RMA Macro

Swap MACRO exchanges bytes in memory
* argl —- points to memory location
i arg2 —- another location

arg3 —- the number of bytes to swap (a constant)
IFNE \ 3 check the number of args.
FAIL Swap. must have exactly three arguments

Make work space on stack
address of first variable
leay \2, address of second variable
number of bytes to swap

if none; stop

clear work space

Review of RMA and RLINK 145

when a2 macro needs unique labels, RMA
offers the \& operator. This operator
returns an & followed by a number unique to
gach invocation of each macro.

& sample RMA macro can be found in Fig-
ure S. This macro could be invoked with
tne statement:

Swap Varl,Var2,20

wh:ch could be used as mzny times as neces-
sary 1n a program with Swap defined.

The Separate Assembly Facility

RMA includes statements which define three
different “program sections."

The PSECT section contains program code
and constants. RMA can only deal with one
PSECT per assembly. The PSECT statement
inciudes &all1 the data given in the MDD
statement in ASM except the module length,
but only the entrypoint argument to PSECT
is an address. The parameters are:

. NAME

Up to 20 byte name for the PSECT
. TYPELANG

the type/language for the PSECT
s ATTRREV

the attribute (Retnt 7} and revision
level of the PSECT

. EDITION

the edition number to be used for the
executable module.

. STACKS.ZE

The estimated size of the stack for
this procedure.

. ENTRY

The Label used for the first instruc-
ti1on to be executed in the PSECT.

If the PSECT is the mainline segment of the
program being written, all the arguments
must have values:; for example:

PSECT Example,Prgrm+Objct,
ReEnt+1,1,250,EntryPt

Procedures which are used as subroutines
must have zeros in some fields; for exam-
ple:

PSECT SubProc,0,0,0,100,0

The PSECT section contains only con-
stant data: instruction mnemonics, 0S89,
fcc, fdb, fcs, fcp, rzb (reserve zero-value
bytes, VSECT, ENDSECT, and END. In partic-~
clar rmb is not allowed in a PSECT.

The VSECT section reserves memory loca-
tions. It has two forms:

VSECT DP

reserves space in the direct page, and just

146 0S5-9 User Notes Volume I

VSECT

reserves space outside the direct page.
The VSECTs are used for the variables that
would normally be addressed off the U reg-
ister in an 0DS-8 program Normally only
the rmb instruction is used in a VSECT, but
for elaborate programs it is possible to
have variables automatically initiallized.
If you are willing to incluce the initial-
lization code in your program (it is
included with RMA) you can use fcc, fdb,
fcs, fcb, and rzb in & VSECT aleng with
rmb. It is important that there 1is no
of fiCial way to know where variabies allo-
cated in a VSECT will be relative to other
variables. Your program will be able to
find its variables, but finding relation-
ships between the addresses of variables at
assembly time is hard.

As many VSECTs as convenient can appear
in a PSECT.

If VSECT is used inside the PSECT, as
it usually is, it will cause the linker to
allocate space for the variables in it. If
a VSECT is placed outside the PSECT it will
make the variables in the VSECT known in
the code. but not allocate any storage.
This is a useful trick for cases when you
know that a block of variables has already
been allocated and you want access to all
of them. I haven‘t tried this, anc I can’t
find it ir the manual, but Microware
declares it will work.

A CSECT is just a way to assign values
to names. They are used extensively in the
DEFS files for RMA. OUOnly the rmb statement
can be wused in a CSECT. If the CSECT
statement is given an argument, that argu-
ment is the starting value 1in the CSECT,
otherwise the values in the CSECT start at
zero.

Every program sector must be terminated
with an ENDSECT. A PSECT can contain other
sectors, but in general sectors should not
be nested. .

A label can be mage globally available

by following it with a coion ":" when it is
defined. If a label isn't global, it is
only known in the PSECT where it is
defined. If a label isn’t global, it can

be used to represent a different thing in
each, separately assembled. file.

Speaking of labels: RMA permits labels
up to nine characters long and always dis-
tinguishes upper and lower case letters.

The files that are produced by RMA,
called relocatable files, can be decoded by
a program called RDUMP which is included
with RMA. ROUMP can give anything from a
Quick summary to an exhaustive dump of
information about symbols referenced and
defined in the file being investigated.

SOME INTERNALS

Since RMA has no way of telling what off-
sets RLINK will assign to variables defined
in VSECTS, it is often unable to use the
small-offset forms of the indexed instruc-
tions. References to data in VSECTS are
assembled as 16 bit offsets. RMA records

information about variables defined and
used in a PSECT which is used by RLINK.
RLINK goes through the files it is linking
filling in the blanks left by RMA,

RLINK accepts a list of files to 1link
and 1 ibraries to use. It will link all the
files on the command 1ine even if the main-
1ine PSECT doesn‘t reference anything in
them. If there are any referentces left
unresotved, RLINK will search the
library(s) for the PSECTs needed to resolve
the references. A library is simply a
group of PSECTs merged together: the MERGE
command does this nicely. PSECTS in a
1ibrary can call one another, but, since
the 1library is read sequentially, unre-
solved references must be to PSECT further
along in the file, or in another 1ibrary
which will be searched later.

LIMITATIONS

1 haven’t been able to discover an easy
way to have RMA calculate the length of a
group of variables in a VSECT. The concept
of a useful data position counter ("." in
ASM) doesn’t exist in RMA. There are sev-
eral counters (Direct Page., Uninitialized
data. and initiallized data), and, in any
case, the 1linker has the 1last word on
addresses. I got used to this problem, and
1 can‘t think of any way for Microware to
design it out of RMA without introducing
other problems, but it is a serious prob-
lem. The lack of a "“." caused other habits
I have to generate errors as well.

RMA‘s inability to determine offsets in
a VSECT causes the 16 bit offset instruc-
tions to be used more than they are in pro-
grams assembled with ASM. These instruc-
tions are relatively long and slow. At
first this really upset me, but my experi-
ence and Microware‘s indicates that it
isn‘t a significant problem. I converted
several very large (5000 to 10000 lines of
code) programs from ASM to RMA and they
generally got a little smaller. Microware
decilares that they have converted BasicO0S
from ASM to RMA, and that it got a little
smaller through the conversion. 1 attri-
bute the small decrease in si{zZe to better
coding habits that RMA encourages. Still,
in the last analysis, programs assembled by
ASM can be made to run faster than programs
assembled by RMA.

This 1is really nit-picking, but the
command 1ine option which should set the
width of the 1isting which RMA can produce
doesn’t work. It‘s not that important, but
11ttle problems like that could give a less
forgiving person than me a bad impression
that would spoil the excellent job done On
the really important parts of the product.

I found several problems in the first
copy of RMA that I got, some of them guite
serious. I now have edition five. If you
have an earlier edition, 1 would strongly
recommend getting an update. If you mean
to use c.asm as a stand-alone assembler,
you should also see to it that you have an
up-to-date revision. The problems were
tricky things that wouldn’t generally show
up with correct code, but 1 haven’t been
able to uncover any bugs other than the
probiem with the width of the listing in
the current revision of RMA

Converting programs from the standard
assembler to RMA is not as simple as one
might think. To start with the standard
DEFS files won’t work, and Microware didn’t
include complete DEFS files with RMA. 1
freauently use "." that had to be dealt
with, RMA can’‘t handle as many symbols as
the standard assembler before the symbol
table overflows. This meant that 1
couldn‘t just convert a program into RMA, I
had to use RMA. A large program MUST be
broken down into several PSECTs and assem-
bleg in pieces then linked.

SUMMARY
I think RMA/RLINK is wonderful. I am &
serious assembly 1language programmer. b

write large programs that take a long time
to assemble, and have Qquantities of chunks,
of code that I “USE"” in assembler programs
to prevent myself from having to rewrite

commonly used procedures. RMA lets me
build 1 ibraries, and assemble only the
small part of a program that I change. I

also care about structured programming, and
RMA lets me use that discipline for assem-
bly language programs.

Assembly language procedures to be
called from C must be written in RMA, and I
have been able to call C procedures from
RMA programs. RMA comes with the C compi-
ler, but the documentation that is includeda
in the C manual isn‘t sufficient to make
full use of c.asm/c.link. The information
1l have given in this review may supplement
the C manual enough, but, if not, I would
recommend purchasing a copy of the
RMA/RLINK manual from Microware.

The standard assembler is easier to use
for short and simple programs. RMA has 2
lot more power, and is correspondingly
harder to use. Nevertheless, if you are
serious about assembler, RMA/RLINK is
important to have. Even 1if the addea
structure doesn’t mean anything to you, the
large amounts of time that you won’t spend
waiting for big programs to assemble w1l
be worth the investment in money and time
that RMA requires.

Review of RMA and RLINK 147

148 0S-9 User Notes Volume I

ACIA ... 48

Active Process Queue ... 58
ANSI Protocol ... 39
Application Programs ... 35

B~Trees ... 131

BasicOS ... 15, 35

BasicO9 Installation ... 77

Binary Trees ... 131

Boot file ... 9
Construction ... 9

BTS ... 131

Buffers ... 26

Busy Waiting ... 25

Bword ... 60

C Asm ... 1445
C Functions - Floating Point ... 96
C Language ... 96, 113
C Link ... 145
Cache ... 49
Calc ... 21
Carry Bit ... 29
Changing Disks ... 78
Changing 1/0 Configuration ... 74
CharCt ... &0
CHD ... 37
CHX ... 37
CIs cCcoBOL ... 123
Clearbrook Software Group ... 131
coeoL ... 123
COBOL Debugger ... 124
CoCO ... 62, 77. 81
CoCo Disk Driver ... 87
Commandgds ... 9
ATTR ... 37
Backup ... 103-104
cHD ... 37, 103, 105
CHX ... 37. 48, 103, 105
DCHECK ... 113
DELDIR ... 8
DIR ... 55, 103-104
DSAVE ... 9
EX ... 48
Format ... 103
IDENT ... 9
Kill ... 48
LOAD ... 78
LOGIN ... 56
MAKDIR ... 36
MDIR ... 78
MFREE ... 78
OSSGEN ... 8
PRINTERR ... 9
PWD ... 9
PXD ... 9
Setpr ... 48
TSMON ... 56
UNLINK ... 78
w ... 48
Compuserve ... 77, 81
Concurrency problems ... 16
Busy wWaiting ... 25, 57
Execution Sequence ... 25
Lockout ... 25

D~Series ... 132

D/A Converter (CoCo) ... 89
Data Base ... 141
Data Dtrectory ... 36
DAttr ... 132

DCopy ... 132

DOe) ... 132

Dbir ... 132

Debugger ... 35
Debugging ... 50
Dedit ... 131
DefsList ... 27

INDEX

Device Descriptor ... 74
Device Driver ... 6
Beeper ... B2
Logical ... 48
Null ... 6
Null Program ... 7
0S-9 Service ... 26
Service Routine ... 57
Static Storage ... 49
Device Drivers ... 26
Device Independance ... 74
Directories ... 36
Anonymous ... 37
Changing Disks ... 78
CHD ... 37
CHX ... 37
Data Directoy ... 36
Default directories ... 105
Dir command ... 104
Directories as files ... 107
DirSgz ... 118
Dr ... 115
Execution Directory ... 36
Formatted listing ... 113
l.ocation on Disk ... 48
MAKDIR ... 36
Multiple Links to a File ... 113
Reading Directories ... 107
Root ... 36
Updating ... 113
DirSgz ... 118
Disk Contention ... 26
Dispatcher ... 57
Dissassemblers ... 137
Dr ... 115
Driver.Device ... 57
Driver2 ... 22
DYNACALC ... 135
Dyriaform ... 35
Dyramite ... 137
DynaSpell ... 35, 96
DynaStar ... 35

Edit ... 35

Editors ... 88

Engueue/Dequeue ... 16

Entry Point ... 28

Execute Only files ... 56
Execution Directory ... 36
Execution file attribute ... 108
Execution Sequence ... 25

File Attributes ... 55
File Descriptor ... 108
File Security ... 55
File Sharing ... 55
File.Attributes ... 55
Fiyter ... 39

Flex ... 95

Frank Hogg Labs ... 35
Fujitsu ... 47

Generic 0S-9 ... 107
GETSTAT/PUTSTAT ... 39
Gimix ... 47, 81

GIMIX III ... 6

GOTOXY ... 39

Graphics ... 61

Graphics hardware ... 87

1/C Mansgers ... 74

1/0 redirection ... 73

1/0 System ... 73

IFP1/ENDC ... 27

Inityal Program ... 56
Initialization Table ... 75
Interrupt Service Routine ... 57
Interrupts ... 57, 88

Index 149

isam ... 47, 123
u3M Group ... 47
Johnson, Dan (D.P.) .. 87

Level II Memory Requirements
Locker ... 18

Locking 16-17

Lockout ... 25

Macros 145
Memory for Level II ... 87
Memory Management 107
M ce ... 88
Mix ... 25
Module Type ... 27
Modules ... 16
Data Modules ... 16
Entry Point ... 28
Locking 16-17
Memory requ-rement ... 78
Modulie Size ... 17
Module Type ... 27
Reentrant 27
Revision ... 27
Skared ... 16
Storage Requirement ... 28
version Number ... 28
MJT0 56
21ti-Processors
r_ltitaskinag
MJIMPS ... 41

88
82

‘:»~=-Standard Hardware 107
0-F

OFlex
OSSP1
NSeP3

121
Ss,
107
97

105

P/V ... 16

Parameter String terminator

Paramod ... 42

tascal ... 5, 35-36
Brief Review ... 35
Microware ... 5
Release 2.0 (Microware)
virtual Storage ... 5
isword ... 56

-essword file ... 56

Fipes ... 59
Algorithm Partition via
Bug in PIPEMan 60
Direct from programs
Example of a Pipeline
Filters ... 59
internals ... 61
Interprocess ... 62
Overview ... 59
Snell ... 59
words (Filter) ... 59

POpt 27. 30

2orting 0S-9 107

~“rinter Options ... 27

sriority ... 26

rivac 47

orocesses ... 10
Address Space ... 12
Background ... 48
Busy waiting 25, 57
Concurrency protlems ... 16
Concurrent ... 15§
Execution Sequence ... 25
Getting a good Mix ... 25
Interprocess Communication
Lockout ... 25
Parameter Area ... 11, 15
Priority ... 26

Program length ... 27

60

150

8

28

36

60

1

15

CS-9 User Notes Volume I

Programs ... 13
Beeper ... 84
Beeper2 90
Bword ... 63
Calc ... 21
CharCt ... 64
COBOL Benchmark
Cobol Sieve
Cobol Test
DFormat
DirSqz
DLi st
DList2 .
Dr ... 115
Driver One ... 14
Driver Two ... 22
FRexp 100
Getting a good Mix ... 25
Grapher .. 66
Help_B ... 45
1d ... 111
Locker ... 18
Modf ... 100
ParamMod ... 44
POpt 27, 30
Rast ... 70
Sound ... 83
StrtTask ... 67
StrtTask One ... 13
TBeep2 ... 92
TestBeep ... 86
TstSSig ... 99
Vcia ... 51

Protection ... 55

.. 129
128
126

112

118

109

110

Rasterization ... 61
Record Management
Recovery 113
Reentrant 16, 27
Revision ... 27
RLINK 145

RMa 145

RMS 141

RunB 60

141

School ... 59
Schools ... 41
Separate Assembly 145
Service Regquests ... 10

F$rork ... t14

F$Send ... 87

Fork ... 10

Link ... 16

SetStat SS.SIG ... 97
Shared modules ... 16
Shell ... 28
SHELL Commands ... 48
SHELL Push ... 48
Smoke Signal Broadcasting

101

Sort 47, 60
Sound Generation ... 81
Spelling Checker 96
Split Screen ... 49
Spread Sheet 135
SS.SIG Setstat 97
Stable Storage 113
Standard Error ... 73
Standard Error Path ... 73
Standard 1/0 Paths 73
Standard lnput ... 73
Standard OQutput ... 73
Standards 39, 101
Startup File 56, 73
Storage Reguirement
Suspend State 57

ref id=Proces.Suspend State
SWTPC 107

47, 81,

28

57

Tano Dragon 47
Televideo ... 97

Terminal Commands 40

Terminal Handling ... 123 User Seminar ... 47

Terminal Support ... 38 Users Group ... 28, 47, 62
Time Sharing ... 56

Tone Generation ... 89 Vcia ... 51

Translation Lower to Upper Case ... 28 Version Number ... 28
Tuning ... 26 VTerm ... 49

Uniq ... 60 waveform ... 82

UNIX ... 36

USE ... 27 XOn/X0ff ... 9

User Number ... 56

Index 151

152 0S8-9 User Notes Volume I

	OS-9 User Notes
	Table of Contents
	Part 1: Columns
	Part 2: Reviews
	Figures
	Tables

	Part 1: Columns
	Introductions
	Column 1
	Opening Remarks
	GIMIX-III OS-9
	A Null Device
	Documentation For Null Device Descriptor
	Null Program

	Column 2
	OS-9 Level Two Version 1.1
	Generating A New Bootstrap
	Building A New System Disk
	Using Multiple Processes

	Column 3
	The FORK Superviser Service Request
	Communications Via the Parameter Area
	Assembly Language Procedures for FORKing Processes
	StrtTask-One
	Driver One

	Column 4
	BASIC/BASIC09
	Interprocess Communication
	Communication Via the Parameter Area
	Data Modules
	Locking Data Modules
	Locker Program
	Calc Program
	Driver Program

	Column 5
	More About Locking
	Getting A Good 'Mix"
	An Assembly Language Program Which Sets Printer Options
	The OS-9 User's group
	The Future of This Column
	POpt Program

	Column 6
	New Release of Microware Pascal
	OS-9 Directories

	Standard Terminal Support for OS-9
	Column 7
	A Letter
	A Letter From Bengt-Allan Bergvall
	Paramod
	Help_B

	Column 8
	The OS-9 User Seminar
	Shell Commands
	A Logical Device Driver
	VCIA Device Driver

	Column 9
	Protection
	The "Suspend State"

	Column 10
	More About Computers At School
	Pipes
	A More Advanced Approach to Pipes
	Installation
	Operation and Modification

	Welcome COCO
	The Users Group
	BWord
	CharCt
	Grapher
	StrtTask
	Rast

	Column 11 -- The OS-9 I/O System
	The Unified Input/Output System
	Changing OS-9's Device Support

	Column 12 -- The COCO
	Notes on Compuserve
	Thank You GIMIX
	A Handy Shortcut

	Column 13
	Big System Hardware
	Big System Software
	The Compuserve OS-9 SIG
	OS-9 on the Color Computer
	Installation of Beep/Beeper
	Applications for /Beep
	The Users Group
	Sound
	Beeper
	TestBeep

	Column 14
	More About the COCO Disk Driver
	Where Next?
	More Nose from the COCO
	This Month's Driver
	The Users Group
	Beeper2
	Beep
	TBeep2

	Column 15
	The OS-9 Seminar
	OFlex
	New Manuals
	 C Functions
	The Butterfly
	Dynaspell
	A Nice Experience
	Tricks for Level Two
	TstSSIg
	FRexp
	Modf

	Column 16
	Standards
	Standards that are the User's Responsibility
	The Users Group

	Column 17 -- The First Step Into OS-9
	Format
	Backup
	Dir
	CHX and CHD
	Oops

	Column 18
	My Life
	Non-Standard Hardware
	Directories as Files
	DList Program
	DList2 Program
	ld Program
	DFormat Program

	Column 19
	More Games with Directories
	Dr Program
	DirSqz Program

	Part 2: Reviews
	A Review of O-F
	General System Description
	Limitations
	Operation
	Evaluation
	Summary

	Review of OS-9 CIS COBOL
	Overview
	Enhancements
	Limitations
	Benchmarks
	Summary
	COBOL Test Program
	COBOL Sieve
	COBOL Benchmark Program

	Review of Software by Clearbrook Software Group
	DEdit
	Overview
	Details
	Limitations
	Summary

	BT9
	Overview
	Details
	Limitations
	Summary

	D-Series Utilities -- DDIR, DDEL, DCOPY and DATTR
	Overview
	Details
	Problems and Limitations
	Summary
	Reconsideration

	A Review of DynaCalc for OS-9
	Overview
	Some Details
	Limitations and Problems
	Summary

	Review of Dynamite
	Overview
	Some Details
	Operation
	Limitations
	Summary

	A Review of RMS
	Overview
	Some Details
	Flaws
	Summary

	A Review of RMA and RLINK
	Overview
	Some Details
	The Seperate Assembly Facility

	Some Internals
	Limitations
	Summary

	Index

