
Intelligent Products For A Smarter World

Using OS-9®

Version 2.2

2 Using OS-9

Copyright and Publication Information
Copyright © 1996 -1998 Microware Systems Corporation. All Rights Reserved. Reproduction of this
document, in part or whole, by any means, electrical, mechanical, magnetic, optical, chemical,
manual, or otherwise is prohibited, without written permission from Microware Systems Corporation.

This manual reflects version 2.2 of OS-9.

Revision: D
Publication date: September 1998
Product Number: 1030-0183

Disclaimer
The information contained herein is believed to be accurate as of the date of publication. However,
Microware will not be liable for any damages including indirect or consequential, from use of the
OS-9 operating system, Microware-provided software, or reliance on the accuracy of this
documentation. The information contained herein is subject to change without notice.

Reproduction Notice
The software described in this document is intended to be used on a single computer system.
Microware expressly prohibits any reproduction of the software on tape, disk, or any other medium
except for backup purposes. Distribution of this software, in part or whole, to any other party or on
any other system may constitute copyright infringements and misappropriation of trade secrets and
confidential processes which are the property of Microware and/or other parties. Unauthorized
distribution of software may cause damages far in excess of the value of the copies involved.

For additional copies of this software/documentation, or if you have questions concerning the above
notice, please contact your OS-9 supplier.

Trademarks
OS-9, OS-9000, DAVID, FasTrak, and UpLink are registered trademarks of Microware Systems
Corporation. SoftStax and Hawk are trademarks of Microware Systems Corporation. Windows,
Windows 95 and Windows NT are registered trademarks of Microsoft Corporation. All other product
names referenced herein are either trademarks or registered trademarks of their respective owners.

Address
Microware Systems Corporation
1500 N.W. 118th Street
Des Moines, Iowa 50325
515-223-8000

Table of Contents

Chapter 1: OS-9 Overview 11

12 Operating System Overview
12 Using OS-9 Functions
13 Storing Information
14 Multi-tasking and Multi-user Functions
15 The Memory Module and Modular Software
17 Development Options
18 The MWOS Directory Structure
18 About the Directory Structure
20 Development versus Runtime
21 Multiple MWOS Directories
21 NFS and Other Package Directories
22 Directories Included on the System Disk
28 OS9000/<CPU Family> Directory Structure
30 Target Port Directories

Chapter 2: Starting OS-9 33

34 Booting OS-9
35 Failure to Boot
36 Setting the System Time and Date
37 Checking the Date and Time
37 The System Prompt
38 Backing Up the System Disk
39 Formatting a Disk
40 Multiple Drive Format
41 Single Drive Format
42 Continuing the Formatting Process
Using OS-9 3

43 The Backup Procedure
43 Multiple Drive Backup
44 Single Drive Backup

Chapter 3: Basic Commands and Functions 47

48 Learning the Basics
49 Logging on to a Timesharing System
51 An Introduction to the Shell
53 Using the Keyboard
53 Line Editing Control Keys
56 Interrupt Keys
57 The Page Pause Feature
58 Basic Utilities
59 The help Utility and the -? Option
60 free and mfree

Chapter 4: The OS-9 File System 63

64 OS-9 File Storage
65 The File Pointer
67 Text Files
67 Executable Program Module Files
68 Random Access Data Files
68 File Ownership
70 Attributes and the File Security System
71 Directory Attributes
73 The OS-9 File System
74 Current Directories
74 On Single-User Systems
74 On Multi-User Systems
75 The Home Directory
76 Directory Characteristics
4 Using OS-9

77 Accessing Files and Directories: The Pathlist
77 Full Pathlists
78 Full Pathlist Example
79 Relative Pathlists
80 Relative Pathlist Example
81 Basic File System Utilities
82 dir: Display Directory Contents
83 Wildcards and dir
84 dir Options
84 chd and chx: Moving Around in the File System
85 Using chd
85 Using chx
86 Moving Up Directory Trees
88 Using the pd Utility
88 Using makdir to Create New Directories
89 Rules for Constructing File Names
91 Creating Files
91 The build Utility
91 The edt Utility
92 µMACS
92 Examining File Attributes with attr
93 Listing Files
94 Copying Files
96 Copying a File into an Existing File
96 Copying Multiple Files
97 Copying Large Files
97 dsave: Using Procedure Files to Copy Files
99 Selectively Copying Multiple Files with dsave
101 Errors During dsave
101 Indenting for Directory Levels
102 Keeping Current Directory Backups
Using OS-9 5

103 del and deldir: Deleting Files and Directories
103 Deleting Files
104 Deleting Directories

Chapter 5: OS-9 Memory Modules 107

108 OS-9 Memory Modules
109 Using Memory Modules
109 Loading Modules into Memory
110 Module Security
111 The Link Count
112 Modules Remaining in Memory
113 Module Directories
114 Current Module Directory
115 Displaying the Contents of Module Directories
116 Memory Module Directory Attributes
118 Creating New Memory Module Directories
120 Deleting Memory Module Directories

Chapter 6: The Shell 121

122 The Function of the Shell
122 Shell Options
126 The Shell Environment
129 Changing the Shell Environment
130 Using Environmental Variables as Command Line Parameters
131 Built-In Shell Commands
133 Shell Command Line Processing
135 Special Command Line Features
137 Execution Modifiers
137 Additional Memory Size Modifier
138 I/O Redirection Modifiers
139 Standard Devices
141 Process Priority Modifier
6 Using OS-9

143 Wildcard Matching
145 Command Separators
146 Sequential Execution
147 Multi-tasking: Concurrent Execution
148 Pipes and Filters
149 Unnamed Pipes
150 Named Pipes
151 Command Grouping
153 Shell Procedure Files
154 Using Parameters with Procedure Files
156 Using profile When Running Procedure Files
157 The login shell and Special Procedure Files: login and logout
158 Using assign When Running Procedure Files
160 Setting up a Time-Sharing System Startup Procedure File
161 The Password File
163 Creating a Temporary Procedure File
165 Multiple Shells
167 The procs Utility
171 Waiting for Background Procedures
172 Stopping Procedures
175 Command History
177 Error Reporting

Chapter 7: Making Files 179

180 The make Utility
182 Running the Make Utility
183 Implicit Definitions
184 Macro Recognition
187 make Generated Command Lines
188 make Options
190 Example: Updating a Document
191 Example: Compiling C Programs
191 Refining the C Compiler Example
Using OS-9 7

193 Example: A makefile Using Macros
194 Example: Putting It All Together

Chapter 8: Making Backups 195

196 Incremental Backups
197 Making an Incremental Backup: The fsave Utility
198 fsave Options
199 The fsave Procedure
201 Example fsave Commands
202 Restoring Incremental Backups: The frestore Utility
203 frestore Options
204 The Interactive Restore Process
208 Example Command Lines
209 Incremental Backup Strategies
209 The Small Daily Backup Strategy
210 The Single Tape Backup Strategy
212 Use of Tapes or Disks
213 The tape Utility

Chapter 9: OS-9 System Management 215

216 Setting Up the System Defaults: the Init Module
224 Extension Modules
225 Changing System Modules
227 Making Bootfiles
227 Bootlist Files
227 Bootfile Requirements
228 Making RBF Bootfile
229 Using the RAM Disk
229 Volatile RAM disks
230 Non-Volatile RAM disks
231 Making a Startup File
232 Initializing Devices: iniz r0 h0 d0 t1 p1
8 Using OS-9

235 Loading Utilities Into Memory: load -z=sys/loadfile
236 Loading the Default Device Descriptor: load bootobjs/r0.dd
236 Multi-user Systems: tsmon /t1 &
238 System Shutdown Procedure
240 Managing Processes in a Real-time Environment
240 Manipulating Process’ Priority
241 Using d_minpty and d_maxage to Alter the System’s Process

Scheduling
243 Using System-State Processes and User-State Processes
244 Using the tmode and xmode Utilities
244 Using the tmode Utility
245 Using the xmode Utility
246 The termcap File Format
248 termcap Capabilities
257 Example String Notations (continued)
257 cm=6\E&%r%2c%2Y
257 cm=5\E[%i%d;%dH
257 cm=\E=%+ %+
257 Example termcap Entries

Appendix A: ASCII Conversion Chart 259

260 ASCII Symbol Definitions

Index 269

Product Discrepancy Report 291
Using OS-9 9

10 Using OS-9

Chapter 1: OS-9 Overview

This chapter introduces the concept of an operating system and
explains some of the basic features of OS-9. It includes the following:

• Operating System Overview

• Development Options

• The MWOS Directory Structure

• Directories Included on the System Disk
11

1 OS-9 Overview
Operating System Overview

An operating system is the master supervisor of the resources and
functions of a computer system. Computer resources consist of:

• Memory

• CPU time

• Input/output devices such as terminals, disk drives, and printers

OS-9 is a sophisticated operating system for microcomputers. Some
basic functions of OS-9 are:

• Provide an interface between the computer and the user.

• Manage the input/output (I/O) operations of the system.

• Provide for loading and executing programs.

• Create and manage a system of directories and files.

• Manage timesharing and multi-tasking.

• Allocate memory for various purposes.

• Allocate and manage interprocess communication services.

Using OS-9 Functions

There are two basic ways to use the many capabilities and functions of
OS-9:

• The first method uses the utility command set and the shell
command interpreter program. This enables you to type OS-9
commands directly on your keyboard.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Utilities Reference for descriptions of all OS-9 utilities.
12 Using OS-9

1OS-9 Overview
• The second method uses system calls. System calls are requests
made to OS-9 within programs written in assembler or a high-level
language. These system calls perform a variety of functions
including:

•Loading programs into memory

•Creating new tasks

•Creating or delete a file

•Reading, writing, opening, and closing files

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

System calls are largely of interest to advanced programmers and are
covered in detail in the OS-9 Technical Manual.

All OS-9 programming languages have statements that cause the
program to use OS-9 system calls, often in a hidden manner.

Storing Information

OS-9 stores information in files and directories located on mass-storage
devices such as floppy disks. It provides easy access methods for
updating, storing, and retrieving files and directories through standard
utilities.

OS-9 organizes all files in directories. A directory is actually a special
file containing the names and locations of each file it contains.
Directories can contain files and subdirectories. In turn, these
subdirectories may contain other files and subdirectories. This is called
a tree structure, or hierarchical, organization for file storage.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about the file structure, refer to Chapter 4: The
OS-9 File System.
Using OS-9 13

1 OS-9 Overview
Multi-tasking and Multi-user Functions

OS-9 is a multi-tasking and multi-user operating system.

Multi-tasking enables the computer to run many different programs at
the same time. By rapidly switching from one program to the next, many
times per second, programs appear to run at the same time.

Each program running on the system is called a task, or process. OS-9
enables you to have one or more tasks running in the background while
a task is running in the foreground.

A foreground process is a task that requires your interaction. For
example, if you are editing a file, it is a foreground process because you
are actively using it. A program that prompts you for information is also
a foreground process because you need to respond to it.

A background process is a task that does not require your attention. For
example, printing a text file is a background process because it does not
require you to supervise the printing process. Therefore, you can have a
file printing in the background while you edit another file. This frees the
computer from the limitation of doing only one thing at a time.

A typical multi-tasking environment is described in Figure 1-1

Figure 1-1 Typical Multitasking Use

Multi-user operation is a natural extension of basic multi-tasking
functions. It enables several people to use the computer simultaneously.
OS-9 provides security-related timesharing functions to control access
to the system and privacy within the system.

¾ Editing a file (foreground process)
¾ Listing a file to a printer (background

process)
¾ Sorting and merging data files

(background process)

Typical Multitasking Use:
14 Using OS-9

1OS-9 Overview
Figure 1-2 Typical Multiuser System Configuration-Four terminals on
one OS-9 computer

The multitasking and multi-user capabilities tremendously increase the
versatility of the operating system. OS-9 is often used as a
single-user/multitasking system on small computers. It is also used as
a multi-user/multitasking system on larger computer systems. In either
case, there is no difference in OS-9 itself, the application software, or
how either works.

The Memory Module and Modular Software

A unique feature of OS-9 is its support of modular software techniques
based on memory modules. Memory modules can:

• Provide more efficient use of available disk and memory storage

• Make the system run faster

• Simplify programming jobs

• Make it easy to customize OS-9

All OS-9 programs are kept in the form of one or more program
modules containing pure program code. They do not contain variable
storage. OS-9 assigns variable storage in a separate block of memory
Using OS-9 15

1 OS-9 Overview
at run-time. Each module has a unique name and can be loaded into
memory or stored on disk or tape. OS-9 automatically keeps track of the
names and locations of all modules present in memory.

An important characteristic of memory modules is the sharing of one
module by several tasks or users at the same time. For example, if four
users want to run umacs at the same time, only one copy of umacs is
loaded into memory. Other operating systems would typically load four
copies of umacs into memory, requiring 300% more memory. The
shared module system is completely automatic and usually transparent
to the user.

Another advantage of memory modules is that frequently used
functions can share common library modules. For example, a standard
OS-9 module called csl provides a wide range of I/O processing for
virtually all programming languages and programs. This eliminates the
need for each program to include its own standard I/O package. In
addition, you can split large and complex programs into smaller
modules that are easier to test.
16 Using OS-9

1OS-9 Overview
Development Options

OS-9 is a real-time operating system because it can respond quickly
enough to interact with humans or other systems requiring immediate
feedback.

One example, a multi-use home entertainment system may involve a
user who enters various movie selections or banking transactions, an
operating system coordinating these entries with the application
programs that fulfill the requests, and a device displaying a menu of the
available options or the selected video.

Another example includes a real-time operating system controlling
computer resources for data collection, analysis, and corrective action.
This example could be used in missile guidance systems, automated
factory tools, or scientific equipment.

OS-9 supports two development options, resident and cross-hosted.
Resident development involves using OS-9 both as the operating
system for development and as the target development system.
Using OS-9 17

1 OS-9 Overview
The MWOS Directory Structure

The directory structure first introduced in OS-9 for 68K Version 3.0
represents a significant departure from its predecessor. Its design was
influenced by a growing number of users developing not only under
OS-9, but Windows as well. Microware has adopted this general
directory structure for all of its products.

The MWOS directory structure:

• Provides a consistent directory structure for all development
platforms.

• Provides similar development environments for OS-9 and OS-9 for
68K.

• enables code sharing between OS-9 and OS-9 for 68K.

• Makes provisions for code and libraries optimized for 32-bit
processors.

• Provides a clear division between the development and runtime
directory.

• enables for multiple ports from a common set of sources.

• Provides a means to create a disk-based runtime system without
modifying makefiles.

About the Directory Structure

The directory structure is built under the MWOS directory. As you
descend through the directories, the files become progressively more
OS-, CPU-, and hardware-dependent. A simplified model appears in
Figure 1-3. For a more detailed examination, try recursively walking
down the directory structure of your newly installed product.
18 Using OS-9

1OS-9 Overview
Sources particular to an Operating System (OS) are kept in
MWOS/<OS>/SRC. Sources common between all operating systems are
located in MWOS/SRC. The same logic applies to C header files and
assembler defs. Ports for particular boards are kept under the
<OS>/<Processor family>/PORTS directories.

Figure 1-3 MWOS File Structure

MWOS

OS9 OS9000 SRC

SYSMODSDEFS IO ROM SYS

<processor
dir>

<processor
dir>

<processor
dir>

PORTSCMDS DEFS LIB

CPU board
#1

CPU board
#2

CPU board
#3

BOOTOBJS INITS ROM STB

INITS ROM STB

BOOTLIST LIB PCLIB SCSI

UTILSBOOTFILE CMDS OBJS ROM

BOOTOBJS STB
Using OS-9 19

1 OS-9 Overview
Development versus Runtime

The MWOS directory structure is specifically oriented towards software
development. Whether the development occurs on a resident OS-9
system or a cross development environment (Windows), once the
executable modules have been created you must move them to their
final locations on the target machine.

When you are developing an application on a resident development
system, moving files may be simple a matter of copying a file from the
MWOS/OS9000/<CPU>/CMDS directory to the /H0/CMDS directory.
Alternatively, it might involve downloading the modules into memory on
a small target system, making a boot on a server to boot the target over
Ethernet, or creating a set of ROM modules for a fully ROMed system.

The root directory on an OS-9 runtime system looks like this:

 Directory of . 17:10:43
CMDS ETC MWOS SYS

CMDS Contains all sources, header files, and libraries are
under the MWOS directory. Executables are generally
found in the CMDS directory.

ETC Contains network (internet and/or NFS) databases are
found in ETC. At the system administrator’s option,
these files may also be duplicated in MWOS so they
may be modified and tested prior to committing them
for use on the development system.

MWOS Contains the operating system files as shown in
Figure 1-3.

SYS Contains system startup and configuration files such
as startup, password, and termcap are found in
the SYS directory.

Other directories may be in the root directory if the system is used for
development (examples include USR and TFTPBOOT).
20 Using OS-9

1OS-9 Overview
The Ultra C/C++ documentation contains additional information about
the MWOS file structure. The sources included in Microware OS-9 for
Embedded Systems and Board Level Solutions (BLS) use pathlists for
definition and library files that are within the MWOS directory structure.
They may be easily developed on resident or Windows without
modifying their search paths. To ensure your products can be easily
migrated to Microware cross development hosts, you should follow this
same approach.

Multiple MWOS Directories

It may sometimes be necessary to have multiple MWOS directories on
a resident development machine. For example, if the development
machine is running Version 2.1 of OS-9 for the 80386 and a package is
purchased to develop code for OS-9 Version 3.0 for the PowerPC the
new package must reside in an separate MWOS directory structure.
This is because these two packages have common source files at
different revision levels. Installing the 3.0 package over the 2.1 package
would preclude doing resident development. In this case, you must
install the 3.0 package into its own MWOS directory called, for example,
MWOS_3.0.

NFS and Other Package Directories

The NFS application and system modules are located in the CMDS and
CMDS/BOOTOBJS directories of the target system. This simplifies the
startup procedures for both systems and enables utilities to be loaded
as they are needed without long path searching.

The startup procedures for these packages enables the utilities to be
loaded at startup, but this is not required. You may choose to move the
system modules to the boot so no loading is required.
Using OS-9 21

1 OS-9 Overview
Directories Included on the System Disk

The following is a list of directories commonly distributed with OS-9.
They are all contained in the primary directory (the root directory) of
your system disk.

Figure 1-4 System Disk Directories

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about:

• Each utility distributed with OS-9, refer to the Utilities Reference
manual.

• Changing device descriptors, refer to Chapter 9: OS-9 System
Management.

• The password file, refer to Chapter 6: The Shell.

• The login utility, refer to Chapter 3: Basic Commands and
Functions.

• The termcap file, refer to Chapter 9: OS-9 System Management.

h0

TFTPBOOTCMDS ETC MWOS SYS

BOOTOBJS
22 Using OS-9

1OS-9 Overview
Table 1-1 OS-9 System Disk Directories

Directory Contains

CMDS The standard OS-9 utilities for running the
system.

Additional user-created programs and OS-9
modules to be executed from a shell command
line.

CMDS/BOOTOBJS This directory should contain any system
modules that are to be loaded after the system is
booted.

If the MWOS directory is not otherwise needed on
the target machine, you may choose to keep the
modules required for remaking the system boot
in this directory.

ETC Contains the data files used to create the
Inetdb and rpcdb configuration modules.
Using OS-9 23

1 OS-9 Overview
MWOS Microware Operating System development
directory structure. See the following pages for
more information on the MWOS structure.

SYS System files and startup scripts for use in
bringing up the system, enabling logins, and
others, including:

errmsg: Text for descriptions of error messages.
An appendix listing the error messages is
included with this manual set.

password: A sample password file for
timesharing systems. The password file contains
information such as the user name, password,
and initial process for each user.

termcap: Descriptions of your terminal
characteristics.

Table 1-1 OS-9 System Disk Directories (continued)

Directory Contains
24 Using OS-9

1OS-9 Overview
Figure 1-5 MWOS Directories

Table 1-2 MWOS Directories

Directory Contains

MAKETMPL A directory for common makefile templates (include
files for makefiles).

OS9 All OS-9 for 68K object code is targeted under this
directory. All OS-9 for 68K specific source code, defs
files, libraries, processor family code, and ports reside
here.

OS9000 All OS-9 object code is targeted under this directory. All
OS-9 specific source code, defs files, libraries,
processor family code, and ports reside here.

SRC All sources that are not specific to either OS-9 or OS-9
for 68K. C defs, common I/O systems, user tools, and
Dual Ported I/O (DPIO) are examples of code found
under the MWOS/SRC directory.

MWOS

SRCDOS MAKETMPL OS9 OS9000
Using OS-9 25

1 OS-9 Overview
Figure 1-6 OS-9 Directories

Table 1-3 OS-9 Directories

Directory Content Summary

<CPU Family> C include files, libraries, and commands
specific to OS-9 ports targeting a specific
family of processors. The processor
family-specific objects are deposited in this
directory when built.

DEFS Processor-specific definitions files.

MWOS

OS9000

<Target>

<CPU Family> SRC

DEFS PORTS
26 Using OS-9

1OS-9 Overview
Each CPU directory has a PORTS subdirectory. The ports subdirectory
provides directories for a variety of target system boards.

NoteNote
Your distribution package from Microware contains a processor-specific
directory in place of the <CPU Family> directory shown in Figure 1-7
MWOS/OS9000/<CPU Family> Directory Structure.

PORTS/<Target> Processor-specific information for OS-9 ports
are placed in this directory if they target
systems based on the specific processor.
DEFS holds processor-specific definition files.
PORTS holds processor-specific source code,
object code, and makefiles.

SRC The source file for the OS-9 drivers,
descriptors, system modules, definitions, and
macros. It is intended to be a source directory
containing hardware-specific code that is
written to be reusable from target to target. It is
not intended to be the repository for final
object modules that are built from this source,
although intermediate object files may be
found within its subdirectories.

Table 1-3 OS-9 Directories (continued)

Directory Content Summary
Using OS-9 27

1 OS-9 Overview
OS9000/<CPU Family> Directory Structure

The MWOS/OS9000/<CPU Family> directory is shown in Figure 1-7.

Figure 1-7 MWOS/OS9000/<CPU Family> Directory Structure

Table 1-4 MWOS/OS9000/<CPU Family> Directories

Directory Content Summary

<CPU Family>/CMDS OS-9 commands and utilities for
specific family processors. BOOTOBJS
contains commands and system
modules common to all processors in
this family. BOOTOBJS/ROM contains
low-level system modules common for
all processors in this family.

<CPU Family>/DEFS Processor-specific definitions files.

CMDS PORTSLIBDEFS

<CPU Family>

BOOTOBJS

ROM

PORTS
28 Using OS-9

1OS-9 Overview
<CPU Family>/LIB/ROM Relocatable files and libraries used to
create the low-level modules.

<CPU Family>/PORTS Non-specific target port directory
examples for this processor family.
(Examples for the 403GA and MVME
1603 specific targets are in the
MWOS/OS9000/403 and
MWOS/OS9000/603 directories,
respectively.)

Table 1-4 MWOS/OS9000/<CPU Family> Directories (continued)

Directory Content Summary
Using OS-9 29

1 OS-9 Overview
Target Port Directories

The following directory structures are examples of some of the
directories common to most processors. Some directories shown below
may not be in your software distribution. Your distribution contains the
directories specific to your processor.

Figure 1-8 MWOS/OS9000/<CPU>/PORTS/<Target> Directory Structure

<Target>

<Device-Specific
Bootfiles>

<Low-Level
Timers>

<Configuration
Modules>

BOOTROM <Low-Level
Drivers>

ROMCORE

NODISKDD D0 H0

BOOTLIST CMDS PCF

ROMBOOTFILE CLOCK INIT PIPE

RBF

ROM

INITS DESC BOOTOBJS STB

DESC DRVR

<Disk Device>

SCF

<Serial
Device>

<Disk Device>

DESC
30 Using OS-9

1OS-9 Overview
Table 1-5 MWOS/OS9000/<CPU>/PORTS/<Target> Directory Structure

Directory Content Summary

BOOTFILE Driver-specific bootfiles.

BOOTLIST System configuration module lists.

CLOCK Makefiles for building clock modules.

CMDS Port specific utilities or commands. BOOTOBJS
contains port specific system modules and
BOOTOBJS/ROM contains port specific bootstrap
code and boot modules.

INIT Makefiles for building init modules.

PCF Makefiles for building PC file manager descriptors.

PIPE Makefiles for building pipe descriptors.

RBF Makefiles for building random block file descriptors.

ROM Makefiles for building port specific boot modules.
ROMCORE contains source code and makefiles for
building port specific ROM bootstrap code.

SCF Makefiles for building serial drivers and descriptors.
Using OS-9 31

1 OS-9 Overview
32 Using OS-9

Chapter 2: Star t ing OS-9

This chapter contains procedures for starting to use OS-9. It includes
the following:

• Booting OS-9

• Backing Up the System Disk
33

2 Starting OS-9
Booting OS-9

Before using OS-9 on your computer, you must boot the system.
Booting is also called a cold start or bootstrapping. It involves the
computer reading a portion of the system disk (or CD-ROM) into
memory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to Chapter 9: OS-9 System Management, for a description of the
directory commonly supplied with OS-9.

If your system is a standard disk-based computer, the system disk
contains all the modules that make up OS-9. The system disk usually
contains other files and directories frequently used during normal
operations. This includes a directory for each user, a shared command
directory, and files used by the system.

You should be familiar with two files, called startup and sysboot by
convention:

startup A shell procedure file that is processed
immediately after the system starts
running. startup may contain any legal
OS-9 command or program.

sysboot A file that contains the OS-9 system
modules that are read into memory.

NoteNote
The boot procedure depends on the requirements of your specific
hardware. The manufacturer supplies detailed instructions outlining the
boot procedure for the specific system involved. Follow those
instructions
34 Using OS-9

2Starting OS-9
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 9: OS-9 System Management, contains information on
changing the startup and sysboot file.

Failure to Boot

If the system fails to boot:

• Recheck the hardware setup instructions, especially if you made any
modifications to your computer.

• Make sure you inserted the disk correctly, and try the boot sequence
again.

• Make sure you followed the manufacturer’s booting instructions.

If the boot sequence fails several times, contact your supplier.
Using OS-9 35

2 Starting OS-9
Setting the System Time and Date

When the system boots correctly, a welcome message is displayed
followed by the setime prompt. The setime utility starts the system
clock and enables OS-9 to track the date and time of the creation of new
file. The clock must be running for multitasking operations.

The Init module may command the kernel to automatically start the
clock from a battery-backed clock. If the clock is not started and you
have a system with a battery-backed clock, type the following command
to start the system clock:

$ setime -s

Otherwise, execute setime by typing:

$ setime

setime prompts with the following:

yy/mm/dd hh:mm:ss [am/pm]
 Time ?

At the prompt, enter the year, month, day, hour, minutes, seconds, and
optionally am or pm. Unless you specify am or pm, setime uses the
24-hour clock. For example, 15:20 is the same as 3:20 p.m. The input is
one or two digit numbers with a space, colon, semicolon, comma, or
slash used as a field delimiter. If you use a semicolon, the entire date
string must be within quotes. For example, to set the time on May 14,
1993 at 1:24 p.m., type any of the alternatives below:

93/5/14/1/24/pm
93 05 14 1 24 pm
93,5,14,13,24
93:5:14:13:24
93/5/14/13/24
“93;5;14;13;24"
36 Using OS-9

2Starting OS-9
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to:

• The Utilities Reference manual for more information about setime
and date.

• Chapter 9: OS-9 System Management, for more information about
the Init module and the system clock.

Checking the Date and Time

To find out if the system clock is running or if the date and time is
correct, use the date utility. For example:

$ date
July 2, 1993 Monday 1:25:26pm

The System Prompt

Once you set the time and date, the system displays the following
prompt:

$

The dollar sign ($) prompt means the operating system is active and
waiting for you to enter a command line. This is the default system
prompt. This manual uses the $ prompt for all examples.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For information on changing the system prompt, refer to Chapter 6:
The Shell.
Using OS-9 37

2 Starting OS-9
Backing Up the System Disk

Before beginning work with OS-9, make a backup of your master
system disk. The back up procedure involves making an exact copy of a
disk. If your system disk becomes damaged, it may become
unreadable. For this reason, it is important to have another copy stored
safely away.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to:

• The Utilities Reference manual for more information about format
and backup.

• A list of naming conventions OS-9 uses is located in Chapter 6: The
Shell.

Before you can back up your system disk, you need a properly
formatted disk. OS-9 cannot read from or write to new disks until they
have been formatted. The format utility initializes new disks for reading
and writing. The OS-9 utility that makes copies of disks, backup,
requires the back up disk to be the same size and format as the original
disk.

The following section provides the steps to follow to back up a disk on a
typical OS-9 system that boots from a floppy drive (usually called /d0).
38 Using OS-9

2Starting OS-9
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

These sections are specifically intended for systems distributed with
floppy disk system disks. These sections are also of general interest in
terms of formatting and backing up floppy disks. If you have a hard disk
or are booting from a media other than a floppy disk, refer to Chapter 9:
OS-9 System Management.

WARNING!
Before formatting your first disk, read the entire section on formatting
disks.

The OS-9 system installation contains a menu-driven program,
install, that optionally partitions and formats the destination drive
and then copies the OS-9 installation to the destination drive. Refer to
the installation instructions included with the software distribution.

Formatting a Disk

The format of OS-9 system disks vary by the type of disk drive and by
manufacturer. Usually, the format is set to the maximum capacity of the
disk drive.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

See the Basic File System Utilities section in Chapter 4: The OS-9
File System for additional information about the format utility.
Using OS-9 39

2 Starting OS-9
You can place several parameters on the command line with the
format command:

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to your hardware documentation for the maximum capacity of
your drives. Refer also to the label of your system disk for the proper
format of your backup copy.

Multiple Drive Format

If your system has two floppy disk drives, place the system disk in one
drive and the new disk in the other drive. In multiple drive systems, one
drive is normally labeled /d0 and the other is labeled /d1. At the $
prompt, type format, the drive name of the new disk, any desired
options, and press the <Return> key to enter the command line. For
example:

$ format /d1 -ds -dd

This command line specifies to format the disk in the second drive as a
double-sided, double-density disk. Adjust the options to conform to your
disk format.

Table 2-1 Command Line Parameters

Parameter Type of disk

-sd single density

-dd double density

-ss single sided

-ds double sided
40 Using OS-9

2Starting OS-9
Single Drive Format

If your system has only one disk drive, you must load the format utility
into memory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the Basic File System Utilities section in Chapter 4: The
OS-9 File System for more information about the load utility.

The load utility puts a copy of a program into the computer’s memory.
To load the format utility into memory, type the following command at
the $ prompt:

load format

Once format has been loaded into memory, you can remove your
system disk from the drive. OS-9 can execute the copy of format
residing in memory.

You can load and execute any OS-9 utility in this fashion.

Complete the following steps after you load format:

Step 1. Remove the system disk from the drive.

Step 2. Place the disk you are formatting into the drive.

Step 3. Enter the following at the $ prompt to format the disk:

format /d0 -ss -dd

This command line specifies the disk should be formatted as a
single-sided, double-density disk. Adjust the options as needed to
conform to your disk format.
Using OS-9 41

2 Starting OS-9
Continuing the Formatting Process

In the case of both single and multiple drive systems, format displays
the specific disk format settings, followed by a prompt:

ready to format <drive name> (y/n/q)?

<drive name> is replaced by the name of the device on which you are
trying to format, such as /d0.

WARNING!
If the drive name in the prompt is not the name of the drive with the
blank disk, type q to quit, or you may erase your only system disk.

Step 1. If the drive name and parameters in the prompt are correct, type y for
yes.

Step 2. If the values in the variable section are not correct, type n for no.
format then prompts you for the changes to the current values of the
options. After the variables have been set, you are queried again as to
whether you want the disk to be physically formatted. This prompt is not
issued for the -np option on the command line.

Step 3. If you type y at the prompt, you are asked for a name for the disk unless
you specified one with the -v option on the command line.

Step 4. Then, you are asked if you want to perform a physical verification. The
physical verification process reads all sectors on the media and marks
any bad sectors found as already allocated. This ensures the OS-9 file
system does not attempt to use the bad sectors.

WARNING!
Never back up a system disk to a disk having any bad sectors reported
by format.
42 Using OS-9

2Starting OS-9
The Backup Procedure

After a disk is formatted, you can run backup. The backup utility
makes an exact copy of the OS-9 system disk. There are other ways to
make a copy of a disk, but this method is the least complicated. The
backup process involves copying everything from your system disk to a
formatted disk.

• During the backup procedure, the system disk is referred to as the
source disk. The backup disk is called the destination disk.

• This procedure makes copies of any disk, not just the system disk.

• Microware recommends that you write-protect your source disk
when using the backup procedure. This prevents confusion in
exchanging the source and destination disks.

backup makes two passes:

• The first pass reads a portion of the source disk into a buffer in
memory and writes it to the destination disk.

• The second pass verifies everything was copied to the new disk
correctly.

Generally, if an error occurs on the first pass, something is wrong with
the source disk or the drive it is in.

If an error occurs during the second pass, the problem is with the
destination disk. If backup repeatedly fails on the second pass,
reformat the disk to make sure it has no bad sectors. If the disk
reformats correctly, try the back up procedure again.

Multiple Drive Backup

If your system has two floppy disk drives do the following:

Step 1. Place the source disk in /d0.

Step 2. Place the destination disk in /d1.

Step 3. Type backup at the $ prompt.
Using OS-9 43

2 Starting OS-9
Step 4. Press the <return> key.

The system assumes you want to backup the disk in /d0. It responds to
backup with the following prompt:

ready to BACKUP /D0 to /D1?

Step 5. Enter one of the following responses

y If the correct disks are in the correct drives.

q If the disks are not in the correct drives. You exit the
backup procedure when you enter q.

When you type y, the system copies all information on the disk in /d0
on to the disk in /d1 and returns the $ prompt.

Single Drive Backup

Use the following procedure if your system has a single diskette drive

Step 1. Make sure your system disk is in /d0 and type the following command:

load backup

Step 2. Take your system disk out of /d0, and put your source disk in the disk
drive (in this case, it is unnecessary as your system disk is your source
disk). Type:

backup /d0

This tells the system you are performing a single drive backup. The
system responds with the following prompt:

ready to BACKUP /D0 to /D0?

Step 3. Enter one of the following responses

y Ready to perform the backup.

q Not ready to perform the backup. You exit the backup
procedure when you enter q.
44 Using OS-9

2Starting OS-9
If you type y, the system begins a series of prompts to complete the
backup procedure. This consists of swapping the source and
destination disks in the disk drive as prompted by the system.

The first prompt is:

ready destination, hit a key

Step 4. Remove the source disk from the drive.

Step 5. Insert the destination disk.

Step 6. Press any key to continue the backup procedure.

The next system prompt is:

ready source, hit a key

Step 7. Remove the destination disk from the drive.

Step 8. Insert the source disk.

Step 9. Press any key to continue the backup procedure.

Step 10. Continue exchanging disks until the backup procedure is completed.

NoteNote
When you have backed up the system disk, store the original disk in a
safe place and use the duplicate as your working system disk.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

PC-AT system users must perform an additional step to back up the
PC-AT system diskette. Please refer to the OS-9 Porting Guide or
Getting Started manual for these details.
Using OS-9 45

2 Starting OS-9
46 Using OS-9

Chapter 3: Basic Commands and

Functions

This information in this chapter helps you get started using the
operating system quickly. The most frequently used system commands
are discussed. These utilities are ones every user should be familiar
with.

The topics covered in this chapter include:

• Learning the Basics

• Logging on to a Timesharing System

• An Introduction to the Shell

• Using the Keyboard

• Basic Utilities

• The help Utility and the -? Option

• free and mfree
47

3 Basic Commands and Functions
Learning the Basics

Now that your system is up and running, it is time to learn about the
basic features and utilities of OS-9. This chapter and Chapter 4: The
OS-9 File System provide an introduction to OS-9 to get you started
quickly.
48 Using OS-9

3Basic Commands and Functions
Logging on to a Timesharing System

If you are using a single-user system such as a personal computer, you
may skip this section. Otherwise, you need to know how to log on to a
multi-user system. This applies to both hardwired and dial-up terminals.

Until you press the <Return> key, idle terminals on multi-user systems
do nothing but beep. Pressing the <Return> key starts the log-on utility
called login. login maintains system security and starts each user
with a personalized environment.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about login and tsmon, refer to the Utilities
Reference manual.

The system requests your user name and the password the system
manager assigned to you. The system echoes your user name, but for
security purposes your password is not echoed. You have three
chances to enter a valid user name and password.

The following is an example of the login procedure:

OS-9000/80386 V2.0 80486/PCAT 93/10/24 14:51:12
User Name: smith
Password: [not echoed]
Process #10 logged on 93/10/24 14:51:20
Welcome!
[1]$

Depending on how the system is set up, a system-wide message of the
day (MOTD) may display on your screen. You are normally set up in
your main working directory, and may automatically run one or more
initial programs.

To log off, simply press the <Escape> (end-of-file) key or type logout
any time your main shell is active.
Using OS-9 49

3 Basic Commands and Functions
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information, see the login and tsmon utility descriptions in
the Utilities Reference manual.
50 Using OS-9

3Basic Commands and Functions
An Introduction to the Shell

Every operating system has a command interpreter. A command
interpreter is a translator between the command you type in and the
commands the operating system understands and executes. The
command interpreter in OS-9 is called the shell.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The shell provides many functions and options. Chapter 6: The Shell is
exclusively devoted to the available shell features. This section provides
just enough familiarity with the shell for you to run basic OS-9
commands.

The shell is normally started as part of the system startup sequence on
a single user system or after logging on to a timesharing system.

The shell functions in two ways:

1. Accepts interactive commands from your keyboard.

2. Reads a sequence of command lines from a special type of file
called a procedure file or script file. The shell executes each
command line in the procedure file just as if the command lines had
been typed in manually from the keyboard. Procedure files are a
convenient way to eliminate typing frequently-used series of
commands.

When the shell is ready for command input, it displays a $ prompt. This
enables you to enter a command line followed by a carriage return.

The first word of the command line is the name of a command. It may
be in upper or lower case. The command may be the name of:

• An OS-9 utility

• An application program or programming language

• A procedure file
Using OS-9 51

3 Basic Commands and Functions
Most commands accept additional parameters or options and some
may require them. These parameters or options provide the command
and/or the shell with additional information such as file names and
directory names to search. Almost all options are preceded by a hyphen
(-) character. Each parameter is separated by a space character.

The shell follows a special searching sequence to locate the command
in memory or on disk. The search sequence is as follows:

• Current module directory, alternate module directory, then
subsequent module directory as specified by the MDPATH
environment variable.

• The current execution directory, then the subsequent execution
directory as specified by the PATH environment variable.

• The current data directory is searched for procedure file by the given
name.

If it cannot find the command you specified, the error 000:216,
“file not found” is generally reported.

Here is an example of a simple shell command line:

$ list myfile

The name of the command is list . The file name myfile is passed to
the list command as a parameter.
52 Using OS-9

3Basic Commands and Functions
Using the Keyboard

Most input to OS-9, programming languages, and application programs
is line oriented. This means as you type, the characters are collected
but not sent to the program until you press the <Return> key. This
gives you a chance to correct typing errors before they are sent to the
program.

OS-9 has several features line editing features. Each of these features
uses control keys generated by simultaneously pressing the
<Control> key and some other character key.

Line Editing Control Keys

The line editing control keys are listed below.

Table 3-1 Line Editing Control Keys

Key Function

<Control>A Repeat the previous input line. The last line entered
is redisplayed but not executed. The cursor is
positioned at the end of the line. You may enter the
line as it is or you can add more characters to it. You
can edit the line by backspacing and typing over old
characters.

<Control>B Moves the cursor one space to the left
(non-destructive).

<Control>F Moves the cursor one space to the right if the cursor
is not at the end of the line (non-destructive).
Using OS-9 53

3 Basic Commands and Functions
<Control>H Backspaces to erase previous characters. Most
keyboards have a special <backspace> key that
can be used directly without using the <Control>
key.

<Control>I Insert mode toggle key: switches input to insert
mode enabling you to insert characters into an
existing input line. Insert mode is terminated by
entering <Control>I again, another control
sequence, or a carriage return.

<Control>K Truncates the line from the current cursor position to
the end-of-line and resets the end-of-line position to
the cursor position.

<Control>L Deletes the word to the left of the cursor, shifts left
what is to the right of the cursor, and leaves the
cursor position on the first character of the deleted
word.

<Control>M End-of-record. This is the same as a carriage return.

<Control>P Redisplays the current input line. This is mainly
used for hardcopy terminals that cannot erase
deleted characters.

<Control>Q Resumes the input and output previously stopped
by <Control>S. The <Control>Q function is
known as XON.

<Control>R Deletes the word to the right of the cursor, shifts left
all text to the right of the deleted word, and leaves
the cursor at its original position.

Table 3-1 Line Editing Control Keys (continued)

Key Function
54 Using OS-9

3Basic Commands and Functions
<Control>S Halts input and output until <Control>Q is entered.
The <Control>S function is known as XOFF. This
is a function used by many serial I/O devices such
as printers to control output speed.

<Control>W Temporarily halts output so you can read the screen
before data scrolls off. Output resumes when any
other key is pressed. See the section on the page
pause feature.

<Control>X Deletes the current line.

<Control>Z Moves the cursor to the beginning of the current line
(non-destructive).

ESCAPE or
<Control>[

End-of-file. All OS-9 I/O devices, including
terminals, are accessed as files. This key simulates
the effect of reaching the end of a disk file.

Table 3-1 Line Editing Control Keys (continued)

Key Function
Using OS-9 55

3 Basic Commands and Functions
Interrupt Keys

There are two important control keys called interrupt keys. They work
differently than the line editing keys because you can use them at any
time, not just when a program requests input. They are normally used to
halt or alter a running program.

These control keys are the key assignments commonly used in most
OS-9 systems. You can change the correspondence between control
keys and their functions, so your keys may be different. Use the tmode
utility to redefine the function of control keys. This command enables
you to customize OS-9 to the specific computer’s keyboard layout.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about tmode, refer to Chapter 9: OS-9 System
Management or the Utilities Reference manual.

Table 3-2 Interrupt Keys

Key Function

<Control>C Sends an interrupt signal to the most recent
program. This functions differently from program to
program. If a program does not make specific
interrupt provisions, it aborts the program. If a
program has provisions for interrupts, <Control>C
usually provides a way to stop the current function
and return to a master menu or command mode. In
the shell, you can use <Control>C to convert the
foreground program to a background program, if the
program has not begun I/O to the terminal.

<Control>E Sends a program abort signal to the program
presently running. In most cases, this key
prematurely aborts the current program and returns
you to the shell.
56 Using OS-9

3Basic Commands and Functions
The Page Pause Feature

The page pause feature eliminates having output scroll off the screen
before you can read it. OS-9 counts output lines until a full screen has
been displayed. It then halts output until you press any key. This is
repeated for each screen of output.

Page pause counts a wrapped line as a single line. If the screen is
displaying lines that wrap, you may set the page length to a number
smaller than 24 so the page pauses at the bottom of a screen-full of
information.

You can use tmode to turn this feature on and off, or to change the
number of lines per screen:

Table 3-3 tmode

Key Function

tmode pause Turn the page pause mode on.

tmode nopause Turn the page pause mode off.

tmode page=n Set the page length to n lines.
Using OS-9 57

3 Basic Commands and Functions
Basic Utilities

OS-9 provides over ninety standard utilities and built-in shell
commands. Most utilities are used rarely, if ever, by casual users. You
will frequently use less than a dozen of them and less frequently use
about a dozen more. Some of the most commonly used utilities are
listed below. See the Utilities Reference manual for a more detailed
explanation of the utilities.

Table 3-4 Common OS-9 Utilities

attr backup build chd

chx copy date del

deldir dir dsave echo

edt format free help

kill list makdir merge

mfree pd pr procs

rename set setime shell

wait
58 Using OS-9

3Basic Commands and Functions
 The help Utility and the -? Option

The most important command to learn when beginning to use the OS-9
utilities is help. The help utility is an on-line quick reference. To use
this utility, type help, a utility name, and a carriage return. The utility
function, syntax, and available options are listed.

For example, if you cannot remember the function or syntax of the
backup utility, you can type help backup after the $ prompt:

$ help backup
Syntax: backup [<opts>] [<srcpath> <dstpath>] [<opts>]
Function: backup disks
Options:

 -b=<size> use larger buffer (default is 4k)
 -r don’t exit if read error occurs
 -v do not verify

$

The descriptions are short and precise. This is a quick way to find
information without looking up the utility in the documentation.

NoteNote
Typing help by itself displays the syntax and use of the help utility.

The same information is also available by typing the utility name
followed by a question mark (-?). Each utility has the -? option.
Using OS-9 59

3 Basic Commands and Functions
free and mfree

During the format procedure, a disk is divided into data blocks of a
pre-defined number of bytes. When OS-9 stores a file, the file’s contents
are stored in physically contiguous blocks. To find out how many blocks
are available on the disk, use the free utility. It displays the amount of
unused disk space in number of blocks and in number of bytes. It also
displays the disk name, its creation date and the capacity of the device.
For example:

$ free /h1
"OS-9000/68030 Hobbes’ Disk" created on: Thu Sep 7 03:37:10 1989
Capacity: 208935 blocks, 102.019 Mbytes
Free: 10 blocks, 0 bytes
Largest Free Block: 3 blocks, 0 bytes

free uses a 4K buffer by default. To increase the buffer size, use the -b
options. For example, to use a 10K buffer you could type:

$ free -b=10

NoteNote
The equal sign (=) is optional. You may also type: free -b10.

mfree displays the address and size of unused memory available for
allocation. For example:

$ mfree
Current total free RAM: 1808.00 K-bytes

For more information about the unused memory, use the -e option with
mfree. For example:

$ mfree -e

Minimum allocation size: 4.00 K-bytes
Number of memory segments: 7
Total RAM at startup: 3841.90 K-bytes
Current total free RAM: 1808.00 K-bytes
60 Using OS-9

3Basic Commands and Functions
Free memory map:
 Segment Address Size of Segment
 ----------------- --------------------------
 $7E000 $1000 4.00 K-bytes
 $8D000 $1000 4.00 K-bytes
 $A3000 $1000 4.00 K-bytes
 $B9000 $1000 4.00 K-bytes
 $CC000 $1BE000 1784.00 K-bytes
 $291000 $1000 4.00 K-bytes
 $296000 $1000 4.00 K-bytes
Using OS-9 61

3 Basic Commands and Functions
62 Using OS-9

Chapter 4: The OS-9 File System

This chapter contains a detailed explanation of the tree-structured file
and directory system. Topics include the following:

• OS-9 File Storage

• The OS-9 File System

• Current Directories

• Accessing Files and Directories: The Pathlist

• Basic File System Utilities
63

4 The OS-9 File System
OS-9 File Storage

All information stored on an OS-9 computer system is organized into
files and directories.

• A file may contain a program, data, or text.

• A directory is a file containing the names and locations of the file
and directories it contains.

This hierarchical directory structure enables you to organize your files
by topic, work group, or any other method.

When a file is created, the information is stored as an ordered
sequence of bytes. These bytes are organized into blocks. A block is a
pre-defined group of bytes, anywhere from 256 bytes to 32768 bytes in
powers of two. For example, a block may be composed of 512 bytes.
This means every 512 bytes are grouped together as a block.

During the format procedure, each block is marked as being unused.
The allocation map keeps track of each block. If a block is in use, it is
marked in the allocation map located at the beginning of each disk as
being in use. When a block marked in the allocation map as being in
use, OS-9 jumps to the next available set of contiguous blocks and
continues storing the information. Each of these sets of contiguous
blocks is called a segment. The size of the segment is determined by
the number of contiguous blocks available.

When a file is shortened or deleted, the previously used blocks are
unmarked in the allocation map and are available for use by other file.

Within a text file, each byte contains one character. Data is written to a
file in the order it is provided. Data is read from a file exactly as it is
stored in the file.
64 Using OS-9

4The OS-9 File System
The File Pointer

When a file is created or opened, a file pointer is also created and
maintained for it. The file pointer holds the address of the next byte to
write or read (see Figure 4-1 Pointer Example 1). As data in the file is
read or written, the file pointer is automatically moved. Therefore,
successive read or write operations transfer data sequentially (see
Figure 4-2 Pointer Example 2).

You can use an OS-9 system call (seek) to directly access any part of a
file by positioning the file pointer to any location in the file.

You can access the seek system call with the C function _os_seek.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about _os_seek, refer to the Ultra C Library
Reference manual.

Figure 4-1 Pointer Example 1

r o b e r

1 2 3 4 5
Using OS-9 65

4 The OS-9 File System
When creating or opening a file, the file pointer is positioned to read
from or write to the first component.

Figure 4-2 Pointer Example 2

After reading or writing the first component of a file, the file pointer
points to the second component.

Figure 4-3 Pointer Example 3

The file pointer is pointing to the current end-of-file. Attempting another
read operation causes an end-of-file error. Another write operation
increases the size of the file.

Figure 4-4 Pointer Example 4

r o b e r

1 2 3 4 5

r o b e r

1 2 3 4 5

r o b e r

1 2 3 4 5

t

6

66 Using OS-9

4The OS-9 File System
The next write operation adds a new component to the file and moves
the file pointer to the new end-of-file.

Reading up to the last byte of the file causes the next read operation to
return an end-of-file status (see Figure 4-3 Pointer Example 3). Trying to
read past the end-of-file mark causes an error. To expand a file, simply
write past the previous end of the file (see Figure 4-4 Pointer Example
4).

Because all OS-9 files have the same physical organization, you can
generally use file manipulation utilities on any file regardless of its
logical use. The main logical types of files used by OS-9 are:

• Text files

• Executable program module files

• Data files

• Directories

Directory files are an exception and are covered separately.

Text Files

Text files contain variable length lines of ASCII characters. Each line is
terminated by a carriage return (hex $OD). Text files typically contain
documentation, procedure files, and program source code. You can
create text files with any text editor or the build utility.

Executable Program Module Files

Executable program modules store programs that assemblers and
compilers generate. Each file may contain one or more modules with
standard OS-9 module format. The OS-9 Technical Manual contains
more information about modules.
Using OS-9 67

4 The OS-9 File System
Random Access Data Files

A data file is created and used primarily by high-level languages such
as C, Pascal, and BASIC. The file is organized as an ordered sequence
of records of varying sizes. If each record has exactly the same length,
its beginning address within the file can be computed to enable you to
access records in any order. OS-9 does not directly deal with records
other than providing the basic file manipulation functions high level
languages that support random access records require.

File Ownership

When you create a file or directory, OS-9 automatically stores a
group.user ID with it. The group.user ID is formed from your group
number and your user number.

group number enables people working on the same
project or working in the same
department to share a common group
identification.

user number identifies a specific user.

Therefore, a group.user ID identifies a specific user in a specific group
or department.
68 Using OS-9

4The OS-9 File System
The group.user ID determines file ownership. OS-9 users are divided
into three classes:

NoteNote
A user with a group.user ID of 0.0 is referred to as a super user. A super
user can access and manipulate any file or directory on the system
regardless of the file’s ownership.

On multi-user systems, the system manager generally assigns the
group.user ID for each user. This number is stored in a special file
called a password file. A super user on a multi-user system is generally
the system manager, although other people such as group managers or
project leaders may also be super users.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about password files, refer to Chapter 6: The
Shell.

On single-user systems, users have super user status by default.

Table 4-1 User Classes

Class Description

owner Any user with the same group and user number
as the person who created the file. The
super-user group (0.x) is also considered the
owner of the file.

group Any user with the same group number as the
person who created the file.

public Any person with a group ID differing from the
person who created the file.
Using OS-9 69

4 The OS-9 File System
Attributes and the File Security System

File use and security are based on file attributes. Each file has ten
attributes. These attributes are displayed in a sixteen character listing.

The term permission is used when one of the ten possible attribute
characters is set. Permission determines who can access a file or
directory and how it can be used. If a permission is not valid for the file
or directory being examined, a hyphen (-) is in its position.

Here is an attribute listing for a file in which all permissions are valid:

-o---ewr-ewr-ewr

By convention, attributes are read from right to left. They are:

Table 4-2 File Attributes

Attribute Abbr Description

Owner Read r The owner can read the file. When off,
this denies any access to the file.

Owner Write w The owner can write to the file. When
off, this attribute can be used to
protect files from accidentally being
deleted or modified.

Owner Execute e The owner can execute the file.

Group Read gr The group can read the file.

Group Write gw The group can write to the file.

Group Execute ge The group can execute the file.

Public Read pr The public can read the file.

Public Write pw The public can write to the file.
70 Using OS-9

4The OS-9 File System
Directory Attributes

Directories have slightly different attributes. Instead of attributes for
permission to execute file, directories have attributes for permission to
search through directories for files. Here is an attribute listing for a
directory in which all permissions are valid:

do---swr-swr-swr

By convention, directory attributes are also read from right to left. They
are:

Public Execute pe The public can execute the file.

Exclusive Use o When set, only one user at a time can
open the file.

Table 4-2 File Attributes (continued)

Attribute Abbr Description

Table 4-3 Directory Attributes

Attribute Abbr Description

Owner Read r The owner can read the file. When off,
this denies any access to the file.

Owner Write w The owner can write to the file. When
off, this attribute can be used to
protect files from accidentally being
deleted or modified.

Owner Search s The owner can search the directory for
files.

Group Read gr The group can read the file.
Using OS-9 71

4 The OS-9 File System
Group Write gw The group can write to the file.

Group Search gs The group can search the directory for
files.

Public Read pr The public can read the file.

Public Write pw The public can write to the file.

Public Search ps The public can search the directory for
files.

Exclusive Use o When set, only one user at a time can
open the file.

Directory d When set, indicates a directory.

Table 4-3 Directory Attributes (continued)

Attribute Abbr Description
72 Using OS-9

4The OS-9 File System
The OS-9 File System

OS-9 uses a tree-structured, or hierarchical, organization for its file
system on mass storage devices such as disk systems. (See Figure
4-5.) Each mass storage device has a master directory called the root
directory.

The root directory is created automatically when a new disk is
formatted. It contains the names of the files and the subdirectories on
the disk. Every file is listed in a directory by name, and each file has a
unique name within a directory.

An OS-9 directory can contain both files and subdirectories. Each
subdirectory can contain more files and subdirectories. This enables
you to embed subdirectories within other subdirectories. The only limit
to this division is the amount of available disk space.

Figure 4-5 The File System

With the exception of the root directory, each file and directory in the
system has a parent directory. A parent directory is the directory directly
above the file or directory being discussed. For example in Figure 4-5,
the parent directory of file2 is SUB-DIRECTORY1. Likewise, the
parent directory of SUB-DIRECTORY1 is the Root Directory.

Root Directory

ETCfile1 Sub-Directory1 Sub-Directory2

file5file4 Sub-Directory4

ETCETC

file3file2 Sub-Directory3
Using OS-9 73

4 The OS-9 File System
Current Directories

Two working directories are always associated with each user or
process. These directories are called the current data directory and the
current execution directory.

The following terms are important in the discussion of directories:

• A data directory is where you create and store your text files.

• An execution directory is where executable files such as utilities and
programs you have created are located.

The current directory concept enables you to organize your files while
keeping them separate from other users on the system. The word
current is used because you can move through the tree structure of the
OS-9 file system to a different directory. This new directory then
becomes your current data or execution directory.

On Single-User Systems

On a single user system, OS-9 chooses the root directory of your
system disk as your initial current data directory. Your initial current
execution directory is the CMDS directory. The CMDS directory is located
in the root directory of the system disk.

On Multi-User Systems

On a multi-user system, your current data and execution directories are
established for you as part of the initial login sequence. When you log
in, your initial directories are set up according to your password file
entry. A password entry is established for each user on a multi-user
system. This entry lists information such as the user’s password and
current directories.
74 Using OS-9

4The OS-9 File System
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about password files, refer to Chapter 6: The
Shell, and the login utility description in the Utilities Reference
manual.

Your execution directory on a multi-user system is usually the CMDS
directory, which is shared with other users. CMDS contains OS-9 utilities
and other executable files. If all users had their own copy of all OS-9
commands, a great deal of disk space would be wasted. Private
execution directories are also possible and are covered later in this
chapter.

The Home Directory

On typical multi-user systems, all users have their own data directory.
Through the /H0/CMDS environment variable, each user may also have
a private execution directory to avoid conflict with other users.

The private data directory enables you to organize your own files by
project, function, or any other method without affecting other user’s files.
The data directory specified in the password file entry is known as your
home directory. When you first login to the system, you are placed in
this directory. Using the chd utility with no parameters also places you
in this directory.

On single user systems, you may establish a home directory by setting
the HOME environment variable.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about:

• chd: refer to the Utilities Reference manual. chd is also covered
later in this chapter.

• The HOME environment variable: refer to Chapter 6: The Shell.
Using OS-9 75

4 The OS-9 File System
Directory Characteristics

Some important characteristics relating to directory files are:

• Directories have nearly the same ownership and attributes as
regular file. However, directories always have the d attribute set, and
directories have attributes for searching for files while files have
attributes for executing files.

• Each file name within a directory must be unique. For example, you
cannot store two files named trial in the same directory. Files can
have identical names, as long as they are stored in different
directories.

• All files are stored on the same device as the directory in which they
are listed.

• The only limit to the number of files you can store in a directory is the
amount of free disk space.
76 Using OS-9

4The OS-9 File System
Accessing Files and Directories: The Pathlist

You can access all files or directories in your current data directory by
specifying the name of the file or directory after the proper command.
When only a file or directory name is given, OS-9 does not look outside
your current data directory to find it.

If you want to access a file that is not in your current data directory or
run a program that is not in your current execution directory, you must
either change your current directory or specify a pathlist through the file
system for OS-9 to follow.

There are two types of pathlists:

• Full Pathlists

• Relative Pathlists

Full Pathlists

A full pathlist starts at the root directory and follows the directory names
in the list down the file structure to a specific file or directory. A full
pathlist must begin with a slash character (/). Slashes separate
names within the pathlist.

The following example is a full pathlist from the root directory, /d1,
through two subdirectories, PASCAL and TESTS, to the file futureval.

/d1/pascal/tests/futureval

The next example specifies a path from the root directory, /h0, through
the USR subdirectory to the NICHOLLE subdirectory.

/h0/usr/nicholle

NoteNote
A full pathlist begins at the root directory regardless of where your
current data directory is located. It lists each directory located between
the root directory and a specific file or subdirectory.
Using OS-9 77

4 The OS-9 File System
Full Pathlist Example

Your data directory is RESEARCH. A full pathlist to current is
/h0/WORK/current.

Figure 4-6 Full Pathlist Example

h0

WORK

currentFUTURE oldstuff

RESEARCH
78 Using OS-9

4The OS-9 File System
Relative Pathlists

A relative path starts at the current directory and proceeds up or down
through the file structure to the specified file or directory. A relative
pathlist does not begin with a slash (/). Slashes separate names within
a relative pathlist.

When you use a relative pathlist and the desired destination requires
going up the directory tree, you can use special naming conventions to
make moving around the pathlist easier.

• A single period (.) refers to the current directory.

• Two periods (..) refer to the current directory’s parent directory.

• Add a period for each higher directory level.

For example, to specify a directory two levels above the current
directory, three periods are required. Four periods refer to a directory
three levels above the current directory.

You can also use a Unix-style pathlist such as ../../../

NoteNote
A relative pathlist begins at your current directory regardless of its
location in the overall file structure.
Using OS-9 79

4 The OS-9 File System
Relative Pathlist Example

Your data directory is RESEARCH. A relative pathlist to current is
.../current.

Figure 4-7 Relative Pathlist Example

NoteNote
Using a relative pathlist name substitute does not change the
directory’s name.

The following example is a relative pathlist that begins in your current
directory and goes through the subdirectory DOC and LETTERS to the
file jim.

DOC/LETTERS/jim

The next pathlist goes up to the next directory above your current
directory and then through the subdirectory CHAP to the file page.

../CHAP/page

The next pathlist specifies a file within your current directory. No
directories are searched other than the current directory.

h0

WORK

currentFUTURE oldstuff

RESEARCH
80 Using OS-9

4The OS-9 File System
Basic File System Utilities

This section explains some of the OS-9 utility commands that
manipulate the file system. The utilities include dir, chd, chx, pd,
build, makdir, list, copy, dsave, del, deldir, and attr. The
given examples refer to an example file system (Figure 4-8).

Figure 4-8 Diagram of a Typical File System

h0

CMDS IO

C DEFS LIB

LIST COPY ETC

USR1 USR2 USR3

MACROS SYS

STARTUP

USR

SYSMODS

PROG

LETTER TEXT

GREEN

FALL ICE

ICK.C

GEE MAP

MANUAL

FUNCT MAIN
Using OS-9 81

4 The OS-9 File System
dir: Display Directory Contents

The dir utility displays the contents of a directory. Typing dir by itself
displays the contents of your current data directory. For the following
example, the current data directory is /h0. Typing dir in Figure 4-8
Diagram of a Typical File System results in:

$ dir
 directory of . 13:56:58
C CMDS DEFS IO LIB
MACROS SYS SYSMODS USR STARTUP

To look at directories other than your current data directory, you must
either provide a pathlist to the desired directory or change your current
data directory.

NoteNote
To display the contents of another directory without changing your
current data directory, type dir and the pathlist to the directory.

For example, if you are in the root directory and you want to see what is
in the DEFS directory, type:

dir defs

dir now displays the names of the file in the DEFS directory. The name
defs is a relative pathlist. You can type dir defs because DEFS is in
your current data directory. You can also use the full pathlist, dir
/h0/defs, and get the same result.

To display the contents of your current execution directory, type
dir -x.
82 Using OS-9

4The OS-9 File System
Wildcards and dir

You may also use wildcards with dir and with most other utilities as
well. OS-9 recognizes two wildcards:

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Chapter 6: The Shell, contains more information about the use of
wildcards.

For example, the command dir * lists the contents of all directories
located in the current data directory. The command dir /h0/cmds/d*
lists all files and directories in the CMDS directory beginning with the
letter d. The command dir prog_? lists all files in your current
directory having a file name with prog_ followed by a single character.

Table 4-4 OS-9 Wildcards

Wildcard Description

An asterisk (*) An asterisk replaces any number of letter(s),
number(s), or special character(s).
Consequently, an asterisk by itself expands to
include all of the files in a given directory.

A question mark (?) A question mark replaces a single letter,
number, or special character.
Using OS-9 83

4 The OS-9 File System
dir Options

dir has several options are fully documented in the Utilities
Reference manual. The -e and -r options are discussed here.

The -e option gives an extended directory listing. An extended directory
listing displays all files within the specified directory with their attributes,
sizes, and the sectors where the files are stored. The following example
uses the file structure shown in Figure 4-8 Diagram of a Typical File
System.

$ dir usr/bob -e
 Directory of USR/Bob 12:30:27

 Owner Last modified Attributes Block Bytecount Name
------- ------------- ---------------- ------ --------- ----
 22.150 89/09/25 1057 --------------wr 12CB0 5744 letter
 22.150 89/09/19 1057 d-------------wr 12CAF 15944 PROG
 22.150 89/09/25 1103 d-------------wr 12C90 11113 TEXT

The -r option displays the contents of the specified directory and any
files contained within its subdirectories. Using Figure 4-8 Diagram of a
Typical File System as an example, typing dir usr/usr1 -r lists the
following:

Directory of . 12:30:15
 PROG TEXT letter
Directory of PROG 12:30:15
 funct main
Directory of TEXT 12:30:15
 manual

You can use the dir options with each other. Typing dir -er displays
all files within the current data directory, all files within its subdirectories,
and provides an extended listing of their attributes, sizes, etc.

chd and chx: Moving Around in the File System

The chd and chx utilities enable you to travel around the file system.

• chd changes your current data directory.

• chx changes your current execution directory.
84 Using OS-9

4The OS-9 File System
Using chd

To change your current data directory, type chd followed by a full or
relative pathlist.

For example, if your current data directory is /h0 and you want your
current data directory to be USR, you would type chd and the pathlist of
USR.

• Using a relative pathlist, type:

chd usr

• Using a full pathlist, type:

chd /h0/usr

Your current data directory is now USR. When you type dir, you see the
contents of USR:

directory of . 14:04:32
USR1 USR2 USR3

To see which files are in the USR1 directory, type dir usr1. Or change
directory by typing chd usr1 and after the new prompt, type dir.

To return to your home directory, which in this case is /h0, type chd
without a pathlist. After changing directory, dir displays the contents of
/h0.

Using chx

The chx command enables you to redefine an existing directory as a
personal execution directory. If you have programs you do not want
other people to execute, it is useful to define a personal execution
directory for your private use. To use this command, type chx, followed
by a full or relative pathlist to the directory. When using a relative
pathlist with chx, the pathlist is relative to your current execution
directory.

If your current data directory is USR and you want to change your
current execution directory from CMDS to USR2, you can type the relative
pathlist chx ../usr/usr2 or the full pathlist chx /h0/usr/usr2.
When you type a command after you have changed your current
execution directory, OS-9 searches USR2 instead of CMDS.
Using OS-9 85

4 The OS-9 File System
Typing dir -x displays the contents of your current execution
directory, USR2:

Directory of .. 20:54:18
map pics new.c

Moving Up Directory Trees

You can use special naming conventions to move around the file
system. As a reminder, the naming conventions are periods specifying
the current directories and directories higher in the file structure. For
example:

. refers to the current directory

.. refers to the parent directory

... refers to two directory levels higher

When used as the first name in a path, you can use these naming
conventions with relative pathlists.

The following examples relate to the file structure in Figure 4-9
Accessing Directories Using a Relative Path. The examples assume
your initial current data directory is PROG.

The following example displays the contents of PROG. It is functionally
the same command as dir:

dir .
directory of . 14:04:32

funct main

The next command displays the contents of PROG’s parent directory,
USR1.

dir ..
directory of .. 14:05:58

PROG TEXT letter

This example displays the contents of TEXT by specifying a path
starting with the parent directory (..):

dir ../text
directory of ../text 14:06:47

manual
86 Using OS-9

4The OS-9 File System
The following command changes the current data directory from PROG
to USR3:

chd .../usr3

USR3 is accessed from PROG using the relative path .../usr3.

Figure 4-9 Accessing Directories Using a Relative Path

You can use any number of periods (.) to access higher directories.
One period is added for each level. An error is not returned if you
specify a greater number of directory levels above your current data

h0

CMDS IO

C DEFS LIB

LIST COPY ETC

USR1 USR2 USR3

MACROS SYS

STARTUP

USR

SYSMODS

PROG

LETTER TEXT

GREEN

FALL ICE

ICK.C

GEE MAP

MANUAL

FUNCT MAIN
Using OS-9 87

4 The OS-9 File System
directory than actually exist. Instead, this indicates the root directory on
your system. For example, this command displays the contents of the
root directory:

dir

This may be helpful if you are not sure how far down you are in the
directory structure. The next example changes your current data
directory from PROG to MACROS:

chd/macros

Using the pd Utility

The pd utility displays the complete pathlist from the root directory to
your current data directory.

For example, if your current data directory is USR2:

pd
/h0/USR/USR2

To which directory is your current execution directory, type pd -x to
display the pathlist to the current execution directory.

Using makdir to Create New Directories

To create new directories, use the makdir utility. For example, to create
a directory called MARKET, type:

makdir MARKET

MARKET now is a new directory in your current directory.
88 Using OS-9

4The OS-9 File System
If you want the new directory created somewhere other than your
current directory, you must specify a pathlist. For example, makdir
/h0/usr/MARKET creates the new directory in USR.

Figure 4-10 Creating the /h0/USR/MARKET Directory

Rules for Constructing File Names

When creating files and directories, you must follow certain rules. A file
name can contain from 1 to 43 upper and lower case letters, numbers,
and special characters as listed Table 4-5. While the file name may
begin with any of the following characters or digits, each file name must
contain at least one letter or number. Within these limitations, a name
can contain any combination of the following:

h0

CMDS SYS USR

MARKET USR1 USR2

Table 4-5 Characters Allowed in File Names

Description Example

Upper case letter: A - Z

Lower case letter: a - z

Decimal digits: 0 - 9

Underscore: _
Using OS-9 89

4 The OS-9 File System
File names must not contain spaces. Instead, use an underscore (_) or
a period (.) to improve the readability of file and directory names. OS-9
does not distinguish upper case letters from lower case letters. For
example, the names FRED and fred are considered the same name.

By convention, directory names are in upper case and file names are in
lower case. This enables you to easily distinguish directories from files.
This is only a recommendation for easy use; you may develop your own
style.

Here are some examples of legal names:

Here are some examples of illegal names:

Period: .

Dollar sign: $

Table 4-6 Legal File Names

raw.data.2 project_review_backup

X6809 $SHIP.DIR

...c 12345

Table 4-7 Illegal File Names

Name Description

Max*min * is not a legal character

open orders name cannot contain a space

Table 4-5 Characters Allowed in File Names (continued)

Description Example
90 Using OS-9

4The OS-9 File System
File names starting with a period are not displayed by dir unless you
use the -a option. This enables you to hide files within a directory.

Creating Files

You can create files in many ways. Text files are generally created with
the build utility, the edt utility, or the µMACS text editor. These file
building tools are provided with the OS-9 package for your convenience.

The build Utility

Use the build utility to create short text files. To use build , type
build , followed by the name of the file you want to create. build
responds with a “?” prompt:

This tells you that build is waiting for input. To terminate build, type a
carriage return at the ? prompt. For example:

$ build test
? Creating a text file is easy
? when you use the buid utility,
? but you cannot edit files with build.
?
$

You cannot edit files with build.

The edt Utility

To create and edit text files, use the edt utility. edt is a line-oriented
text editor with the capability to create and edit source files. To use edt,
type edt and the desired pathlist. edt displays a question mark (?)
prompt and waits for an edit command. If the file is found, edt:

1. Opens it.

2. Displays the last line.

3. Displays the ? prompt.
Using OS-9 91

4 The OS-9 File System
µMACS

Most people prefer using µMACS to create and edit files. µMACS is a
screen-oriented text editor for creating and modifying text files and
programs. Through the use of multiple buffers, µMACS enables you to
display different files or different portions of the same file on the same
screen. In addition, extensive formatting commands enable you to:

• Reformat paragraphs with new user-defined margins

• Transpose characters

• Capitalize words

• Change words or sections into upper or lower case

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about µMacs, see the Utilities Reference
manual.

Examining File Attributes with attr

When you create a file using build or µMACS, only the owner read
and owner write permissions are set. When you create a directory, it
initially has all the permissions set except the single user permission.

To examine file attributes, use the attr utility. To use this utility, type
attr, followed by the name of a file. For example:

$ attr newtest
--------------wr

The file newtest has the permissions set for owner reading and owner
writing. Access to this file by anyone other than the owner is denied.
92 Using OS-9

4The OS-9 File System
NoteNote
Users with the same group.user ID as the person who created the file
are considered owners. However, if the file is created by a group 0 user,
only users in the super group can read, write, or execute the file.

If you use attr with a list of one or more attribute abbreviations, the file
attributes are changed accordingly, provided you have the proper write
permission to access the file. You do not need to list the attribute
abbreviations in any particular order. The letter n preceding an attribute
removes that permission.

The following command enables public read and write permission and
removes execution permission for both the owner and the public:

$ attr newtest -pw -pr -ne -npe

The owner always has the right to delete a file, change the user
privileges, etc. Users in the same group have the same permissions as
the owner.

The directory attribute is somewhat different than the other attributes. It
could be dangerous to be able to change directory files to normal files
or a normal file to a directory. For this reason, you cannot use attr to
turn the directory (d) attribute on; use makdir to turn this attribute on.
Furthermore, you can only use attr to turn the directory attribute off if
the directory is empty.

Listing Files

The list utility displays the contents of files. By default, list displays
the lines of text on your terminal screen. To examine a file, type list,
followed by the name of the file. For example:

$ list test
Creating a text file is easy
when you use the build utility,
but you cannot edit files with build.
$

Using OS-9 93

4 The OS-9 File System
It is important to remember you cannot list a directory. If you type the
command list USR, the following error message and error number
are returned:

list: can’t open "USR". Error# 000:214.

This means you cannot access USR because it is a directory.

list displays text files. All distributed files in CMDS are executable
program module files. If you try to list the contents of a random access
data file or an executable program module file, you see what appears to
be random data displayed on your screen. This may also include
unprintable characters, such as escape or delete, that could change
your terminal’s operating parameters. If the operating characteristics of
your terminal are affected, first try turning the terminal off and on. If this
does not re-initialize the terminal, consult your terminal operating
manual.

Copying Files

The copy utility makes a duplicate of a file. To copy a file, type copy,
followed by the name of the file to be copied, followed by the name of
the duplicate file. For example:

$ copy test newtest

If you list the file newtest, it is an exact copy of test.

The file you are copying and the duplicate file can be located in any
directory; they do not have to be in your current data directory. For files
located outside of your current data directory, use full or relative
pathlists. The following example uses Figure 4-11 Copying Files. The
first command copies the file gee in the USR2 directory to a file named
new.info in the TEXT directory:

copy /h0/usr/usr2/gee /h0/usr/usr1/text/new.info

Assuming your data directory is USR, the following commands have the
same effect:

copy /h0/usr/usr2/gee usr1/text/new.info
copy usr2/gee usr1/text/new.info
94 Using OS-9

4The OS-9 File System
gee is copied from USR2/gee to USR1/TEXT/new.info using the
command copy usr2/gee usr1/text/new.info.

Figure 4-11 Copying Files

h0

CMDS IO

C DEFS LIB

LIST COPY ETC

USR1 USR2 USR3

MACROS SYS

STARTUP

USR

SYSMODS

PROG

LETTER TEXT

GREEN

FALL ICE

ICK.C

GEE MAP

FUNCT MAIN

MANUAL NEW.INFO
Using OS-9 95

4 The OS-9 File System
Copying a File into an Existing File

If you try to copy the contents of one file into an existing file, you receive
Error #000:218 Tried to create a file that already
exists. If you know the file exists but you want to overwrite it anyway,
use the -r option. For example, the following command replaces the
contents of green with the contents of fall.

$ copy fall green -r

When you list the contents of both files, you see they are identical.

Copying Multiple Files

At some point, you may want to copy more than one file at a time into
another directory. By using the -w=<dir> option of copy, you can copy
more than one file with a single command. For example, if your current
directory is PROG and you want to copy all of the files in PROG into the
TEXT directory, you would type the following command line:

$ copy * -w=../text

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

An asterisk is a wildcard. For more information about wildcards, refer to
the section on wildcards in Chapter 6: The Shell.

This option prints the name of the file after each successful copy. If an
error occurs, the prompt continue (y/n) is displayed.
96 Using OS-9

4The OS-9 File System
Copying Large Files

If you have a large file, the copy procedure may be slow because the
system has to perform multiple read and write statements from a small
4K buffer. To make the copy procedure faster when copying large files,
use the -b option to increase the buffer size. To use the -b option, type
copy, the original file name, the new file name, and -b=<num>k.

For example, typing copy gee mine -b=20k allocates a 20K buffer
for copying the file gee into the file mine.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about copy, refer to the Utilities Reference
manual.

dsave: Using Procedure Files to Copy Files

T the dsave utility copies all files and directories within a specified
directory by generating a procedure file. The procedure file is either
executed later to actually perform the copy or, by specifying the -e
option, executed immediately.

A procedure file is a special OS-9 file containing OS-9 commands. Each
command is specified on a line, one command per line. When the
procedure file is executed, the OS-9 commands it contains are
executed in the order they are listed in the procedure file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about procedure files, refer to Chapter 6: The
Shell.
Using OS-9 97

4 The OS-9 File System
To use the dsave utility, type dsave followed by the pathlist of the
directory into which the files are copied, followed by any options you
wish to use.

If no pathlist is specified for the destination, the files are copied to the
current data directory when the procedure file is executed. If you do not
specify the -e option or redirect the output to a file, dsave sends the
output to the terminal.

The example uses the following directory structure:

Figure 4-12 Dsave Example Directory Structure

If PROGMS is your current data directory and you type dsave
../notes, the following appears on your screen:

$ dsave ../notes
-t
chd ../notes
tmode -w=1 nopause
load copy
makdir MY.PROJ
chd MY.PROJ
copy -b=10 /h0/PROGMS/MY.PROJ/prog1
copy -b=10 /h0/PROGMS/MY.PROJ/test.c
chd ..
makdir CONVERSION
chd CONVERSION
copy -b=10 /h0/PROGMS/CONVERSION/temp.c
copy -b=10 /h0/PROGMS/CONVERSION/tally.c
chd ..

h0

NOTES PROG.NAMES PROGMS

CONVERSION MY.PROJ

TALLY.C TEMP.C PROG1 TEST.C
98 Using OS-9

4The OS-9 File System
unlink copy
tmode -w=1 pause
$

Because the output was not redirected to a procedure file and the -e
option was not used, the above commands were not executed. They
were just echoed to your screen.

If you now type dsave ../notes -e, the commands are again
echoed to the screen. However, the contents of the PROGMS directory
are copied into the NOTES directory.

Selectively Copying Multiple Files with dsave

You can also redirect the output of dsave to a file. When you redirect
the output, the commands output from dsave are essentially captured
in a file. You can later execute this file to actually perform the dsave
operation.

To redirect the output from dsave to a file, use the redirection modifier
for standard output. The standard output modifier is the greater than
(redirect) symbol.

For example, from the PROGMS directory, you can redirect the output
from dsave into a file called make.bckp by typing:

dsave >make.bckp

This command creates make.bckp in the current data directory. To
perform the dsave, type make.bckp at the command line.

Redirecting the output to a file is helpful when you want to save most,
but not all, of the file in the directory or directory being saved. You can
edit make.bckp before performing the dsave. This enables you to
save only selected files.

Regardless of how you decide to perform the dsave, if dsave
encounters a directory file, it automatically creates a new directory and
changes to that directory before generating copy commands for files in
the subdirectory.
Using OS-9 99

4 The OS-9 File System
In the dsave example, the directory structure looks like the following
after dsave has finished:

Figure 4-13 dsave Example Directory Structure

If the current working directory is the root directory of the disk, dsave
creates a file that backs up the entire disk, file by file. This is useful
when you need to copy many files from different format disks or from a
floppy disk or a hard disk.

MY.PROJ

PROG1 TEST.C

CONVERSION

TALLY.C TEMP.C

MY.PROJ

PROG1 TEST.C

CONVERSION

TALLY.C TEMP.C

h0

NOTES LISTING PROGMS
100 Using OS-9

4The OS-9 File System
Errors During dsave

If an error occurs during the dsave process, the following prompt is
displayed:

continue (y,n,a,q)?

You can use the -s option to turn off the prompt. This skips any file that
cannot be copied and continues the dsave routine without the error
prompt.

Indenting for Directory Levels

When you copy several subdirectories, you can use the -i option to
indent for directory levels. This helps to keep track of which files are
located in which directories.

Table 4-8 Responses to dsave Errors.

Response Indicates you...

y want to continue with dsave.

n do not want to continue with dsave.

a want all possible files copied and you do not want the
prompt displayed on error.

q want to exit dsave.
Using OS-9 101

4 The OS-9 File System
Keeping Current Directory Backups

You can use dsave to keep current directory backups. Use the -d or
-d=<date> options to compare the date of the file to be copied with a
file of the same name in the directory where it is to be copied. The -d
option copies any file with a more recent date. The -d=<date> option
copies any file with a date more recent than that specified. The following
example shows the use of dsave with the -d option:

$ chd /d0/BACKUP
$ dir
Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr 20CO 11113 program.c
 12.4 92/10/05 1601 ------wr 313D 5744 prog.2
$ chd /d0/WORKFILES
$ dir
Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr DODO 11113 program.c
 12.4 92/11/12 1601 ------wr 3458 5780 prog.2
$ dsave -deb32 /d0/BACKUP
$ chd /d0/BACKUP
$ dir
Directory of . 14:14:32
 Owner Last Modified Attributes Sector Bytecount Name
------- ------------- ---------- ------ --------- ----
 12.4 92/11/12 1417 ------wr 5990 11113 program.c
 12.4 92/11/12 1601 ------wr A12B 5780 prog.2

Only prog.2 was copied to the BACKUP directory because the date
was more recent in the WORKFILES directory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about dsave, refer to the Utilities Reference
manual.
102 Using OS-9

4The OS-9 File System
del and deldir: Deleting Files and Directories

Use the del and deldir utilities to eliminate unwanted file and
directories.

• del deletes a file.

• deldir deletes a directory.

If you no longer need a file, deleting the file frees disk space. You must
have permission to write to the file or directory in order to delete it.

Deleting Files

To delete a file, type del, followed by the name of the file you want
deleted. For example, to delete the file test you created with build,
you would type:

del test

If you execute dir, you see test is no longer displayed.

When deleting files, you may use wildcards. For example, if you have
three files, trial, trial1, and trial.c in a directory, you can use
the * wildcard in the command to delete all three files.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information about wildcards, refer to Chapter 6: The Shell.

WARNING!
Use caution when you use wildcards with utilities like del and deldir.
It is easy to unintentionally delete files you want to save.
Using OS-9 103

4 The OS-9 File System
The del -p option displays the following prompt before deleting a file:

delete <filename> ? (y,n,a,q)

This helps prevent deleting files you want to keep.

Deleting Directories

Deleting a directory is a little different. Use the deldir utility to delete
directories. deldir first deletes all the files and directories in the given
directory, and then, if no errors occur, finally deletes the directory name.
For example:

$ deldir USER2
Deleting directory: USER2
Delete, List, or Quit (d, l, or q) ?

Table 4-9 Responses to Del -p Option

Response Action

y Delete the file.

n Do not delete the file.

a Delete specified files without further prompts.

q Exit the deleting process.

Table 4-10 Responses to Deldir Command

Response Action

d Delete the directory.
104 Using OS-9

4The OS-9 File System
WARNING!
Never delete a file or directory unless you are sure you do not need it.
Files and directories deleted with the del and deldir commands are
permanently removed.

l List the directory contents.

q Quit without deleting any files.

Table 4-10 Responses to Deldir Command (continued)

Response Action
Using OS-9 105

4 The OS-9 File System
106 Using OS-9

Chapter 5: OS-9 Memory Modules

This chapter describes OS-9 memory modules and module directories.
The utilities used with modules and module directories are also
discussed.

This chapter includes:

• OS-9 Memory Modules

• Module Directories
107

5 OS-9 Memory Modules
OS-9 Memory Modules

In addition to organizing your programs and other files into a file system,
OS-9 manages both the physical assignment of memory to programs
and the logical contents of the memory. To do this, OS-9 uses memory
modules.

A memory module is a logical, self-contained program, program
segment, or collection of data. Any program or file can become a
memory module. Modules are created by compiling and linking
programs or by creating data modules. Each module must have three
parts:

• A module header contains information that describes the module
and its use. The information contained in the module header
includes the module name, size, type, language, memory
requirements and entry point.

• A module body contains information such as initialization data,
program instructions and constant tables.

• A CRC value (Cyclic Redundancy Check value) verifies the module
integrity.

In addition to a module header, a module body and a CRC value, a
module must also be re-entrant and position-independent.

A re-entrant module does not modify itself. This enables two or more
processes to use the module simultaneously.

A position-independent module does not depend on being loaded at a
specific memory location. This enables OS-9 to load the program
wherever memory space is available. In many operating systems, you
must specify a load address to place the program in memory. OS-9
determines an appropriate load address only when the program is run.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on modules, refer to the OS-9 Technical Manual.
108 Using OS-9

5OS-9 Memory Modules
Using Memory Modules

Memory modules are extremely useful. Memory modules:

• Provide more efficient use of available disk and memory storage

• Enable the system to run faster

• Simplify programming jobs

• Make it easy to customize and adapt OS-9

An important characteristic of memory modules is that modules can be
shred by several tasks or users at the same time. For example, if four
users want to run µMACS at the same time, only one copy of the
µMACS program module is loaded into memory. Other operating
systems typically load four exact copies of µMACS into memory,
requiring 300% more memory. The shared module system is completely
automatic and usually transparent to the user.

Another advantage of memory modules is frequently used functions can
share common library modules. In addition, you can split large and
complex programs into smaller, testable modules.

Loading Modules into Memory

Modules can be loaded into memory during the startup procedure or
after the system has been brought up. Modules loaded during the
startup procedure can be loaded either in bootfile or in the startup file.
Both of these methods for loading modules are discussed in the chapter
on system management. It is important to note here that modules
necessary for system startup or used frequently should be loaded
during the startup procedure.

Loading modules at system startup places them in contiguous spaces
of memory. This means the memory is less fragmented and more
efficient.

You can load less frequently used modules after the system has been
started using the load utility. To load one or more specified modules
into memory, type load and the pathlist(s) of the module(s) to be
loaded into your current module directory. Pathlists may be relative to
Using OS-9 109

5 OS-9 Memory Modules
your current execution directory. If the module is located in your current
execution directory, only the file name is needed after the load
command:

load <file>

If <file> is not in your execution directory and the shell environment
variable PATH is defined, load searches each directory specified by
PATH until <file> is successfully loaded from a directory. This
corresponds to the shell execution search method using the PATH
environment variable. The names of the modules are added to the
module directory. If a module is loaded having the same name as a
module already in the current module directory, the module having the
highest revision level is kept. The modules are normally loaded from the
current execution directory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Environmental variables are discussed in Chapter 6: The Shell.

Module Security

The OS-9 file security mechanism enforces certain requirements
regarding owner and access permission when loading modules into a
module directory. You must have file access permission to the file
loaded. If the file is to be loaded from an execution directory, you must
have the execute and read permissions for the file. If the file is to be
loaded from a directory other than the execution directory and the -d
option is used, only the read permission is required.

You must have module access permission to the module to be loaded.
This is different from the file access permission of the file containing the
target module. The module owner and access permissions are stored in
the module header and can be examined by the ident utility. To
prevent loading super user programs by ordinary users, OS-9 enforces
the following restriction: If the module group ID is zero (super group),
then the module can be loaded only if the process group ID or the file
group ID is zero.
110 Using OS-9

5OS-9 Memory Modules
If you are not the owner of a module and not a super user, the public
execute and/or public read access permissions must be set. The
module access permissions are divided into three groups: the owner,
the group, and the public. Only the owner of the module or the super
user can set the module access permissions.

There is one other restriction. You must have write permission for the
module directory into which you are loading the module. Module
directory attributes are discussed later in this chapter.

The Link Count

When modules are loaded into memory, they are added to the module
directory structure. Each directory entry contains the module address
and a count of the processes using the module. This count is called the
link count.

When a process forks to a primary memory module, the module link
count is automatically incremented by one. When the process is
finished with the primary module, the link count is automatically
decremented.

You can also use the link utility to link to a memory module if you want
to keep the module in memory. To link to a module, type link and the
name(s) of the module(s) to be linked. The link count of the specified
module is incremented by one each time it is linked.

For example, if you have loaded the module leap1 into memory, it has
a link count of 1. If another user also decides to use leap1 and links to
the memory module, the link count becomes 2.

When you have finished using a module you have linked to with the
link utility, remove your link to the module by typing unlink and the
name(s) of the module(s) to be unlinked. The link count is decremented
by 1.

In the example above, if you have finished using leap1, type:

unlink leap1

The link count for leap1 becomes 1 because another user is still using
the module.
Using OS-9 111

5 OS-9 Memory Modules
The link count becomes 0 if the other user decides to unlink from leap1.
The module directory entry is deleted and the memory is de-allocated.
It is good practice to unlink modules whenever possible to make the
most efficient use of available memory resources.

NoteNote
Unless you have explicitly linked to a module using link, you do not
need to unlink the module.

Modules Remaining in Memory

There are three cases when a module is not removed from memory
even if the module’s link count reaches 0:

• Modules loaded during system bootstrap.

• Sticky modules.

• Modules still in use.

Modules loaded during system bootstrap cannot be unlinked from
memory regardless of their link count. It is potentially fatal to your
system to unlink memory modules such as the kernel.

A sticky module sticks in the system even when it has a link count of 0.
A sticky module is removed from memory only when unlink is used to
lower the module link count to -1. You can use the fixmod utility to
make a module sticky. Generally, sticky modules are modules used
frequently enough to warrant them staying in the system at all times.

The third case involves modules with their link counts lowered to 0 (or -1
for sticky modules) but are still in use. For example, if one user is using
µMACS and another user lowers µMACS’ link count to 0, the module
stays in memory because the module is still in use.
112 Using OS-9

5OS-9 Memory Modules
Module Directories

OS-9 is unique because memory modules may be arranged in a
hierarchical directory structure just like files and directories. Therefore,
when you load a module into memory, you must make a decision as to
which module directory should contain the module.

Initially after OS-9 is booted, there is a single module directory where all
of the modules are loaded during system startup unless either sysgo or
the startup file has been modified to build a memory module directory
structure. You may create additional module directories at any time.
This enables you to organize modules in memory. Each module
directory can contain other module directories.

Figure 5-1 Root Module Directory

NoteNote
The development of new and existing modules is the major advantage
of this hierarchical module structure.

OS-9 enables you to load modules into specific directories, even if a
module of the same name is loaded into another directory. This means
you can make changes to a program and load it into your own module
directory. Once in the module directory, the module can be accessed

Root Directory

MODULE2ETC ETC. MODULE1MOD_DIR1

MODULE3ETC ETC. MOD_DIR2
Using OS-9 113

5 OS-9 Memory Modules
instead of a module with the same name elsewhere in the module
directory system. From this directory, you can test and debug the
module without affecting other system users.

For example, if you are using a module called mine that is loaded into
your module directory, another user could be using or developing
another mine module in a different directory.

Module directories also enable you to load programs into memory
without the programs becoming known to the public.

Current Module Directory

Memory module directories are similar to other directories as you can
specify a current module directory. The current module directory is
important for accessing memory modules.

For example, when modules are loaded into memory, they are added to
the process current module directory. Likewise, when a process forks a
new process, OS-9 searches the current module directory for the target
module first. If the search fails, OS-9 searches the process’ alternate
module directories. Failing to find the module in memory, OS-9 attempts
to load the target module into the current module directory.

You can set the initial current module directory in your .login file. Use
the MDPATH environment variable in the .login file to establish the
alternate module directory. You can change the current memory module
directory using the chm built-in shell command. To change module
directory, type chm and the pathlist to the new module directory.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the .login file and the MDPATH environment
variable, refer to Chapter 6: The Shell.
114 Using OS-9

5OS-9 Memory Modules
You can use full or relative pathlists when specifying module directory
pathlists. However, pathlists beginning from the root module directory
begin with a single slash (/). Pathlists beginning with either two slashes
(//) or no slash specify the pathlist begins at the current module
directory.

For example, the following pathlist begins at the root module directory:

chm /user/paul

The next two commands both begin at the your current module
directory:

chm //doc/proj1
chm doc/proj1

If the MDHOME environment variable is set, typing chm with no pathlist
changes your current module directory to the directory specified by the
MDHOME environment variable. The MDHOME environment variable is
discussed in the chapter on the shell.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the chm built-in shell command, refer to the
Utilities Reference manual.

Displaying the Contents of Module Directories

You can display the contents of memory module directories with the
mdir utility. To see the contents of a particular memory module
directory, type mdir and the pathlist to the module you want to display.
Pathlists may be either full or relative.

For example, to display the contents of the UTILS module directory
located in the root module directory, type:

mdir /utils
 Module Directory of /utils

DAVE MIKE RIC csl dir
Using OS-9 115

5 OS-9 Memory Modules
To display an extended listing of a module directory, use the -e option.
The extended listing displays detailed information concerning each
module located in the directory. The following is an example of a mdir
-e command.

 mdir //doc -e
 Module Directory of //doc
 Addr Size Owner Perm Type Revs Ed # Lnk Module name
------ -------- ----------- ---- ---- ---- ----- ----- ------------
36a170 1940 22.148 0333 MDir 0000 0 1 DAVE
2f90f0 7948 7.17 0555 MDir a000 7 2 MIKE
2adda0 1834 0.22 0555 MDir 8001 7 1 RIC
033a68 45408 22.148 0555 Subr c000 18 7 csl
318f20 23402 1.169 0555 Prog c001 36 0 dir

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the mdir utility, refer to the Utilities
Reference manual.

Memory Module Directory Attributes

You can examine and change module attributes using the mdattr
utility. To use the mdattr utility, type mdattr and the module directory
pathlist. For example,

mdattr leap1
---r---r--wr leap1

Memory module directories can have owner, group and public
attributes. These attributes are each divided into four fields (from right
to left):

• Read attribute

• Write attribute

• Reserved

• Reserved
116 Using OS-9

5OS-9 Memory Modules
The attribute abbreviations are listed in Table 5-1.:

A module directory with all permissions set looks like the following:

--wr--wr--wr

The first wr are the public read and write permissions. The second wr
are the group read and write permission. The third wr are the owner
read and write permissions. The hyphens (-) are place holders for
reserved fields.

A permission is changed by giving its abbreviation preceded by a
hyphen (-). It is turned off by preceding its abbreviation with a hyphen
followed by the letter n (-n). Permissions not explicitly named are not
affected. If no permissions are specified, the current file attributes are
printed.

To see the attributes of the module leap1, type:

$ mdattr leap1
------wr--wr leap1

Table 5-1 Attribute Abbreviations

Abbreviation Means

r owner read permission

w owner write permission

gr group read permission

gw group write permission

pr public read permission

pw public write permission
Using OS-9 117

5 OS-9 Memory Modules
leap1 has the group and owner read and write permissions set. To
remove the group write permission and add the public read permission
to leap1, type:

$ mdattr leap1 -ngw -pr
---r---r--wr leap1

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the mdattr utility refer to the Utilities
Reference manual.

Creating New Memory Module Directories

To create new memory module directories, use the makmdir utility. The
makmdir utility creates the new module directory in the directory
specified. To create a new memory module directory, type makmdir
followed by the module directory pathlist specifying the new module
directory.

The following example uses this memory module directory structure:

Figure 5-2 Before makmdir Command

To create the directory TONY in the USER directory, type:

makmdir /user/TONY

Root Directory

TESTIOMAN KERNEL SCFRBF USERINIT

AMY JESSICA
118 Using OS-9

5OS-9 Memory Modules
The module directory structure looks like the following:

Figure 5-3 After makmdir Command

makmdir creates the new module directory with the read and write
permissions set for the owner, group, and public.

 makmdir only searches the current module directory for a specified
module path when creating a new module directory. The alternate
pathlists specified by the MDPATH environment variable are not
searched if a specified module path is not found in the current module
directory.

For example, if USER is your current module directory and you want to
make a new directory in a directory called TEST, OS-9 does not search
the alternate module directories for a module directory named TEST.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the makmdir utility, refer to the Utilities
Reference manual.

Root Directory

IOMAN KERNEL SCFRBF USERINIT

AMY TONY

TEST

JESSICA
Using OS-9 119

5 OS-9 Memory Modules
Deleting Memory Module Directories

You can delete memory module directories using the delmdir utility. To
delete a module directory, type delmdir, the pathlist for the module
directory, and any desired options.

If the module directory to be deleted contains sub-directories, the
sub-directories are also deleted. For example, if the USER directory in
the previous example is deleted, the directories AMY, TONY, and
JESSICA are also deleted.

delmdir searches only the current module directory for a specified
module path when deleting a module directory. The alternate pathlists
specified by the MDPATH environment variable are not searched if a
specified module path is not found in the current module directory.

Modules within the directory to be deleted or any of its sub-directories
must not be in use. If a module in a directory is in use when delmdir
is called, delmdir is not successful.

You must have the appropriate access permissions to a module
directory in order to delete it.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the delmdir utility refer to the Utilities
Reference manual.
120 Using OS-9

Chapter 6: The Shel l

This chapter contains a detailed description of the shell, the OS-9 user
interface.

This chapter includes the following topics:

• The Function of the Shell

• The Shell Environment

• Built-In Shell Commands

• Shell Command Line Processing

• Shell Procedure Files

• Setting up a Time-Sharing System Startup Procedure File

• Creating a Temporary Procedure File

• Multiple Shells

• Waiting for Background Procedures

• Command History

• Error Reporting
121

6 The Shell
The Function of the Shell

The shell is the OS-9 command interpreter program. The shell takes the
commands you enter and translates them into commands the operating
system understands and executes.

The shell also provides a user-configurable environment to personalize
the way OS-9 works on your system. You can use the shell to change
the shell prompt, send error messages to a file, or backup your disk
before you log out.

The shell command starts the shell program. This command is
automatically executed following system startup or after logging on to a
timesharing terminal. When the shell is ready for commands, it displays
the prompt:

[1]$

NoteNote
The [1] in the prompt is the history number for that command line. This
has been omitted from the rest of the prompts shown in this manual.
The command line history is discussed in this chapter.

This prompt indicates the shell is active and waiting for a command from
your keyboard. You can now type a command line followed by a
carriage return.

Shell Options

A number of options are available to the shell. By default, some are
automatically turned on following startup or log on. The available shell
options are below.
122 Using OS-9

6The Shell
Table 6-1 Shell Options

Option Description

-a Echoes the command line if it is altered after if is
entered. This is the default option.

-c=<num> Specifies the number of previously executed
commands the shell should remember. This
provides a history of your commands. If <num> is
not specified, the default is 40.

-e=<file> Prints error messages from <file>. If no file is
specified, /dd/SYS/errmsg is used. Without this
option, the shell prints only error numbers with a
brief message description. Each error is described
in the appendix on error codes in the OS-9
Technical Manual.

-h Displays the command’s history number in front of
the command line prompt. This is the default
option.

-l The logout built-in command is required to
terminate the login shell. <eof> does not cause
the shell to terminate.

-na Does not echo the command line if it is altered
after it is entered.

-nc Does not keep track of your command history.

-ne Prints no error messages. This is the default
option.

-nh Does not display the command’s history number.
Using OS-9 123

6 The Shell
-nl <eof> terminates the login shell. <eof> is
normally caused by pressing the <Esc> key. This
is the default option.

-np Does not display the prompt.

-nq Does not keep assigns in environment.

-ns Does not save your command history from one
login session to the next. This is the default option.

-nt Does not echo input lines. This is the default
option.

-nv Turns off verbose mode. This is the default option.

-nx Does not abort process on error.

-p Displays the prompt. The default prompt is a dollar
sign ($).

-p=<string> Sets the current shell prompt equal to <string>.

-q Keeps assigns in environment. This is the default
option.

-s Saves your command history from one login
session to the next. The command history is saved
in a .history file in your home directory.

-t Echoes input lines.

Table 6-1 Shell Options (continued)

Option Description
124 Using OS-9

6The Shell
You can change shell options with either of two methods. The two
methods accomplish the same function.

1. Type the option on the command line or after the shell command.
For example:

•$ -np turns off the shell prompt.

•$ shell -np creates a new shell that does not prompt. When the
new shell is exited, the original shell prompts.

2. Use set, a special shell command. To set shell options, type set,
followed by the options desired. When using the set command, a
hyphen (-) is unnecessary before the letter option. For example:

•$ set np turns off the shell prompt.

•$ shell set p creates a new shell that does not prompt. When
the new shell is exited, the original shell prompts.

-v Verbose mode: displays a message for each
directory searched when executing a command.

-x Aborts process on error. This is the default option.

Table 6-1 Shell Options (continued)

Option Description
Using OS-9 125

6 The Shell
The Shell Environment

The shell maintains a unique list of environment variables for each user
on an OS-9 system. These variables affect the operation of the shell or
other programs subsequently executed and can be set according to
your preference.

All environment variables can be accessed by any process called by the
shell or by descendant shells. This enables you to use the environment
variables as global variables.

If an environment variable is redefined by a subsequent shell, the
variable is only redefined for that shell and its descendents. The
environment variable is not redefined for the parent shell.

The following environment variables are automatically set up when you
log on to a time-sharing system.

Table 6-2 Environment Variables

Variable Description

PORT The name of the terminal. An example of a valid name
is /t1. The tsmon utility automatically sets up PORT.

HOME Your home directory. The home directory is specified in
your password file entry and is your current data
directory when you first log on the system. This is also
the directory used when the command chd with no
parameter is executed.

SHELL The first process executed upon logging on to the
system.
126 Using OS-9

6The Shell
For single user systems, these variables can be set with the setenv
command. A procedure file may also be set up with your normal
configuration of these variables. This procedure file could then be
executed each time you start up your terminal.

Other important environment variables includeTable 6-3:

USER The user name you type when prompted by the login
command.

PATH Specifies any number of directory. Directory paths must
be separated by a colon (:). The shell uses PATH as a
list of command directory to search when executing a
command. If the default commands directory does not
include the file or module to be executed, each directory
specified by PATH is searched until the file/module is
found or the list is exhausted.

Table 6-3 Optional Environment Variables

Variable Description

MDHOME Specifies your home module directory. This is the
module directory used when executing the command
chm with no parameter.

MDPATH Specifies any number of module directories to search.
Module directory paths must be separated by a colon
(:). The shell uses MDPATH as a list of module
directories to search when executing a command.

Table 6-2 Environment Variables (continued)

Variable Description
Using OS-9 127

6 The Shell
NoteNote
Environment variables are case sensitive. OS-9 cannot recognize a
variable if the proper case is not used.

PROMPT Specifies the current prompt. By specifying an at sign
(@) as the first character of your prompt, you may easily
keep track of how many shells you have running under
each other. @ is used as a replaceable macro for the
shell level number. The base level is set by the
environment variable _sh.

_sh Specifies the base level for counting the number of shell
levels. For example, set the shell prompt to @howdy:
and _sh to 0:

$ setenv _sh 0

$ -p="@howdy: "

howdy: shell

1.howdy: shell

2.howdy: eof

1.howdy: eof

howdy:

TERM Specifies the type of terminal being used. TERM allows
word processors, screen editors, and other screen
dependent programs to know what type of terminal
configuration is used.

Table 6-3 Optional Environment Variables (continued)

Variable Description
128 Using OS-9

6The Shell
Changing the Shell Environment

Three commands are available for use with environment variables:
setenv, unsetenv, and printenv.

NoteNote
These variables are only known to the shell in which they are defined
and any descendant processes from that shell.

Table 6-4 Environment Variable Commands

Command Description

setenv Declares the variable and sets its value. The
variable is put in an environment storage area
accessed by the shell. For example:

$ setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
$ setenv _sh 0

setenv does not change the environment of the
parent process of the shell from which setenv was
issued.

unsetenv Clears the value of the variable and removes it from
storage. For example:

$ unsetenv PATH
$ unsetenv _sh

printenv Prints the variables and their values to standard
output. For example:

$ printenv
PATH ..:/h0/cmds:/d0/cmds:/dd/cmds
PROMPT howdy
_sh 0
Using OS-9 129

6 The Shell
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

These three commands are described in the Utilities Reference
manual.

Using Environmental Variables as Command Line
Parameters

When you use the following syntax, the shell replaces the environment
variable with the value of the environment variable:

$(<env var>)

For example, if HOME is set to /h0/USR/ROB and you enter the
command dir $(HOME), the shell executes the command dir
/h0/USR/ROB.

This substitution is useful for entire command lines. By using setenv, a
command line can be assigned to an environment variable:

setenv PR "procs -ea"

Any time $(PR) appears on the command line, the shell automatically
substitutes procs -ea.
130 Using OS-9

6The Shell
Built-In Shell Commands

The shell has a special set of commands or option switches built in to
the shell. These commands are executed without loading a program
and creating a new process. They can be executed regardless of your
current execution directory.

The built-in commands and their functions are as follows:

Table 6-5 Built-in Shell Command

Command Description

* <text> Indicates a comment: <text> is not
processed.

assign Allows you to assign commands and
strings to a single word for command line
substitutions.

chd <path> Changes the current data directory to the
directory specified by <path>.

chm <path> Changes the current module directory to
the module directory specified by
<path>.

chx <path> Changes the current execution directory
to the directory specified by <path>.

ex <name> Directly executes the named program.
This replaces the shell process with a
new execution module.

hist Displays the history of your commands.
Using OS-9 131

6 The Shell
kill <proc ID> Aborts the process specified by <proc
ID>.

logout Terminates the current shell. If the login
shell is to be terminated, the .logout
file in the home directory is executed and
then the login shell is terminated.

profile Executes a procedure file without forking
a child shell.

set <options> Sets options for the shell.

setenv <env var>
<value>

Sets an environment variable to a
specified value.

setpr <proc ID>
<priority>

Changes the process priority.

unassign Unassigns an assignment made with
assign.

unsetenv <env var> Deletes the environment variable from the
environment.

w Waits for a child process to terminate.

wait Waits for all child processes to terminate.

Table 6-5 Built-in Shell Command (continued)

Command Description
132 Using OS-9

6The Shell
Shell Command Line Processing

The shell reads and processes command lines one at a time from its
input path (usually your keyboard). Each line is first parsed to identify
and process any of the following parts that may be present:

Only the keyword needs to be present for the shell to process a
command line. Parameters, execution modifier, and separators are
optional. After the keyword has been identified, the shell processes any
execution modifiers and separators. Any text not yet processed is
assumed to be parameter and is passed to the program called.

The keyword must be the first word in the command line. If the keyword
is a built-in command, it is executed immediately.

If the keyword is not a built-in command, the shell assumes it is a
program name and attempts to locate it. The shell searches for the
command in the following sequence:

Table 6-6 Command Line Parts

Part Description

keyword A name of a program, procedure file, built-in
command, or pathlist.

parameters The names of files, programs, values, variables,
constants, and so on. to be passed to the program
being executed.

execution
modifiers

These modify a program’s execution by redirecting
I/O or changing the priority or memory allocation of
a process.

separators When multiple commands are placed on the same
command line, separators specify whether they
should be executed sequentially or concurrently.
Using OS-9 133

6 The Shell
1. The shell checks the memory to see if the program has already
been loaded into the module directory. If it is already in memory,
there is no need to load another copy. The shell then calls the
program to be executed.

2. If the program is not in memory, your current execution directory is
searched. An attempt to load the program is made if it is found. If
this fails, the shell tries to execute it as a procedure file. If this fails,
the shell attempts the same procedure using the next directory
specified in the PATH environment variable. This continues until the
command is successfully executed or the list of directory is
exhausted.

3. Your current data directory is searched. If the specified file is found,
it is processed as a procedure file. Procedure files are assumed to
contain one or more shell command lines. These command lines are
processed by a newly created, or child shell as if they had been
typed in manually. After all commands from the procedure files are
executed, control returns to the old, or parent shell. Because the
commands are processed by the child shell, all built-in commands in
the procedure file such as chd and chx only affect the child shell.

An error is returned if the program is not found. If the program is found
and executed, the shell waits until the program terminates. When the
program terminates, it reports any errors returned. If there are more
input lines, the shell gets the next line and the process is repeated.

This sample command line calls a program:

$ prog #12K sourcefile -l -j >/p

In this example:

prog is the keyword

#12K is a modifier requesting an alternate
memory size be assigned to this
process. In this case, 12K is used as
memory.

sourcefile -l -j are parameters passed to prog
134 Using OS-9

6The Shell
> is a modifier redirecting output to a file or
device. In this case, > redirects the
output to the printer (/p).

/p is the system printer

Special Command Line Features

In addition to basic command line processing, the shell facilitates:

• Memory allocation

• I/O redirection, including filter

• Process priority

• Wildcard pattern matching

• Multi-tasking: concurrent execution

These functions are accessed by using execution modifiers, separators,
and wildcard characters. The combination of ways you can use these
capabilities is virtually unlimited.

Characters comprising execution modifiers, separators, and wildcards
are stripped from the part(s) of the command line passed to a program
as parameter.

Characters cannot be passed as parameters to programs unless
contained in quotes.

Table 6-7 Execution Modifiers

Modifier Description

Additional memory size

^ Process priority

> Redirect output
Using OS-9 135

6 The Shell

< Redirect input

>> Redirect error output

Table 6-8 Separators

Separator Description

; Sequential execution

& Concurrent execution

+ Concurrent execution

! Pipe construction for standard output

!! Pipe construction for standard error

!!! Pipe construction for both output and error

Table 6-9 Wildcards

Wildcard Description

* Matches any character

? Matches a single character

Table 6-7 Execution Modifiers (continued)

Modifier Description
136 Using OS-9

6The Shell
Execution Modifiers

The shell processes execution modifiers before the program is run. If an
error is detected in any of the modifiers, the run is aborted and the error
reported.

Additional Memory Size Modifier

Every executable program is converted to machine language for
storage. During the conversion process, a module header is created for
the program. A module header is part of all executable programs and
holds the program’s name, size, memory requirements, and other
details. A complete explanation of module headers is available in the
OS-9 Technical Manual.

When an executable program is processed by the shell, the minimum
amount of working memory specified in the program module header is
allocated. To increase the default memory size, memory can be
assigned in 1K increments using the pound sign modifier (#) followed by
a number of allocated kilobytes: #10k or #10. The shell adds the
allocated number of kilobytes to the default listed in the program
header.

The increase in memory allocation only affects one command. If you
want to increase the allocation for the next command, you must add the
modifier (#) again.

NoteNote
Programs written in C use the additional memory for stack space only.
Using OS-9 137

6 The Shell
I/O Redirection Modifiers

Redirection modifiers redirect the program’s standard I/O paths to
alternate file or devices. Usually, programs do not use specific file or
device names. This makes the redirection of standard I/O to any file or
device fairly simple without altering the program.

Programs normally receiving input from a terminal or sending output to
a terminal use one or more of these standard I/O paths:

Standard Input Path Normally passes data from a keyboard
to a program.

Standard Output Path Normally passes output data from a
program to a display.

Standard Error Path Can be used for either input or output,
depending on the nature of the program
using it. This path is commonly used to
output routine status messages such as
prompts and errors to the terminal’s
display. By default, the standard error
path uses the same device as the
standard output path.

A new process can only be created by an existing process. The new
process is known as the child process. The process creating the child
process is known as the parent process. Each child process inherits the
standard I/O paths from the parent process.

When the shell creates a new process, it inherits the shell’s standard I/O
paths from the shell. Upon startup or login, standard input is the
terminal keyboard. The standard output and standard error are directed
to the display. Consequently, the child process standard input is the
keyboard. The child process standard output and standard error are
directed to the display.

The three redirection modifiers are:

< Redirects the standard input path.

> Redirects the standard output path.

>> Redirects the standard error path.
138 Using OS-9

6The Shell
When you use a redirection modifier on a shell command line, the shell
opens the corresponding paths and passes them to the new process as
its standard I/O paths.

When you use redirection modifiers on a command line, they must be
immediately followed by a path describing the file or device to or from
which the I/O is to be redirected.

Standard Devices

Each physical input/output device supported by the system must have a
unique name within a module directory. Although the device names
used on a system are somewhat arbitrary, it has become customary to
use the names Microware assigns to standard devices in OS-9
packages.

The standard devices are:

Table 6-10 Standard Devices

Device Description

term Primary system terminal

t1, t2, etc. Other serial terminals

p Parallel printer

p1 Serial printer

dd Default disk drive

d0 Floppy disk drive unit 0

d1, d2, etc. Other floppy disk drives

h0, h1, etc. Hard disk drives (format-inhibited)

h0fmt, h1fmt, etc. Hard disk drives (format-enabled)
Using OS-9 139

6 The Shell
NoteNote
The h0fmt, h1fmt, etc. device descriptors have a bit set allowing you
to use the format and os9gen utilities on them. To avoid accidentally
formatting a hard disk, you should normally use the device names h0,
h1, etc.

Device names may only be used as the first name of a pathlist and must
be preceded by a slash (/) to indicate the name is an I/O device. If the
device is not a mass storage multi-file device like a disk drive, the device
name must be the only name in the path. This restriction is true for
devices such as terminals and printers.

For example, the standard output of list can be redirected to write to
the system printer instead of the terminal:

$ list correspondence >/p

Files referenced by I/O redirection modifier are automatically opened or
created and closed as appropriate by the shell. In the next example, the
output of dir is redirected to the path /d1/savelisting:

$ dir >/d1/savelisting

n0, n1, etc. Network devices

mt0, mt1 Tape devices

r0 RAM disk

Table 6-10 Standard Devices (continued)

Device Description
140 Using OS-9

6The Shell
If list is used on the path /d1/savelisting, output from dir is
displayed as follows:

$ List /d1/savelisting
 directory of . 10:15:00

file1 myfile savelisting

You can use redirection modifiers before and/or after the program
parameter, but you can use each modifier only once in a given
command line. Redirection modifiers can be used together to cause
more than one of the standard paths to be redirected. For example,
shell <>>>/t1 redirects all three standard paths to /t1.

The plus and hyphen characters (+ and -) can be used with output style
redirection modifier. The >- modifier redirects output to a file. If the file
already exists, the output overwrites it. The >+ modifier adds the output
to the end of the file. The following example overwrites dirfile with
output from the execution directory listing:

dir -x >-dirfile

The next example adds the listing of newfile to the end of oldfile.

list newfile >+oldfile

NoteNote
Spaces must not occur between redirection operators and the device or
file path.

Process Priority Modifier

On multi-user systems or when multi-tasking, many processes seem to
be simultaneously executed. Actually, OS-9 uses a scheduling
algorithm to allocate execution time to active processes.

All active processes are sorted into a queue based on the age of the
process.
Using OS-9 141

6 The Shell
The age is a number between 0 and 65535 based on how long a
process has waited for execution and its initial priority.

On a timesharing system, the system manager assigns the initial
priority for processes started by each user. This priority for the initial
process is listed in the password file. The initial process is usually the
shell. On a single user system, processes have their priority set in the
Init module. All child processes inherit the parent process priority.

When a process enters the active queue, it has an age set to its initial
priority. Every time a new active process is submitted for execution, all
earlier processes’ ages are incremented. The process with the highest
age is executed first.

If you want a program to run at a higher priority, use the caret modifier
(^). By specifying a higher priority, a process is placed higher in the
execution queue. For example:

$ format /d1 ^255

In this example, the process format is assigned a priority of 255. By
assigning a lower number, a lower priority can be specified.

WARNING!
Specifying too high of a priority for a process can cause all other
processes to be locked out until their ages mature.

For example, if you specify a priority of 2000 for a program and all the
other processes have an age of less than 100, your program is the only
process executed on the system until either your program terminates or
another process’ age reaches 2000. If another process’ age reaches
2000, it runs once and enters back in the queue at its initial priority.
Once again, your program either runs until it terminates or until another
process’ age reaches 2000.
142 Using OS-9

6The Shell
Wildcard Matching

The shell uses some alternate ways to identify file and directory names.
The shell accepts wildcards in the command line. The two recognized
wildcard characters are the asterisk (*) and the question mark (?).

An asterisk (*) matches any group of zero or more characters. A
question mark (?) matches any single character. The shell searches the
current data directory or the directory given in a path for matching file
names.

For the following examples, a directory containing the following file is
used:

 directory of FILES 14:45:20
diary diary2 form form.backup forms
login.names logistics logs old oldstuff
setime.c shellfacts sizes sizes.backup utils1

The command list log* lists the contents of login.names,
logistics, and logs. The pattern log* matches all file names
beginning with log followed by zero or more characters. The following
commands demonstrate the function of this wildcard.

Table 6-11 Commands Using * Wildcards

Command Result

list s* Lists all files in the current data directory
beginning with s: shellfacts, setime.c,
and sizes.

del * Deletes every file in the current data directory
(in this example, FILES).
Using OS-9 143

6 The Shell
The question mark (?) matches any single character in the position
where the wildcard character is located. For example, the command line
list log? only lists the contents of the file logs. The following
commands demonstrate the function of this wildcard.

In both examples, the shell searches only for names with five
characters.

Wildcards may also be used together. For example, the command list
*.? lists any files ending in a period followed by any letter, number or
special character, regardless of what comes before the period. In this
case, list *.? lists the contents of the file setime.c.

dir ../*.backup Lists all files in the parent directory ending
with .backup.

dir -x d* Lists all files in the current execution directory
starting with the letter d. This can be helpful if
you are unsure of the spelling of a particular
utility.

Table 6-12 Commands Using ? Wildcards

Command Result

del form? Deletes the file forms but not form.

list s???? Lists the contents of sizes, but not setime.c
or shellfacts.

Table 6-11 Commands Using * Wildcards (continued)

Command Result
144 Using OS-9

6The Shell
The shell only attempts to expand a character string containing a
wildcard if the character string could be a pathlist. The shell does not
expand wildcards used in the keyword of a command line. For
example, the shell does not expand the asterisk in the following:

d* forms

The shell disregards wildcard characters enclosed in double quotes.

For example: echo "*"

This echoes an asterisk (*) to standard output (usually the terminal). If
the double quotes around the asterisk were left out, the shell expands
the wildcard to include every file name in the current directory and
outputs each name to the terminal. Try it.

WARNING!
You must be careful when using wildcards with utilities such as del and
deldir. Wildcards should not be used with the -x or -z options of
most utilities.

Command Separators

A single shell input line can include more than one command line.
These command lines may be executed sequentially or concurrently.
Sequential execution causes one program to complete its function and
terminate before the next program is allowed to begin execution.
Concurrent execution allows several command lines to begin execution
and run simultaneously.

Commands can be sequentially executed by separating the command
with a semicolon (;). Commands can be concurrently executed by
separating the commands with an ampersand (&) or plus sign (+).
Using OS-9 145

6 The Shell
Sequential Execution

When one command per line is entered from the keyboard, programs
are executed one after another, or sequentially. All programs executed
sequentially are individual processes created by the shell. After
initiating a sequentially executed program, the shell waits until the
program it created terminates. The command line prompt does not
return until the program has finished.

For example, the following command lines are executed one after
another. The copy command is executed first, followed by the dir
command.

$ copy myfile /D1/newfile
$ dir >/p

You can specify more than one program on a single shell command line
for sequential execution by separating each program name and its
parameter from the next one with a semicolon (;). For example:

$ copy myfile /D1/newfile; dir >/p

The shell first executes copy and then dir. The command line
executes exactly as the previous two command lines unless an error
occurs.

If an error is returned by any program, subsequent commands on the
same line are not executed regardless of the -nx option. In all other
regards, a semicolon (;) and a carriage return act as identical
separators.

The following example copies the contents of oldfile into newfile.
When the copy command finished, oldfile is deleted. Then the
contents of newfile are listed.

$ copy oldfile newfile; del oldfile; list newfile

In the next example, the output from dir is redirected into myfile in
the d1 directory. The output from list is then redirected to the printer.
Finally, temp is deleted.

$ dir >/d1/myfile; list temp >/p; del temp
146 Using OS-9

6The Shell
Multi-tasking: Concurrent Execution

Programs may be executed concurrently using the ampersand (&) or
plus sign (+) separators. This allows programs to run at the same time
as other programs, including the shell. The shell does not wait to
complete a process before processing the next command. Concurrent
execution is how a background program is started.

Multi-tasking is accomplished by using the concurrent execution
separators. The number of programs that can run at the same time is
not fixed; it depends upon the amount of free memory in the system and
the memory requirements of the specific programs.

Here is an example:

$ dir >/P& list file1& copy file1 file2; del temp

The dir, list, and copy utilities run concurrently because they were
separated by an ampersand (&). del does not run until copy has
terminated because sequential execution (;) was specified.

By adding an ampersand (&) or plus sign (+) to the end of a command
line, regardless of the type of execution specified, the shell immediately
returns command to the keyboard, displays the $ prompt, and waits for
a new command. This frees you from waiting for a process or sequence
of processes to terminate.

This is especially useful when making a listing of a long text file on a
printer. Instead of waiting for the listing to print to completion, using
either of the concurrent execution separators allows you to use your
time more efficiently.

The plus sign (+) separator allows you to fork a process to run in the
background as an orphan process. An orphan process does not have a
parent process. This means regardless of how the process terminates,
you are not notified. Also, when the wait command is executed, the
shell does not wait for the process to finish execution. Executing an
orphan process is useful for executing non-terminating processes.

For example, you could execute tsmon and any networking utilities
concurrently using the plus sign separator:

$ tsmon /t1 +
Using OS-9 147

6 The Shell
tsmon is started, but your shell is not considered to be the parent
process.

If you have several processes running at once, you can display a status
summary of all your processes with the procs utility. procs gives you a
complete list of your current processes and pertinent information about
each process. The procs utility is discussed later in this chapter in the
section The procs Utility.

Pipes and Filters

The third kind of separator is the exclamation point (!) used to construct
pipelines. Pipelines consist of two or more concurrent programs whose
standard input and/or output paths connect to each other using pipes.

A pipe is simply a way to connect the output of a process to the input of
another process, so the two run as a sequence of process: a pipeline.
Pipes are one of the primary means for transferring data from process
to process for interprocess communications. Pipes are first-in, first-out
buffers.

All programs in a pipeline are executed concurrently. The pipes
automatically synchronize the programs so the output of one never gets
ahead of the input request of the next program in the pipeline. This
ensures data cannot flow through a pipeline any faster than the slowest
program can process it.

Any program that reads data from standard input can read from a pipe.
Any program that writes data to standard output can write data to a
pipe. Several utilities are designed so the standard output of one can be
piped to the standard input of another. For example:

$ dir -e ! pr

This example causes the standard output of dir to be piped to the
standard input of the pr utility instead of on the terminal screen. pr
reads the output of dir even though pr reads standard input by default.
pr then displays the result.

In Figure 6-1 the standard output of the dir -e command is piped to
the standard input of the pr command through an un-named pipe. The
pr utility displays the results of the dir -e command.
148 Using OS-9

6The Shell
In Figure 6-1 the standard output of the dir -e command is piped to
the standard input of the pr command through an un-named pipe. The
pr utility displays the results of the dir -e command.

Figure 6-1 Unnamed Pipe

The pr command may be modified with the following options:

• Two exclamation points (!!) pipe the standard error from one
program to another.

• Three exclamation points (!!!) pipe both the standard output and
standard error from one program to another.

There are two types of pipes used by OS-9: unnamed pipes and named
pipes.

Unnamed Pipes

Unnamed pipes are created by the shell when an input line with one or
more exclamation point (!) separators is processed. For each
exclamation point, the standard output of the program named to the left
of the exclamation point is redirected by a pipe to the standard input of
the program named to the right of the exclamation point. Individual
pipes are created for each exclamation point present. For example:

$ update <master_file ! sort !!! write_report >/p

In this example, the input for the program update is redirected from
master_file.update to the standard input for the program sort.
The standard and error output from sort, in turn, become the standard
input for the program write_report. Standard output from
write_report is redirected to the printer.

dir -e
(WRITES)

pr
(READS)

/pipe
Using OS-9 149

6 The Shell
Named Pipes

Named pipes are similar to unnamed pipes with one exception: a
named pipe works as a holding buffer that can be opened by another
process at a different time.

Named pipes are created by re-directing output to /pipe/<file>,
where <file> is any legal OS-9 file name. For example:

$ list letters >/pipe/letters &

The output from the list command is redirected into a named pipe,
/pipe/letters. The information remains in the pipe until it is listed,
copied, deleted, or used in some other manner.

In Figure 6-2 the output from the command list letters is
redirected to the named pipe, /pipe/letters. The pipe
/pipe/letters remains open until the contents are used in some
way. In this example, another user could later copy letters from the
pipe into a file in their own directory by typing a command such as:

copy /pipe/letters /h0/usr/me/letters

Once the file /pipe/letters is copied, the named pipe is deleted.

Figure 6-2 Named Pipes

You can also create named pipes by writing to the named pipe from a
program. Named pipes are similar to mass-storage files, except for the
limitation to their size. Named pipes have attributes and owners. They

/pipe/letters copy /pipe/letters /h0/usr/me/letters

list letters /pipe/letters
150 Using OS-9

6The Shell
may be deleted, copied, or listed using the same syntax you would use
to delete, copy, or list a file. You may change the attributes of a named
pipe just as you would change the attributes of a file.

dir works with /pipe. This displays all named pipes in existence. A
dir -e command may be deceiving. If a named pipe is created by any
utility other than copy, the default pipe size equals 128 bytes. copy
expands the size of the pipe to the size of the file. This indicates the first
128 bytes of the output are in the named pipe. However, if the procs
utility is executed, you see a path remains open to /pipe. If you were to
copy or list the pipe, for example, the pipe continues to receive input
and passes it to its output path until the input process is finished. When
the pipe is empty, the named pipe is deleted automatically.

Some of the most useful applications of pipelines are character set
conversion, data compression/decompression, and text file formatting.
Programs designed to process data as components of a pipeline are
often called filters.

Command Grouping

You can enclose sections of shell input lines in parentheses. This
enables you to apply modifier and separators to an entire set of
programs. The shell processes them by calling itself recursively as a
new process to execute the enclosed program list. For example, the
following commands produce the same result:

$ (dir /d0; dir /d1) >/p
$ dir /d0 >/p; dir /d1 >/p

However, one subtle difference exists. The printer is continuously
controlled by one user in the first example, while in the second case,
another user could access the printer between the dir commands.

You can use command grouping to execute a group of programs
sequentially with respect to each other and concurrently with respect to
the shell that initiated them. For example:

$ (del *.backup; list stuff_* >/p)&
Using OS-9 151

6 The Shell
This command begins to sequentially delete all files ending in .backup
and then list to the printer the contents of any files starting with stuff_.
At the same time a $ prompt appears, indicating the shell is waiting for a
new command.

A useful extension of this form is to construct pipelines consisting of
sequential and/or concurrent programs. For example:

$ (dir CMDS; dir SYS) ! makeuppercase ! transmit

This command line outputs the dir listings of CMDS and SYS, in that
order, through a pipe to the program makeuppercase. The total output
from makeuppercase is then piped to the program transmit.

It is important to remember that OS-9 processes commands from left to
right. In the following example, the dir command is executed first,
followed by the procs and del commands located inside the
parentheses.

$ dir& (procs; del whatever)
152 Using OS-9

6The Shell
Shell Procedure Files

A procedure file is a text file containing one or more command lines that
are identical to command lines manually entered from the keyboard.
The shell executes each command line in the exact sequence given in
the procedure file.

A simple procedure file might consist of dir on one line and date on
another. When the name of this procedure file is entered from the
command line, dir is run followed by date.

Procedure files have a number of valuable applications, including:

• Eliminating repetitive manual entry of commonly used command
sequences

• Enabling the computer to execute a lengthy series of programs in
the background while the computer is unattended or while you are
running other programs in the foreground

• Initializing your environment when you first login

You can run procedure file in the background by adding the & operator:

$ procfile&
+4

WARNING!
If a procedure file is run in the background, it should not contain any
terminal I/O. Any terminal I/O caused by a background procedure file
will minimally cause two or more processes try to control the same I/O
path.
Using OS-9 153

6 The Shell
Notice the +4 returned by the shell in the example above. This is the
process number assigned to the shell running procfile. The same
effect could be achieved by using the <control>C interrupt:

$ procfile
[<control>C is typed]
+4

Using <Control>C to place a procedure in the background only works
if the procedure has not yet performed I/O to the terminal. Another
limitation of the <Control>C interrupt occurs when the shell has not
had time to set up the command for execution. If the shell has not
loaded files from the disk, established pipelines, or completed other
set-up activities the <Control>C causes the shell to abort the
operation and return the shell prompt. For this reason, it is usually better
to use the ampersand to place a procedure in the background.

OS-9 does not have any limit on the number of procedure files that can
be simultaneously executed as long as memory is available.

NoteNote
Procedure files themselves can cause sequential or concurrent
execution of additional procedure files.

Using Parameters with Procedure Files

The shell allows you to pass as many parameters as you wish to a
procedure file. These parameters are entered on the command line and
replace the variables located within the procedure file.

For example, if you have a procedure file, files, you can list the first
parameter and delete the second parameter:

$ list files
list $(P0)
del $(P1)
154 Using OS-9

6The Shell
When you enter files and two filenames, the first filename replaces
$(P0) and the second replaces $(P1):

files starter update

This command lists the file starter to your terminal screen and
deletes update.

If you add a third filename to the command line, it is ignored unless the
variable $(P2) is added to the procedure file. If there is a variable
$(P2), the third parameter is recognized and used.

The $(P*) variable is a concatenation of all the parameters passed to
the procedure file. The following example shows a procedure file using
the $(P*) variable and printing out the environment within the shell.

[7]POS: build listfil
? list $(P*)
? printenv
?
[8]POS: listfil data1 data2 data3
This is the first file Contents of data1
This is the second file Contents of data2
This is the third file Contents of data3
PORT=/pks01
HOME=/h0/USR/ROBB
SHELL=shell
USER=robb
PATH=/h0/cmds
TERM=kt7
_sh=1
PROMPT=@POS:
P0=data1 First parameter
P1=data2 Second parameter
P2=data3 Third parameter
P*=data1 data2 data3 Value of variable P*
PN=3 Number of parameters
 passed to file listfil

NoteNote
The shell uses the PN variable to keep track of the number of
parameters passed to any given procedure file.
Using OS-9 155

6 The Shell
When the procedure file has finished executing, the shell environment
returns to its previous state. The variables are not passed from the
procedure file back to the shell.

NoteNote
Do not use setenv to set variables such as P0, and P1 as they are not
passed between the shell and the procedure file.

Using profile When Running Procedure Files

Typically, when a procedure file is executed, a new shell is forked to
process the procedure file. Any changes affecting the shell (such as
changing any of the current directories or changing the shell
environment) made from within a procedure file do not affect the
environment of the shell from which the procedure file was called.

The profile built-in shell command executes a procedure file without
forking a child shell. This makes it possible to change current directory
and environment variables from within a procedure file. For example, if
you frequently work on a project located in directory
/h0/USR/PROJ/MYPROJ and you want the environment variable
FRAME to equal pickone whenever you work on your project, you could
have a procedure file similar to the following:

$ list myproject
chd /h0/usr/proj/myproj
setenv FRAME pickone

When you want to work on your project, type:

profile myproject

You current data directory is /h0/USR/PROJ/MYPROJ and FRAME is
set to pickone. You may still pass parameter to procedure file by using
profile.
156 Using OS-9

6The Shell
The login shell and Special Procedure Files: login and
logout

The login shell is the initial shell created by the login sequence to
process the user input command after logging in.

To use these files, they must be located in your home directory.

.login is processed each time the login command is executed. This
allows you to run a number of initializing commands without
remembering each and every command. .login is processed as a
command file by the login shell immediately after successfully logging
on to a system. After all commands in the .login file are processed,
the shell prompts you for more commands. The main difference in
handling .login is the login shell itself actually executes the command
rather than creating another shell to execute the commands.

It is possible to issue commands such as set and setenv within
.login and have them affect the login shell. This is especially useful
for setting up the environment variables MDHOME, MDPATH, PATH,
PROMPT, TERM, and _sh.

Here is an example .login file:

setenv PATH ..:/h0/cmds:/d0/cmds:/dd/cmds:/h0/doc/spex
setenv PROMPT "@what next: "
setenv _sh 0
setenv TERM abm85h
setenv MDHOME
querymail
date
dir

.logout is processed when logout is executed to exit the login shell
and leave the system. .logout is processed before the login shell
terminates. logout only processes the .logout file when given to the
login shell; subsequent shells simply terminate. You could use this to
execute any clean up procedures you do on a regular schedule. This
might be anything from instigating a backup procedure of some sort to
printing a reminder of things to do.
Using OS-9 157

6 The Shell
Here is an example .logout file:

procs
wait
echo "all processes terminated"
* basic program to instigate backup if necessary *
disk_backup
echo "backup complete"

Using assign When Running Procedure Files

The OS-9 shell allows you to assign command and strings to a single
word, or assignment, for command line substitution. For example, if you
prefer to use the command cd instead of chd, enter the following
command line:

assign cd chd

You can also assign strings to a single word. For example, if you
frequently copy a number of large files, assign the string copy -b=50
to copylg:

assign copylg “copy -b=50”

You must place strings of text containing blanks in double quotes.

To find out what assignments you have already made, enter assign
with no parameter:

$ assign
cd chd
copylg copy -b=50

To remove an assignment, enter unassign and the assignment(s) you
wish to remove:

unassign cd

NoteNote
unassign does not report errors.
158 Using OS-9

6The Shell
By default, your assignments are kept in your environment list. This
allows them to be passed from shell to shell. If you do not want your
assignments to be kept in your environment list, use the -nq shell
option. The assignments are still passed to any procedure file forked by
the shell, but they are not available to the child shells.

Assignments can be used in procedure files. For example, you can set
up a procedure file to copy several large files from one directory to
another. You could use copylg, which you previously assigned.
However, if someone else uses your procedure file, they may not have a
copylg assignment, or they may have it assigned to something else.
Therefore, you can unassign copylg and re-assign it within your
procedure file. Assignments/unassignments made within a procedure
file are not passed back to the parent shell.
Using OS-9 159

6 The Shell
Setting up a Time-Sharing System Startup
Procedure File

OS-9 systems used for timesharing usually have a procedure file that
brings the system up by means of one simple command or by using the
system startup file. This procedure file initiates the timesharing monitor
for each terminal. It begins by starting the system clock and initiating
concurrent execution of a number of processes having their I/O
redirected to each timesharing terminal.

tsmon is a special program that monitors terminals for activity.
Typically, tsmon is executed as part of the start-up procedure when the
system is first brought up and remains active until the system shuts
down.

tsmon is normally used to monitor I/O devices capable of bi-directional
communication, such as CRT terminals. However, tsmon may also be
used to monitor a named pipe. If this is done, tsmon creates the named
pipe and then waits for data to be written to it by some other process.

It is possible to run several tsmon processes concurrently, each one
watching a different group of devices. Because tsmon can monitor up
to 28 device name pathlists, multiple tsmon processes must be run
when more than 28 devices are to be monitored. Multiple tsmon
processes can be useful for other reasons. For example, it may be
desirable to keep modems or terminals suspected of hardware trouble
isolated from other devices in the system.

Here is a sample procedure file for a timesharing system with terminals
named term, t1, t2, t3, and t71:

* system startup procedure file
echo Please Enter the Date and Time
setime </term
tsmon /t1 /t2 /t3&
tsmon /t71 * This terminal has been misbehaving

In the previous example, setime has its input redirected from the
system console term. This is necessary because it would otherwise
attempt to read the time information from its current standard input path
which is the procedure file and not the keyboard.
160 Using OS-9

6The Shell
This login procedure does not work until a file called /d0/SYS/
password with the appropriate entries has been created.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on tsmon, see Chapter 9: OS-9 System
Management.

The Password File

A password file is located in the SYS directory. Each line in the
password file is a login entry for a user. The line has several fields
separated by a comma. The fields are:

User name The user name may contain up to 32
characters including spaces. If this field
is empty, any name matches.

Password The password may contain a maximum
of 32 characters including spaces. If this
field is omitted, no password is required
for the specified user.

Group.user ID number
Both the group and the user portion of
this number may be from 0 to 65535. 0.0
is the super user. This number is used by
the file security system as the
system-wide user ID to identify all
processes initiated by the user. The
system manager should assign a unique
user ID to each potential user.

Initial process priority
This number may be from 1 to 65535. It
indicates the priority of the initial
process.
Using OS-9 161

6 The Shell
Initial execution directory
This field is usually set to /d0/CMDS.
Specifying a period (.) for this field
defaults to the current execution
directory.

Initial data directory
This is usually the specific user directory.
Specifying a period (.) for this directory
defaults to the current directory.

Initial Program This field contains the name and
parameter of the program to be initially
executed. This is usually shell.

NoteNote
Fields left empty are indicated by two consecutive commas.

The following is a sample password file:

superuser,secret,0.0,255,.,.,shell -p="@howdy"
suzy,morning,1.5,128,.,/d0/SUZY,shell
paul,dragon,3.10,100,.,/d0/PAUL,Basic
162 Using OS-9

6The Shell
Creating a Temporary Procedure File

To perform tasks requiring a sequence of commands, you can create
temporary procedure files. The cfp utility creates a temporary
procedure file in the current data directory and calls the shell to execute
it. After the task has been completed, cfp automatically deletes the
procedure file unless you use the -nd option to specify you do not want
the procedure file deleted.

The following is the syntax for the cfp utility:

cfp [<opts>] [<path1>] {<path2>}

To use the cfp utility, type cfp, the name of the procedure file
(<path1>), and the file(s) (<path2>) to be used by the procedure file.
The name of the procedure file may be omitted if the -s=<string>
option is used.

All occurrences of an asterisk (*) in the procedure file are replaced by
the given pathlist(s) unless preceded by the tilde character (~). For
example, ~* translates to *. The command procedure is not executed
until all input files have been read.

For example, if you have a procedure file in your current data directory
called copyit consisting of a single command line: copy *, you could
put all of your C programs from two directories, PROGMS and
MISC.JUNK, into your current data directory by typing:

$ cfp copyit ../progms/*.c ../misc.junk/*.c

If you do not have a procedure file, you can use the -s option. The -s
option causes the cfp utility to read the string surrounded by quotes
instead of a procedure file. For example:

$ cfp "-s=copy *" ../progms/*.c ../misc.junk/*.c

In this case, the cfp utility creates a temporary procedure file to copy
every file ending in .c in both PROGMS and MISC.JUNK to the current
data directory. The procedure file created by cfp is deleted when all the
files have been copied.
Using OS-9 163

6 The Shell
Using the -s option is convenient because you do not have to edit the
procedure file if you want to change the copy procedure. For example, if
you are copying large C programs, you may want to increase the
memory allocation to speed up the process. You could allocate the
additional memory on the cfp command line:

$ cfp "-s=copy -b100 *" ../progms/*.c ../misc.junk/*.c

You can use the -z and -z=<file> options to read the file names from
either standard input or a file. The -z option is used to read the file
names from standard input. For example, if you have a procedure file
called count.em containing the command count -l * and you want
to count the lines in each program to see how large the programs are
before you copy them, you could type the following command line:

$ cfp -z count.em

The command line prompt does not appear because the cfp utility is
waiting for input. Type in the file names on separate command lines. For
example:

$ cfp -z count.em
../progms/*.c
../misc.junk/*.c

When you have finished typing the file names, press the carriage return
a second time to get the shell prompt.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on cfp, see the Utilities Reference manual.

If you have a file containing a list of the files you want copied, you could
type:

$ cfp -z=files "-s=copy *"
164 Using OS-9

6The Shell
Multiple Shells

Like all OS-9 utilities, the shell can be simultaneously executed by more
than one process. This means in addition to all users having their own
shells, an individual user can have multiple shells.

New shells can be created with the procedure file. For example, to
execute a shell whose standard input is obtained from procfile, type:

$ shell <procfile

The new shell automatically accepts and executes the command lines
from the procedure file instead of a terminal keyboard. This technique is
sometimes called batch processing.

Shells can also fork new shells by simply processing the procedure file:

$ procfile

Basically, both of the above commands execute the commands found in
the procfile file.

By creating new shells, you can also move around the file system more
efficiently. To demonstrate this application use the sample directory
system in Figure 6-3.

Figure 6-3 An Example Directory

Root Directory
of device d0:

DIRECTORY_1 DIRECTORY_2 DIRECTORY_3

DIR_4 DIR_5 DIR_7 DIR_8DIR_6

file_1

file_5

DIR_9

file_6

 file_2
 file_3

file_4

file_7 file_8
Using OS-9 165

6 The Shell
If your current data directory is DIR_9 and you want to work on
file_8, you could change your current data directory to DIR_8 and
access the file by typing:

chd /d0/DIRECTORY_3/DIR_8

To return to DIR_9 you execute a similar command. This is somewhat
inconvenient and involves always knowing the path to each directory.

Instead, you can create a shell and change directories:

$ (chd /d0/DIRECTORY_3/DIR_8)

This makes your current directory DIR_8, but you can return to DIR_9
by pressing the <Escape> (Esc) key. By this method, you may use
any directory as a base directory and fork a shell out to any other
directory.

You may continue to imbed as many shells as you like. Each time you
press the <Escape> key, you are taken to the previous shell. In this
fashion you could conceivably escape from DIRECTORY_2 to DIR_8 to
DIR_6 to DIR_9.

You should experiment with the multiple shell aspects to fully utilize
OS-9.

Because of the nature of jumping from shell to shell, it is easy to get
lost. pd displays a complete pathlist from the root directory to your
current data directory.

Likewise, when running multiple shells, it is easy to forget how many
shells are running. If the _sh environment variable is set to 1 and the
shell prompt includes an at sign (@), the number of shells replaces the @
in the prompt. For example, if three shells are being run under each
other and the history count is on, the prompt might look like this:

3.[5]now what:
166 Using OS-9

6The Shell
The procs Utility

Because OS-9 is a multi-tasking operating system, you often have more
than one process executing at a time. The procs utility displays a list of
processes running on the system you own. This allows you to keep
track of your current processes.

NoteNote
Processes can switch states rapidly, usually many times per second.
Therefore the procs display is a snapshot taken at the instant the
command is executed and shows only those processes running at that
exact moment.

procs displays ten items of information for each process:

Table 6-13 Information From procs

Name Description

Id The process ID

PId The parent process ID

Grp.usr The group and user number of the owner of the
process

Prior The initial priority of the process

MemSiz The amount of memory the process is using

Sig The number of any pending signals for the
process
Using OS-9 167

6 The Shell
S a = active

d = debugging

e = event

s = sleeping

w = waiting

z = suspend queue: no queue state saved and
inactive

- = no queue or dead process

* = currently executing

P Waiting on semaphore

CPU Time The amount of CPU time the process has used

Age The elapsed time since the process started

Module & I/O The process name and standard I/O paths:

< = standard input

> = standard output

>> = standard error output

If several of the paths point to the same pathlist,
the identifiers for the paths are merged.

Table 6-13 Information From procs (continued)

Name Description
168 Using OS-9

6The Shell
The following is an example of procs:

$ procs
 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 2 1 22.150 128 0.25k 0 w 0.01 ??? sysgo <>>>term
 3 2 22.150 128 4.75k 0 w 4.11 1:13 shell <>>>term
 4 3 22.150 5 4.00k 0 a 12:42.06 0.14 xhog <>>>term
 5 3 22.150 128 8.50k 0 * 0.08 0:00 procs <>>>term
 6 0 22.150 128 4.00 0 s 0.02 1:12 tsmon <>>>t1
 7 0 22.150 128 4.00k 0 s 0.01 1:12 tsmon <>>>t2

procs -a displays nine pieces of information: the process ID, the
parent process ID, the process name and standard I/O paths, and six
new pieces of information:

The following is an example of procs -a:

$ procs -a
Id PId Aging F$calls I$calls Last Read Written Module & I/O
 2 1 129 5 1 Wait 0 0 sysgo <>>>term
 3 2 132 116 127 Wait 282 129 shell <>>>term
 4 3 11 1 0 TLink 0 0 xhog <>>>term
 5 3 128 7 4 GPrDsc 0 0 procs <>>>term
 6 0 130 2 7 ReadLn 0 0 tsmon <>>>t1
 7 0 129 2 7 ReadLn 0 0 tsmon <>>>t2

Table 6-14 Information From procs -a

Information Description

Aging The age of the process based on the initial priority
and how long it has waited for processing

F$calls The number of service request calls made

I$calls The number of I/O requests made

Last The last system call made

Read The number of bytes read

Written The number of bytes written
Using OS-9 169

6 The Shell
The -b option displays all information from procs and procs -a. The
-e option displays information for all processes in the system.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on procs, see OS-9 Utilities.
170 Using OS-9

6The Shell
Waiting for Background Procedures

If the multi-tasking ability of OS-9 is used, there are times when a
number of procedures are running in the background. If it is important to
wait for these tasks to finish before running a new procedure, use the w
or wait built-in shell command.

The following are important points to remember:

• w waits for the last child process to be executed to finish.

• wait waits for all child processes running in the background to
finish.

• A child process is a process being executed by the current shell or a
child of the shell.

• wait does not wait until a process forked with the plus sign (+)
concurrent execution separator finishes execution. Processes forked
with the plus sign are orphan processes.

For example, if you need to create a document from three different files
and each file has to be sorted by different fields, you can use the
following procedure files to create the same result:

start of first procedure file
qsort -f=1 file1&
qsort -f=2 file2&
qsort -f=3 file3&
wait
merge file1 file2 file3 >report

start of second procedure file
qsort -f=1 file1
qsort -f=2 file2
qsort -f=3 file3
merge file1 file2 file3 >report

The first procedure file is much quicker because each of the files are
processed concurrently.
Using OS-9 171

6 The Shell
Stopping Procedures

You can use two methods to stop a procedure. The first method involves
the <Control>C or <Control>E signal. The second method uses the
kill utility.

• <Control>C stops the shell from waiting for the process to
terminate and returns a prompt for a command.

• <Control>E forwards the keyboard abort signal to the process and
immediately prompts for input.

The shell handles these keyboard generated signals in the following
manner. If either of these signals are received while the shell is waiting
for keyboard input the following messages are issued:

$ Read I/O error - Error #000:177 [^E typed]
$ Read I/O error - Error #000:177 [^C typed]

These are the standard messages given whenever an I/O error occurs
when reading command input data.

If the shell is waiting for keyboard input and <Control>E is typed, the
shell forwards the keyboard abort signal to the current process and
immediately prompts for command input:

$ sleep 500
[^E is typed]
abort
$

The abort message is typed by the shell to acknowledge receipt of the
interrupt.

If the shell is waiting for keyboard input and you enter <Control>C, the
shell stops waiting for the current process to terminate and prompts for
command input. This action is similar to using an ampersand on the
command line. For example:

$ sleep 500
[^C is typed]
+8
$

172 Using OS-9

6The Shell
It is important to remember that using <Control>C in this fashion is
possible only if the command in question has not yet performed I/O to
the terminal. The signal is only received by the last process to perform
I/O. If the shell has not yet finished setting up the command for
execution, the signal causes the shell to abort the operation and returns
the prompt.

NoteNote
You must own the procedure or be the super user to kill a specified
process.

You can also use the kill utility to terminate background processes by
specifying the process number of the process to be killed. Obtain the
process number of the process from procs. Use the kill utility in the
following manner:

kill <proc num>

For example, if you want to terminate a process called xhog, you would
first execute a procs:

$ procs
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 3 2 7.03 128 4.75k 0 w 4.11 01:13 shell <>>>term
 4 3 7.03 5 4.00k 0 a 12:42.06 00:14 xhog <>>>term
 5 3 7.03 128 8.50k 0 * 0.08 00:00 procs <>>term

From procs, you can see the process number for xhog is 4. You can
then type:

$ kill 4

When you execute procs again, you find xhog is no longer shown.

To use the kill utility:

Step 1. Use the procs utility to get the process number

Step 2. Type kill <proc num>
Using OS-9 173

6 The Shell
Either of these methods terminates any process running in the
background with one exception: if a process is waiting for I/O, it may not
die until the current I/O operation is complete. Therefore, if you
terminate a process and procs shows it still exists, it is probably
waiting for the output buffer to be flushed before it can die.
174 Using OS-9

6The Shell
Command History

As you enter command lines, the commands are saved in a buffer. This
is a history of your commands. To see the commands you have entered,
type hist on the command line:

[5]$ hist
Shell History

 1) makdir /h0/usr/TMS
 2) chd /h0/usr/tms
 3) build stat
 4) procs
 5) hist
[6]$

These commands may be re-executed or retrieved using tildes (~). One
tilde followed by a number (~<num>) executes the command pointed to
by <num>. For example, entering ~4 on the command line causes the
shell to execute the fourth command in your history list. In the example
above, the procs command is executed:

[6]$ ~4
Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O
 3 2 6.10 128 5.25k 0 w 5.02 02:34 shell <>>>term
 4 3 6.10 128 8.50k 0 * 0.08 00:00 procs <>>term
[7]$ hist
Shell History

 3) build stat
 4) procs
 5) hist
 6) procs
 7) hist
[8]$

Entering ~4 -e tells the shell to execute procs -e.

You can also re-execute/retrieve commands using a tilde followed by
text (~<text>). The OS-9 shell searches backwards through the
history buffer for the text. For example, if you enter ~uma on the
command line, the command umacs stat is executed.

You cannot include spaces in your text. Also, the text must be the first
characters in the command line. In the previous example, entering ~acs
would produce an error.
Using OS-9 175

6 The Shell
Entering a number after two tildes (~~<num>) places the command in
the command line buffer, just as if it were the last command entered.
For example, by typing ~~3, the command is placed in a buffer as if it
had just been executed. By entering <Control>A, you can retrieve the
command line. It is placed after the shell prompt:

[8]$ ~~3
[8]$ <control>A
[8]$ build stat

You can either execute the command by pressing a carriage return or
you can edit the command line and then execute it:

[8]$ build stat.tst

In the previous example, the history number ([8]) did not change when
the ~~3 command and the <Control>A were entered. The history
number only changes when a command line is entered. The ~~3
causes the command to be placed in the buffer. Likewise, <Control>A
causes the command to be placed on the command line. Entering blank
lines also does not increase the history count.

You can also enter text after two tildes (~~<text>). For example, you
could type ~~uma. Then enter <Control>A to retrieve the command.
Once it appears on the command line, you can edit it.
176 Using OS-9

6The Shell
Error Reporting

Many programs, including the shell, use the OS-9 standard error
reporting function. This displays a brief description of the error and an
error number on the standard error path.

If an expanded error description is desired, set the -e and the -v shell
options. This prints error messages from /dd/SYS/errmsg on
standard output.
Using OS-9 177

6 The Shell
178 Using OS-9

Chapter 7: Making Files

This chapter explains the make utility in detail. This utility program
maintains and regenerates software from a group of files.

This chapter includes the following:

• The make Utility

• Example: Updating a Document

• Example: Compiling C Programs

• Example: A makefile Using Macros

• Example: Putting It All Together
179

7 Making Files
The make Utility

Many types of files are dependent on various other files in their creation.
If the files comprising the final product are updated, the final product
becomes out-of-date. The make utility is designed to automate the
maintenance and re-creation of files that change over a period of time.

make maintains the files by using a special type of procedure file known
as a makefile. The makefile describes the relationship between the final
product and the files comprising the final product. For the purpose of
this discussion, the final product is referred to as the target file and the
files comprising the target file are referred to as dependents.

A makefile contains three types of entries:

• Dependency entries

• Command entries

• Comment entries

A dependency entry specifies the relationship of a target file and the
dependents used to build the target file. The entry has the following
syntax:

<target>:[[<dependent>],<dependent>]

The list of files following the target file is known as the dependency list.
Any number of dependents can be listed in the dependency list. Any
number of dependency entries can be listed in a makefile. A dependent
in one entry may also be a target file in another entry. There is, however,
only one main target file in each makefile. The main target file is usually
specified in the first dependency entry in the makefile.

A command entry specifies the particular command executed to update,
if necessary, a particular target file. make updates a target file only if its
dependents are newer than itself. If no instructions for update are
provided, make attempts to create a command entry to perform the
operation.

make recognizes a command entry by a line beginning with one or more
spaces or tabs. Any legal OS-9 command line is acceptable. More than
one command entry can be given for any dependency entry. Each
180 Using OS-9

7Making Files
command entry line is assumed to be complete unless it is continued
from the previous command with a backslash (\). Comments should not
be interspersed with commands. For example:

<target>:[[<file>],<file>]
<OS-9 command line>
<OS-9 command line>\
<continued command line>

A comment entry consists of any line beginning with an asterisk (*). All
characters following a pound sign (#) are also ignored as comments
unless a digit immediately follows the pound sign. In this case, the
pound sign is considered part of the command entry. All blank lines are
ignored. For example:

<target>:[[<file>],<file>]

* the following command will be executed if the
* dependent files are newer than the target file
<OS-9 command line> # this is also a comment

NoteNote
Spaces and tabs preceding non-command continuation lines are
ignored.

You can continue any entry on the following line by placing a space
followed by a backslash (\) at the end of the line to be continued. All
entries longer than 256 characters must be continued on another line.
All continuation lines must adhere to the rules for its type of entry. For
example, if a command line is continued on a second line, the second
line must begin with a space or a tab:

FILE: aaa.r bbb.r ccc.r ddd.r eee.r \
fff.r ggg.r

touch aaa.r bbb.r ccc.r \
ddd.r eee.r fff.r ggg.r
Using OS-9 181

7 Making Files
Running the Make Utility

To run the make utility, type make, followed by the name of the file(s) to
create and any options desired.

make processes the makefile three times.

• During the first pass, make examines the makefile and sets up a
table of dependencies. This table of dependencies stores the target
file and the dependency files exactly as they are listed in the
makefile. When make encounters a name on the left side of a colon,
it first checks to see if it has encountered the name before. If it has,
make connects the lists and continues.

• After reading the makefile, make determines the target file on the
list. It then makes a second pass through the dependency table.
During this pass, make tries to resolve any existing implicit
dependencies. Implicit dependencies are discussed below.

• make does a third pass through the list to get and compare the file
dates. When make finds a file in a dependency list that is newer than
its target file, it executes the specified command(s). If no command
entry is specified, make generates a command based on the
assumptions given in the next section. Because OS-9 only stores
the time down to the closest minute, make remakes a file if its date
matches one of its dependents.

When a command is executed, it is echoed to standard output. make
normally stops if an error code is returned when a command line is
executed.

To understand the relationship of the target file, its dependents and the
commands necessary to update the target file, the structure of the
makefile must be carefully examined.
182 Using OS-9

7Making Files
Implicit Definitions

Any time a command line is generated, make assumes the target file is
a program to compile. Therefore if the target file is not a program to
compile, any necessary command entries must be specified for each
dependency list. make uses the following definitions and rules when
forced to create a command line.

object files Files with no suffixes. An object file is
made from a relocatable file and is linked
when it needs to be made.

relocatable files Files appended by the suffix: .r.
Relocatable files are made from source
files and are assembled or compiled if
they need to be made.

source files Files having one of the following suffixes:
.a, .c, .f, or .p.

default compiler cc

default assembler The default options are processor
specific; some examples include:

•appc for PowerPC processors

•a386 for 80386 processors

default linker cc

NoteNote
Use the default linker only with programs using Cstart.

default directory for all files
Current data directory (.)
Using OS-9 183

7 Making Files
Macro Recognition

In addition to recognizing compilation rules and definitions, make
recognizes certain macros. make recognizes a macro by the dollar sign
($) character in front of the name. If a macro name is longer than a
single character, the entire name must be surrounded by parentheses.
For example, $R refers to the macro R, $(PFLAGS) refers to the macro
PFLAGS, $(B) and $B refer to the macro B, and $BR is interpreted as
the value for the macro B followed by the character R.

You may place macros in the makefile for convenience or on the
command line for flexibility. Macros are allowed in the form of <macro
name> = <expansion>. The expansion is substituted for the macro
name whenever the macro name appears.

NoteNote
Defining a macro in a command line macro overrides the macro
definition in a makefile.

To increase make’s flexibility, you can define special macros in the
makefile. make uses these macros when assumptions must be made in
generating command lines or when searching for unspecified file. For
example, if no source file is specified for program.r, make searches
either the directory specified by SDIR or the current data directory for
program.a (or .c, .p, .f).
184 Using OS-9

7Making Files
make recognizes the following special macros:

Table 7-1 make Macros

Macro Definition

CC=<comp> make uses this compiler when generating
command lines. The default is cc.

CFLAGS=<opts> These compiler options are used in any
necessary compiler command lines.

LC=<link> make uses this linker when generating command
lines. The default is cc.

LFLAGS=<opts> These linker options are used in any necessary
linker command lines.

ODIR=<path> make searches the directory specified by
<path> for all files with no suffix or relative
pathlist. If ODIR is not defined in the makefile,
make searches the current directory by default.

RC=<asm> make uses this assembler when generating
command lines. The default for users on 680x0
processors is r68. The default for users on x86
processors is cc.

RDIR=<path> make searches the directory specified by
<path> for all relocatable files not specified by a
full pathlist. If RDIR is not defined, make
searches the current directory by default.
Using OS-9 185

7 Making Files
Some reserved macros are expanded when a command line associated
with a particular file dependency is forked. You may use these macros
only on a command line. When you need to be explicit about a
command line but have a target program with several dependencies,
these macros are useful. In practice, they are wildcards with the
following meanings:

RFLAGS=<opts> These assembler options are used in any
necessary assembler command lines.

SDIR=<path> make searches the directory specified by
<path> for all source files not specified by a full
pathlist. If SDIR is not defined in the makefile,
make searches the current directory by default.

Table 7-2 make Wildcards

Macro Definition

$@ Expands to the file name made by the command.

$* Expands to the prefix of the file to be made.

$? Expands to the list of files found to be newer than the
target on a given dependency line.

Table 7-1 make Macros (continued)

Macro Definition
186 Using OS-9

7Making Files
make Generated Command Lines

make is capable of generating three types of command lines: compiler
command lines, assembler command lines and linker command lines.

• Compiler command lines are generated if a source file with a suffix
of .c, .p or, .f needs to be recompiled. The compiler command
line generated by make has the following syntax:

$(CC) $(CFLAGS) -r=$(RDIR) $(SDIR)/<file>[.c, .f, or .p]

• Assembler command lines are generated when an assembly
language source file needs to be re-assembled. The assembler
command line generated by make has the following syntax:

$(RC) $(RFLAGS) $(SDIR)/<file>.a -o=$(RDIR)/<file>.r

• Linker command lines are generated if an object file needs to be
relinked in order to re-make the program module. The linker
command line generated by make has the following syntax:

$(LC) $(LFLAGS) $(RELS)/<file>.r -f=$(ODIR)/<file>

NoteNote
When make is generating a command line for the linker, it looks at its
list and uses the first relocatable file it finds, but only the first one. For
example:

prog: x.r y.r z.r
generates:

cc x.r, not cc x.r y.r z.r or cc prog.r
Using OS-9 187

7 Making Files
make Options

Several options allow make even greater versatility for maintaining
files/modules. You can include these options on the command line when
you run make, or in the makefile for convenience.

When a command is executed, it is echoed to standard output, unless
the -s, or silent, option is used or the command line starts with an “at”
sign (@). When the -n option is used, the command is echoed to
standard output but not actually executed. This is useful when building
your original makefile.

make normally stops if an error code is returned when a command line
is executed. Errors are ignored if the -i option is used or if a command
line begins with a hyphen.

Sometimes, it is helpful to see the file dependencies and the dates
associated with each of the file in the list. The -d option turns on the
make debugger and gives a complete listing of the macro definitions, a
listing of the files as it checks the dependency list and all the file
modification dates. If it cannot find a file to examine its date, it assumes
a date of -1/00/00 00:00, indicating the necessity to update the file.

If you want to update the date on a file, but do not want to remake it, you
can use the -t option. make merely opens the file for update and then
closes it, thus making the date current.

If you are quite explicit about your makefile dependencies and do not
want make to assume anything, you may use the -b option to turn off
the built-in rules governing implicit file dependencies.

Table 7-3 make Options

Options Description

-? Displays the usage of make.

-b Does not use built in rules.

-bo Does not use built in rules for object files.
188 Using OS-9

7Making Files
-d Prints the dates of the files in makefile (Debug
mode).

-dd Double debug mode. Very verbose.

-f- Reads the makefile from standard input.

-f=<path> Specifies <path> as the makefile. If <path> is
specified as a hyphen (-), make commands are
read from standard input.

-i Ignores errors.

-n Does not execute commands, but does display
them.

-s Silent Mode: executes commands without echo.

-t Updates the dates without executing commands.

-u Does the make regardless of the dates on files.

-x Uses the cross-compiler/assembler.

-z Reads a list of make targets from standard input.

-z=<path> Reads a list of make targets from <path>.

Table 7-3 make Options (continued)

Options Description
Using OS-9 189

7 Making Files
Example: Updating a Document

The rest of this chapter shows you different ways to maintain programs
with make. These examples are not meant to be totally inclusive of the
ways in which make can be used.

The following example shows how make maintains current
documentation composed of different sections:

utils.man: chap1 chap2 apdx
 del utils.man.old;rename utils.man utils.man.old
 merge chap1 chap2 apdx >utils.man
chap1: c1a c1b c1c c1d
 del chap1.old; rename chap1 chap1.old
 list c1a c1b c1c c1d ! lxfilter >chap1
chap2: c2a c2b c2c
 del chap2.old; rename chap2 chap2.old
 list c1a c1b c1c c1d ! lxfilter >chap1
apdx: functions header footer
 del apdx.old; rename apdx apdx.old
 qsort functions >/pipe/func
 list header /pipe/func footer ! lxfilter >apdx

The above makefile creates the file utils.man. utils.man is created
from three files: chap1, chap2, and apdx. Each of these files is in turn
created from the files listed in their dependency lists.

If chap1, chap2, and/or apdx have dependencies with a more recent
date, the command following their respective dependency entries are
executed. If chap1, chap2, and/or apdx are re-created, the commands
following the initial dependency entry are executed.
190 Using OS-9

7Making Files
Example: Compiling C Programs

In this example, make is used to compile high level language modules.
Each command and dependency is specified.

program: xxx.r yyy.r
 cc xxx.r yyy.r -xf=program
xxx.r: xxx.c /d0/defs/oskdefs.h
 cc xxx.c -r
yyy.r: yyy.c /d0/defs/oskdefs.h
 cc yyy.c -r

This makefile specifies program is made up of two .r files: xxx.r and
yyy.r. These files are dependent upon xxx.c and yyy.c
respectively and both are dependent on the oskdefs.h file.

If either xxx.c or /d0/defs/oskdefs.h has a date more recent than
xxx.r, the command cc xxx.c -r is executed. If yyy.c or
/d0/defs/oskdefs.h is newer than yyy.r, then cc yyy.c -r is
executed. If either of the former commands are executed, the command
cc xxx.r yyy.r -xf=program is also executed.

In this example, make specifies each command it must execute. Often
this is unnecessary, as make uses specific definitions, macros, and
built-in assumptions to facilitate program compilation and generate its
own commands.

Refining the C Compiler Example

Knowing how make works and understanding the implicit rules can
simplify coding immensely:

program: xxx.r yyy.r
 cc xxx.r yyy.r -xf=program
xxx.r yyy.r: /d0/defs/oskdefs

This makefile exploits the make utility awareness of file dependencies.
No mention is made of the C language files; therefore, make looks in
the directory specified by the macro definition SDIR = <path> and
adjusts the dependency list accordingly. In this case, make searches
the current directory by default. make also generates a command line to
compile xxx.r and yyy.r if either needs updating.
Using OS-9 191

7 Making Files
Further simplification is possible if program is made up of only one
source file:

program:

make assumes the following from this simple command:

• program has no suffix. It is an object file and therefore relies on
relocatable files to be made.

• No dependency list is given; therefore, make creates an entry in the
table for program.r.

• After creating an entry for program.r, make creates the entry for a
source file connected to the relocatable file.

Assuming it found program.a, make checks the dates on the various
files and generates one or both of the following commands if required:

appc program.a -o=program.r
cc program.r -f=program
192 Using OS-9

7Making Files
Example: A makefile Using Macros

Using these inherent features of make is especially helpful if you have
several object files you want make to check:

* beginning
ODIR = /d0/cmds
RDIR = rels
UTILS = attr copy load dir backup dsave
SDIR = ../utils/sources
utils.files: $(UTILS)
 touch utils.files
* end

make searches rels for the .r files (attr.r, copy.r, and so on). and
looks in ../utils/sources for the .c files named in the UTILS=
line. make then generates the proper commands to compile and/or link
any of the programs needing to be made. If one of the files in UTILS is
made, the command touch utils.files is forked to maintain a
current overall date.
Using OS-9 193

7 Making Files
Example: Putting It All Together

The following example is a makefile to create make:

* beginning
ODIR = /h0/cmds
RDIR = rels
CFILES = domake.c doname.c dodate.c domac.c
RFILES = domake.r doname.r dodate.r
PFLAGS = -p64 -nh1
R2 = ../test/domac.r
RFLAGS = -q
make: $(RFILES) $(R2) getfd.r
 linker
$(RFILES): defs.h
$(R2): defs.h
 cc $*.c -r=../test
print.file: $(CFILES)
 pr $? $(PFLAGS) >-/p1
 touch print.file
*end

The makefile in this example looks for the .r files listed in RFILES in
the directory specified by RDIR: rels. The only exception is
../test/domac.r, which has a complete pathlist specified.

Even though getfd.r does not have any explicit dependents, its
dependency on getfd.a is still checked. The source files are all found
in the current directory.

This makefile can also be used to make listings. By typing make
print.file on the command line, make expands the macro $? to
include all of the files updated since the last time print.file was
updated. If you keep a dummy file called print.file in your directory,
make only prints out the newly made files. If no print.file exists, all
files are printed.
194 Using OS-9

Chapter 8: Making Backups

This chapter explains the concept of incremental backups. The OS-9
utilities that create backups are detailed here. This chapter also offers
two different strategies for making backups.

This chapter includes the following:

• Incremental Backups

• Making an Incremental Backup: The fsave Utility

• Restoring Incremental Backups: The frestore Utility

• Incremental Backup Strategies

• The tape Utility
195

8 Making Backups
Incremental Backups

Whether it’s caused by system failure or accidental erasure, loss of
stored data is a major concern for programmers. Consequently,
backups of files, programs, and disks are a normal part of existence.
Backing up a hard disk is usually slow and tedious because the entire
system is backed-up.

Incremental backups save significant time and storage space compared
to full system backups. Incremental backups save only the files that
have changed since the last backup. A full system backup must still be
performed, but with the use of incremental backups they can be
performed less often.

OS-9 provides two utilities you may use with either tape or disk media to
facilitate the use of incremental backups:

• fsave

• frestore

Certain terms are important to know for the discussion of incremental
backups:

Level 0 backup A full system backup is referred to as a
level 0 backup. Consequent incremental
backups are referenced by different level
numbers. For example, a level 5 backup
includes all files changed since the most
recent backup with a level less than 5.
While this sounds complex, it is actually
quite easy to use and extremely helpful.

Source device The directory structure or file you are
backing up.

Target device The tape or disk that holds your backup
information.
196 Using OS-9

8Making Backups
Making an Incremental Backup: The fsave
Utility

The fsave utility performs an incremental backup of a directory
structure to tape(s) or disk(s). The syntax for the fsave utility is:

fsave [<opts>] [<path>]

Typing fsave by itself on the command line makes a level 0 backup of
the current directory onto a target device with the name /mt0.

NoteNote
/mt0 is the OS-9 device name for a tape device just as /h0 is the OS-9
device name for a hard disk.

/h0/sys/backup_date is a backup log file maintained by fsave.
Each time an fsave is executed, the backup log is updated. The
backup log keeps track of the name of the backup, the date it was
created and, more importantly, the level of the backup. When fsave is
executed, this backup log is examined to find the specified level of the
current backup and the previous backups with the same name. Once
the backup is finished, a new entry is made in the file indicating the
date, name, level, and other information about the current backup.
Using OS-9 197

8 Making Backups
fsave Options

During the discussion of the actual fsave procedure, references to
fsave options are made. The options are:

Table 8-1 fsave Options

Option Description

-? Displays the usage of fsave.

-b[=]<int> Allocates <int>k buffer size to read files from
the source disk.

-d[=]<dev> Specifies the target device to store the backup.
The default is /mt0.

-e Does not echo file pathlists as they are saved to
the target device.

-f[=]<path> Saves to the file specified by <path>.

-g[=]<int> Specifies a backup of files owned by group
number <int> only.

-l[=]<int> Specifies the level of the backup to be
performed.

-m[=]<path> Specifies the pathlist of the date backup log file
to be used. The default is
/h0/sys/backup_dates.

-p Turns off the mount volume prompt for the first
volume.
198 Using OS-9

8Making Backups
The fsave Procedure

When starting an fsave procedure, fsave prompts you to mount the
first volume to use. Volume in this case refers to the disk or tape used
to store the backup:

fsave: please mount volume.
(press return when mounted).

If a disk is used as the backup medium, fsave verifies the disk and
displays the following information:

verifying disk
Bytes held on this disk: 546816
Total data bytes left: 62431
Number of Disks needed: 1

The numbers above are used only as an example.

-s Displays the pathlists of all files needing to be
saved and the size of the entire backup without
actually executing the backup procedure.

-t[=]<dirpath
>

Specifies the alternate location for the temporary
index file.

-u[=]<int> Specifies a backup of files owned by user
number <int> only.

-v Does not verify the disk volume when mounted.

-x[=]<int> Pre-extends the temporary file. <int> is given in
kilobytes.

Table 8-1 fsave Options (continued)

Option Description
Using OS-9 199

8 Making Backups
The most common error found when executing fsave is a record lock
error. Record lock errors are caused when another user has the file in
question open. fsave operations should only be done when no one
else is using the system to prevent record lock errors.

If a tape is used as the backup medium, no preliminary information is
displayed and the backup begins at this point.

As each file is saved to the backup device, the file pathlist is echoed to
the terminal. If this is a long backup, you may want to use the -e option
to turn off the echoing of pathlists.

If fsave receives an error when trying to backup a file, it displays the
following message and continues the fsave operation:

error saving <file>, error - <error number>, its incomplete

If the backup requires more than one volume, fsave prompts you to
mount the next volume before continuing.

At the end of the backup, fsave prints the following information:

fsave: Saving the index structure
Logical backup name:
Date of backup:
Size of backup:
Size of temp/index:
Backup made by:
Data bytes written:
Number of files:
Number of volumes:
Index is on volume:

The index to the backup is saved on the last volume used.

fsave performs recursive backups for each pathlist if one or more
directories are specified on the command line. A maximum of 32
directories may be specified on the command line.

The -d option allows you to specify an alternate target device. The
default device is /mt0.

Use the -m option to specify an alternative backup log file. The default
pathlist is /h0/sys/backup_dates.
200 Using OS-9

8Making Backups
Different levels of backups may be specified with the -l option. A higher
level backup only saves files that have changed since the most recent
backup with the next lower number. For example, a level 1 backup saves
all files changed since the last level 0 backup.

When using disks for backup purposes, fsave does not use an RBF
file structure to save the file on the target disk. It creates its own file
structure. This makes the backup disk unusable for any purpose other
than fsave and frestore without reformatting the disk.

WARNING!
Any data stored on the disk before use by fsave is destroyed by the
backup.

Example fsave Commands

Typing fsave by itself on a command line specifies a level 0 backup of
the current directory. This assumes the device /mt0 is to be used and
/h0/SYS/backup_dates is used as the backup log file for this
backup.

The following command specifies a level 2 backup of the current
directory using the /mt1 device. /h0/misc/my_dates is used as the
backup log file:

$ fsave -l=2 -d=/mt1 -m=/h0/misc/my_dates

The following command specifies a level 0 backup of all files owned by
user 0.0 in the CMDS directory, if CMDS is in your current directory:

$ fsave -pb=32 -g=0 -u=0 -d=/d2 CMDS

This backup uses /d2 as the target device and
/h0/sys/backup_dates as the backup log file. The mount volume
prompt is not generated for the first volume. A 32k buffer is used to read
the files from the CMDS directory.
Using OS-9 201

8 Making Backups
Restoring Incremental Backups: The frestore
Utility

The frestore utility restores a directory structure from multiple
volumes of tape or disk media. The syntax for the frestore utility is:

frestore [<opts>] [<path>]

Typing frestore by itself on the command line attempts to restore a
directory structure from the device /mt0 to the current directory.

Specifying the pathlist of a directory on the command line causes the
file to be restored in that directory. The directory structure and an index
of the directory structure are created by fsave.

If more than one tape or disk is involved in the fsave backup, each
tape or disk is considered to be a different volume. The volume count
begins at one (1). When beginning a frestore operation, the last
volume of the backup must be used first because it contains the index of
the entire backup.

frestore first attempts to locate and read the index of the directory
structure of the source device. frestore then begins an interactive
session with the user to determine which file and directory in the backup
should be restored to the current directory.
202 Using OS-9

8Making Backups
frestore Options

During the discussion of the actual frestore procedure, references
are made to frestore options. The options are:

Table 8-2 frestore Options

Option Description

-? Displays the usage of frestore.

-b[=]<int> Specifies the buffer size used to restore the
files.

-c Checks the validity of files without using the
interactive shell.

-d[=]<path> Specifies the source device. The default is
/mt0.

-e Displays the pathlists of all files in the index, as
the index is read from the source device.

-f[=]<path> Restores from a file.

-i Displays the backup name, creation date,
group.user number of the owner of the backup,
volume number of the disk or tape and
whether the index is on the volume. This option
does not cause any files to be restored. The
information is displayed, and frestore is
terminated.

-p Suppresses the prompt for the first volume.

-q Overwrites an already existing file when used
with the -s option.
Using OS-9 203

8 Making Backups
The Interactive Restore Process

Once frestore has been called, the following prompt is displayed:

frestore: mount the last volume
(press return when ready)

When you are ready, frestore reads the index and creates the
directory structure of the backup. It then displays the prompt:

frestore>

This prompt indicates you are in the interactive shell. If the index is not
on the mounted volume, frestore displays an error message and
again prompts you to mount the last volume.

Once in the interactive shell, the frestore command and options are
displayed when a return is typed at the prompt:

-s Forces frestore to restore all files from the
source device without an interactive shell.

-t[=]<dirpath> Specifies an alternate location for the
temporary index file.

-v Displays the same information as the -i
option, but does not check for the index. This
option does not cause any files to be restored.
The information is displayed and frestore is
terminated.

-x[=]<int> Pre-extends the temporary file. <int> is given
in kilobytes.

Table 8-2 frestore Options (continued)

Option Description
204 Using OS-9

8Making Backups
frestore> commands:
 add [<path>] [-g=<#> -u=<#> -r -a] -- marks file for restoration
 del [<path>] [-g=<#> -u=<#> -r -a] -- unmarks files for restoration
 dir [<dir names>] [-e] -- displays a directory or directory
 chd <path> -- changes directories within the restore file structure
 pwd -- gives the pathlist to current dir in the restore file structure
 cht <path> -- changes directories on target system
 rest [<path>] [-f -q] -- restores marked files in and below the current dir
 check [-f] -- checks validity if marked files in and below the current dir
 dump [<file>] -- dumps the contents of a file to stdout
 list [<file>] -- list the contents of an ASCII file to stdout
 $ -- forks a shell
 quit -- quit frestore program
options:
 -g=<group#> -- only mark files with ’group#’
 -u=<user#> -- only mark files with ’user#’
 -r -- mark directories recursively
 -e -- display directory with extended format
 -f -- force restoration of already restored files
 -q -- overwrite already existing files without question
 -a -- force marking or unmarking of an already restored file or dir
 * -- matches any string of characters on ’add’ or ’del’ only
 ? -- matches any single character on ’add’ or ’del’ only
frestore>

The index from the source device sets up a restore file structure
paralleling the usual OS-9 file and directory structure.

The dir and chd shell command can display the restore file structure.
For example:

frestore>dir
 Directory of .

DIR1 file1 file2 file3

All files to be backed up onto the source device appear in the restore file
structure regardless of what volume they appear in. Information
concerning the file structure is available using the -e option with the
dir command:

frestore>dir -e
Directory of .
 Owner Last modified Attributes Volume Block Offset Size Name
------ -------------- ----------- ------ ----- ------ ----- ------

 1.23 89/08/22 16/14 ----r-wr 1 0 0 CF12 file1
 1.23 89/08/25 11/00 ----r-wr 1 2 0 A356 file2
 1.23 89/08/21 11/12 ----r-wr 1 4 0 45F0 file3
 1.23 89/08/24 10/57 d-ewrewr 0 5 0 120 DIR1
Using OS-9 205

8 Making Backups
In the interactive shell, you can mark the files you want restored with the
add command. Groups of files can be marked using the -g, -u and -r
options of the add command. The -g option marks files by group
number. To mark files by user number, use the -u option. All directories
within a specified directory may be marked by using the -r option.

• Files may be marked one at a time by specifying relative or complete
pathlists within the restore file structure.

• An entire directory may be marked by specifying the pathlist of the
directory.

Marking files does not restore them. It merely marks them as “to be
restored”. You can see this when you use the dir command. Each file
added to the “to be restored” list is marked by a plus sign (+) by its
filename.

For example, the following directory has file1 and file2 marked for
restoration, but file3 is not marked. The directory DIR1 and DIR2
also have marked files:

frestore>add file1 file2 dir1/file5 dir1/file6 dir2/file7
frestore>dir

 Directory of .
+DIR1 +DIR2 +file1 +file2
file3
frestore>dir dir1

 Directory of DIR1
file4 +file5 +file6
frestore>dir dir2

 Directory of DIR2
+file7 file8

The del command can unmark files. Entire directories may be
unmarked by specifying the directory name on the command line. If the
-r option is also used, all files and directories included in the specified
directory are unmarked. For example:

frestore>del -r dir2
frestore>dir

 Directory of . 10:42:32
+DIR1 DIR2 +file1+file2
file3
frestore>dir dir2

 Directory of DIR2
file7 file8
206 Using OS-9

8Making Backups
Once files are marked, use the rest command to restore the current
directory of the target device.

Files existing on the target system with the same name are overwritten
without prompting if del -q is used. Otherwise, frestore displays
the following prompt:

frestore: file1 already exists
 write over it or skip it (w/s)

NoteNote
An asterisk (*) preceding the name of a file in a dir listing indicates an
error occurred while backing up this file. This file is incomplete and
should not be restored.

The cht command allows you to change directories on the target
device. This allows you to selectively restore files to specific directories.

After restoring files, you may continue marking and unmarking files.
Files previously restored have a hyphen (-) displayed next to their
names in the restore file structure:

frestore>dir
 Directory of . 10:42:32

-DIR1 DIR2 -file1 -file2
file3
frestore>dir dir1

 Directory of DIR1
file4 -file5 -file6

There are two methods of restoring files more than once. The first
method uses the -a option with the add command. This forces the
file(s) previously marked as restored to be marked as “to be restored”.
The second method requires the -f option to be used with the rest
command. This forces any file previously marked as restored to be
restored in the current directory.

The -s option forces frestore to restore all files and directories of the
backup from the source device without the interactive shell.
Using OS-9 207

8 Making Backups
Using the -d option allows you to specify a source device other than
/mt0. For example, to restore all files/directories found on the source
device /mt1 to the directory BACKUP without using the interactive shell,
type:

$ frestore -d=/mt1 -s BACKUP

The -v option causes frestore to identify the name and volume
number of the backup mounted on the source device. The date the
backup was made and the group.user number of the person who made
the backup are also displayed. This option does not restore any files.
For example:

$ frestore -v
Backup: DOCUMENTATION
Made: 9/16/89 10:10
By: 0.0
Volume: 0

The -i option displays the above information and also indicates
whether the index is on the volume. Both the -v and -i options
terminate frestore after displaying the appropriate information.
These options are useful when trying to locate the last volume of the
backup if any mix-up has occurred.

The -e option echoes each file pathlist as the index is read off the
source device.

Example Command Lines

To restore files and directories from the source device /mt0 to the
current directory by way of an interactive shell, type:

$ frestore

The following example restores files/directories from the source device
/d0 to the current directory using a 32-K buffer to write the restored
files. As each file is read from the index, the file’s pathlist is echoed to
the terminal.

$ frestore -eb=32 -d=/d0
208 Using OS-9

8Making Backups
Incremental Backup Strategies

Many different strategies are available for those concerned with
regularly scheduled backups. Most strategies are well documented in
computer books and magazines. The following two strategies are
offered as examples.

The Small Daily Backup Strategy

This strategy requires making a level 0 backup once every four weeks.
Level 1, level 2, level 3, and level 4 backups are made on the weeks
following the level 0 backup. Between each major backup, four daily
backups are made: level 5, 6, 7, and 8. A recommended daily schedule
is graphically presented in Figure 8-1 Day of Backup.

This strategy is ideal for small microcomputer systems backed up by
floppy disks. Mounting disks is much easier and faster than tapes. Each
daily backup can usually be kept on one disk to make storage simple.
This strategy is perfect for small timely backups with little redundancy in
the backups.

One major disadvantage of this scheme is the restore time necessary in
case of a major system failure such as a hard disk being formatted,
erased or corrupted. Because of the lack of redundancy, more
frestore operations are necessary to re-create the systems file
structure. On large systems with tape backups, this is a major
consideration.
Using OS-9 209

8 Making Backups
Figure 8-1 Day of Backup

The Single Tape Backup Strategy

While most strategies rely on scheduled backup level changes, the
single tape backup strategy depends on the size of the backup. The
idea behind this strategy is to increase the level of the backup only
when the backup cannot fit on a single tape. The only scheduled level
backup is the level 0 backup. The level 0 backup occurs only when a
higher level backup would not fit on a single tape or once a month,
whichever occurs first. An example month’s schedule is graphically
presented in Figure 8-2.

8

7

6

5

4

3

2

1

0

S M T W T F M T W T F M T W T F M T W T F S

Level
210 Using OS-9

8Making Backups
Figure 8-2 Single Tape Backup Strategy

This strategy is suitable for tape backups of larger systems. Tapes are
used efficiently because the question of how many tapes are needed
never arises. This strategy also cuts down on person hours, tape
mounting, and storage space used for tapes. It allows for enough
redundancy to make restoring a full system relatively simple.

Disadvantages, however, do exist. Each time a backup is done, the size
of the backup must be determined by using fsave -s. This takes an
increasing amount of time, as the tape is filled.

3

2

1

0

S M T W T F M T W T F M T W T F M T W T F S

Level
Using OS-9 211

8 Making Backups
Use of Tapes or Disks

Whatever strategy is used, you must make a decision concerning the
number of tapes or disks to use. This decision must weigh the emphasis
placed on redundancy, resources, person-hours, and storage. It must
be offset with the possibility of tape or disk failure and system
restoration.

In the first example strategy, the daily backups must be made on
different volumes to overcome the lack of redundancy. The four daily
volumes can be used week after week as daily backup volumes
because of the lower level backups at the beginning of each week.

In the second example, theoretically, the same tape could be used for
each day until a new level backup is reached. This ensures no
redundancy and minimal storage. It is also the most risky in case of
tape failure. Using a number of alternating tapes for each level down on
storage allows a safety net in the case of tape failure. Using alternating
level 0 tapes is another possibility.
212 Using OS-9

8Making Backups
The tape Utility

OS-9 provides a tape controller utility to facilitate setting up, reading and
rewinding tapes from the terminal. When using tape media to backup or
restore your system, the tape utility is very practical. The syntax of the
tape utility is:

tape {<opts>} [<dev>]

If the tape device <dev> is not specified on the command line and the
-z option is not used, tape uses the default device /mt0.

tape has the following available options:

Table 8-3 tape Options

Options Description

-? Displays the use of tape.

-b[=<num>] Skips a specified number of blocks. Default is 1
block. If <num> is negative, the tape skips backward.

-e=<num> Erases a specified number of blocks of tape.

-f[=<num>] Skips a specified number of tapemarks. Default is 1
tapemark. If <num> is negative, the tape skips
backward.

-o Puts tape off-line.

-r Rewinds the tape.

-s Determines the block size of the device.

-t Retensions the tape.
Using OS-9 213

8 Making Backups
If more than one option is specified, tape executes each option
function in a specific order. Therefore, it is possible to skip ahead a
specified number of blocks, erase and then rewind the tape all with the
same command. The order of option execution is as follows:

1. Get device name(s) from the -z option.

2. Skip the number of tapemarks specified by the -f option.

3. Skip the number of blocks specified by the -b option.

4. Write a specified number of tapemarks.

5. Erase a specified number of blocks of tape.

-w[=<num>] Writes a specified number of tapemarks. Default is 1
tapemark.

-z Reads a list of device names from standard input.
The default is /mt0.

-z=<file> Reads a list of device names from <file>.

Table 8-3 tape Options (continued)

Options Description
214 Using OS-9

Chapter 9: OS-9 System Management

System managers have a range of options to consider. OS-9 allows
system managers to tailor their system to the needs of users.

This chapter discusses several topics with which system managers
should become familiar:

• Setting Up the System Defaults: the Init Module

• Extension Modules

• Changing System Modules

• Making Bootfiles

• Using the RAM Disk

• Making a Startup File

• System Shutdown Procedure

• Managing Processes in a Real-time Environment

• Using the tmode and xmode Utilities

• The termcap File Format
215

9 OS-9 System Management
Setting Up the System Defaults: the Init
Module

The Init module is sometimes referred to as the configuration module.
It is a non-executable module located in memory in the sysboot file or
in ROM. The Init module contains system parameters used to
configure OS-9 during startup. The parameters set up the initial table
sizes and system device names. For example, the amount of memory to
allocate for internal tables, the name of the first program to run (usually
either sysgo or shell), an initial directory, etc. are specified. You can
examine the system limits defined in the Init module at any time.

NoteNote
The Init module must be present in the system in order for OS-9 to
work.

The values in the Init module table are the system defaults. You can
change these defaults by remaking the Init module. This is discussed
later in this chapter.

The following is a list of the system defaults listed in the Init module.
The fields in the Init module are defined by the structure init_data
which is defined in init.h. The initialization macros are discussed
later in this chapter.

Throughout this chapter, the system directory referred to are the
defaults found in the Init module, unless otherwise specified.
216 Using OS-9

9OS-9 System Management
Table 9-1 Init Module System Defaults

Name
Initialization
Macros Description

m_cachelist CACHELIST This is the offset to the cache
region list declared in the
systype.des file in the port
directory for the system.

m_compat COMPAT This byte is used for revision
compatibility. The following bits
are currently defined:

• Bit 0: set to ignore sticky bit
in module headers

• Bit 1: set to patternize
memory when
allocated and
returned

• Bit 2: set to inform the
kernel not to
automatically set the
clock during coldstart

m_consol CONS_NAME This is the offset to the initial I/O
pathlist string, usually /term.
This pathlist is opened as the
standard I/O path for the initial
process. It is generally used to set
up the initial I/O paths to and from
a terminal. This offset should
contain zero if no console device
is in use.
Using OS-9 217

9 OS-9 System Management
m_cpucompat CPUCOMPAT This field is reserved for
system-specific flags.

m_cputyp MPUCHIP CPU type: 403, 603, 80386, etc.

m_dsptbl DSPTBLSZ This field contains the number of
entries in the system call dispatch
table. There must be at least 256
entries in this table, and each
entry requires eight bytes.

m_events EVENTS This is the initial number of
entries allowed in the events
table. If this table becomes full, it
expands automatically. Refer to
the OS-9 Technical Manual for
specific information on events.

Table 9-1 Init Module System Defaults (continued)

Name
Initialization
Macros Description
218 Using OS-9

9OS-9 System Management
m_extens EXTENSIONS This is the offset to the name
string of a list of customization
modules, if any. A customization
module is intended to
complement or change existing
standard system calls used by
OS-9. These modules are
searched for at startup and are
usually found in the bootfile. If
found, they are executed in
system state.

Module names in the name string
are separated by spaces. The
default name string to be
searched for is OS9P2. If there
are no customization modules,
this value should be set zero.

NOTE: Refer to the following
section for more information on
extension modules.

m_instal INSTALNAME This is the offset to the installation
name string.

m_ioman IOMAN_NAME This is the offset to the name
string of the module handling I/O
system calls. This string is
normally set to ioman.

Table 9-1 Init Module System Defaults (continued)

Name
Initialization
Macros Description
Using OS-9 219

9 OS-9 System Management
m_maxage MAXPTY This is the initial system
maximum natural age. m_maxage
is discussed later in this chapter
and in the OS-9 Technical
Manual.

m_memlist MEMLIST This is the offset to the memory
list declared in systype.des
and defined in alloc.h. For a
complete discussion on colored
memory, see the OS-9 Technical
Manual.

m_maxmem MAXMEM This field contains the top limit of
free RAM.

m_maxsigs MAXSIGS This field specifies the default
maximum number of signals
queued up for a process.

m_minpty MINPTY This is the initial system minimum
executable priority. m_minpty is
discussed later in this chapter
and in the OS-9 Technical
Manual.

m_os9lvl OS_LEVEL OS-9 Level/Version/Revision/
Edition OS_VERSION
OS_REVISION OS_EDITION.
This four byte field is divided into
three parts: level: 1 byte version:
2 bytes edition: 1 byte For
example, level 2, version 2.0,
edition 0 is 2200.

Table 9-1 Init Module System Defaults (continued)

Name
Initialization
Macros Description
220 Using OS-9

9OS-9 System Management
m_os9rev OS_REVISION This is the offset to the OS-9 level
revision string.

m_paths PATHS This is the initial number of open
paths in the system. If this table
becomes full, it is expanded
automatically.

m_preio PREIOS This is an offset to the name
string of a list of pre-I/O
customization modules, if any.
These extension modules are
initialized and called prior to the
initialization of the I/O system
during bootstrap. For more
information on customization
modules, refer to the description
of m_extens and the following
section.

m_procs PROCS This is the number of entries in
the process descriptor table. If
this table becomes full, it is
expanded automatically.

m_rtclock RTC_NAME This is the offset to the real-time
clock module name string. The
kernel attempts to call this
module when the time is set, i.e.
when _os_setime is called.

Table 9-1 Init Module System Defaults (continued)

Name
Initialization
Macros Description
Using OS-9 221

9 OS-9 System Management
m_site SITE This field contains the installation
site code. This user-definable
field may be used to identify the
site of the system.

m_slice SLICE This is the number of clock ticks
per time-slice. This value is
usually set to 1.

m_sparam SYS_PARAMS This is the offset to the parameter
string (if any) to be passed to the
first executable module.

m_sysdrive SYS_DEVICE This is the offset to the initial
default directory name string,
usually /d0 or /h0. The system
initially does a chd and chx to
this device prior to forking the
initial device. If the system does
not use disk, this offset must be
zero.

m_sysgo SYS_START This is the offset to the name
string of the first executable
module.

m_syspri SYS_PRIOR This is the system priority at
which the first module (usually
Sysgo or Shell) is executed.
This is generally the base priority
at which all processes start. This
value is commonly set to 128.

Table 9-1 Init Module System Defaults (continued)

Name
Initialization
Macros Description
222 Using OS-9

9OS-9 System Management
For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the Init module, see the OS-9 Technical
Manual.

m_ticker TICK_NAME This is the offset to the name
string of the module used to
generate the system clock tick.
The kernel attempts to call this
module when the first
_os_setime system call is
made.

m_ticksec TICK_SEC This is the number of ticks a
second of time is divided into.
This value is usually set to 100.

m_tmzone SYS_TMZONE This is the system time zone in
minutes offset from Greenwich
Mean Time (GMT). This field
would be 360 for a system six
time zones west of GMT and -360
for a system six time zones east
of GMT.

m_usract USRACCT This is the offset to the name
string of the user accounting
module.

Table 9-1 Init Module System Defaults (continued)

Name
Initialization
Macros Description
Using OS-9 223

9 OS-9 System Management
 Extension Modules

Extension modules can be attached to OS-9 during the system
cold-start procedure to increase the functionality of OS-9. Extension
modules can be used for a variety of functions such as user accounting,
system security, and system caching.

In the Init module, the m_extens offset points to a list of module
names. By default, the name of the list is OS9P2. If the modules are
found during cold-start, they are called. If an error is returned, the
system stops. Three of these modules are listed below:

Cache The cache module enables the system
to control any hardware caches present.
This module can be customized to take
advantage of any cache hardware the
system may have.

SSM The system security module (SSM)
enables memory protection.

FPU The floating point unit (FPU) module
currently supplies five functions. These
functions include saving, loading, and
resetting the floating point processor
content; setting a null context for a
process; and testing for a null context.

Also, in the Init module, the m_preio offset points to a list of module
names that are initialized during bootstrap prior to the initialization of the
I/O system. This enables the installation of services that may be
required during the initialization of the I/O system.
224 Using OS-9

9OS-9 System Management
Changing System Modules

The provided system modules have been configured to satisfy the
needs of the majority of users. However, you may wish to alter the
existing modules or create new modules. New system modules and
alterations to existing system modules can be made by changing the
defaults in the systype.h file. The system modules most commonly
altered are the device descriptors and the Init module.

The systype.h file is located in the PORTS directory. It contains
macros such as TERM, DiskH0, and others for each device descriptor
and the Init module. These macros contain basic memory map
information, exception vector methods (for example, vectors in RAM or
ROM), I/O device controller memory addresses and initialization data,
and other information for each device descriptor and the Init module.

The systype.h file consists of five main sections used when installing
OS-9:

• Init module CONFIG macro

• SCF Device Descriptor macros and definitions

• RBF Device Descriptor macros and definitions

• ROM configuration values

• Target system specific definitions

The macros related to the Init module are surrounded in systype.h
with #if defined(INITMOD). The definitions provided here override
the default values when the Init module is made. This allows
port-specific system tuning without modifying the generic file that all
ports use to define the system configuration.

The macros device descriptors are surrounded in systype.h with #if
defined (<desc>) where <desc> is the name of the descriptor
being created. For example, you'll find a pre-processor directive like
#if defined(TERM). The macros following this line, up to the
corresponding #endif, relate to the TERM macro for your machine. The
fields affected by these macros are discussed more fully in the OS-9
Technical Manual.
Using OS-9 225

9 OS-9 System Management
The ROM configuration values appear in systype.h surrounded by
#if defined(CNFGDATA). These definitions control how your ROM
modules behave for your particular port. These definitions and their
effects are discussed more fully in the BSP Reference or OS-9 Porting
Guide provided with your package.

System specific definitions, such as control register and vectors, should
be placed in systype.h. This allows the system-specific definitions to
be maintained in a single, system-specific file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the make utility, refer to the chapter on making
files and the make utility description in the Utilities Reference manual.

To change your system configuration, change the definitions appearing
in your port systype.h file with any text editor. Since all relevant
system components include systype.h, the change takes place the
next time they are regenerated.

Use the make utility to regenerate the appropriate system components.
Running the makefile in your PORTS directory regenerates all the port
specific modules for your system. Since your changes likely only affect
a small subset of these modules, you should find the makefile that is
relevant to the changes you have made. For example, to change the
baud rate of the /t1 device, find the makefile for that descriptor
(SCF/SC16550/DESC) and execute it. This regenerates the /t1 device
descriptor.
226 Using OS-9

9OS-9 System Management
Making Bootfiles

A bootfile contains a list of modules to be loaded into memory during
the system’s bootstrap sequence. The provided bootfiles have been
configured to satisfy the majority of users, but you may want to add or
remove modules from an existing bootfile.

Bootlist Files

Bootfiles are usually created using a bootlist file and the -z option
of bootgen utility. The bootlist file contain a list of files, one file per
line, to use in creating the bootfile. Using a bootlist file is a
convenient way to maintain bootfile contents, as the bootlist file can
easily be edited.

The bootlist files are usually located in the ports directory (for
example, /h0/MWOS/OS9000/603/PORTS/MVME1603) along with the
individual files used for constructing the bootfile.

Bootfile Requirements

The contents and module order of a bootfile are usually determined by
the end-user’s system configuration and requirements. However, the
following points should be noted when you construct a bootfile:

• The kernel must be present in the system, either in ROM or in the
bootfile. If the kernel is in the bootfile, it must be the first module.

• The Init module must be present in the system, either in ROM or
in the bootfile.

All other modules are dependent upon the system configuration.
Using OS-9 227

9 OS-9 System Management
Making RBF Bootfile

To make a bootfile for an RBF device (hard disk or floppy disk), you
need to edit the bootlist file to match your requirements and then run
the bootgen utility:

chd /h0/MWOS/OS9000/<CPU-family>/PORTS/
<processor>/BOOTLIST
<edit bootlist file>
bootgen <device> -z=<bootlist>

For example:

chd /h0/MWOS/OS9000/80386/PORTS/PCAT/BOOTLIST

The <device> specified is the disk on which you want to install the
bootfile. If this device is a hard disk, specify the format-enabled device
name (for example, h0fmt).

For example, to make a floppy-disk bootfile, type:

bootgen /d0 -z=d0_765.bl

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

Refer to the BSP Reference or OS-9 Porting Guide for more
information.

To make a hard disk bootfile, type:

bootgen /h0fmt -z=h0_ide.bl
228 Using OS-9

9OS-9 System Management
Using the RAM Disk

OS-9 provides support for RAM disks. These disks reside solely in
Random Access Memory (RAM). The information stored on a RAM disk
can be accessed significantly faster than the same information stored
on a hard or floppy disk. Any file may be stored and accessed on a RAM
disk. To use a RAM disk, you must have a device descriptor, a RAM disk
driver and the RBF file manager.

In many system configurations, a RAM disk is used as the default
system device. When the RAM disk is used as the default system
device, it is known as device dd, instead of r0. The name of the device
descriptor is .r0.dd. Using this descriptor allows compilers to use the
RAM disk as a fast access device for temporary file. The RAM disk is
usually initialized at startup with definition and library files, if it is to be
used as the default system device.

RAM disks are either volatile or non-volatile. A volatile RAM disk
disappears when the system is reset or the power is shut off. A
non-volatile RAM disk resides in a place such as battery backed up
RAM and does not disappear when the system is reset or powered
down.

Volatile RAM disks

Volatile RAM disks may be allocated memory either from free system
memory or from outside free system memory. Volatile RAM disks not
allocated from the free system memory must not be part of the system
memory list, and they must have a port address greater than or equal to
1024. This port address indicates the actual start address of the RAM
disk.
Using OS-9 229

9 OS-9 System Management
Non-Volatile RAM disks

A non-volatile RAM disk must be located in an area of memory the
system will not try to allocate. If it is located in an area known to the
system, the RAM disk may be cleared because the memory is assumed
to be un-allocated and may later be used by the system. In addition, the
format protect bit must be set for non-volatile RAM disks and the port
address must be greater than or equal to 1024.
230 Using OS-9

9OS-9 System Management
Making a Startup File

Using bootfiles is not the only way of loading modules and device into
memory at the time of startup. A startup procedure is executed each
time OS-9 is booted and the standard sysgo is used. On disk-based
systems, the startup procedure executes a startup file. The startup
file is located in the sys directory in the root directory of the system
disk.

The startup file is an OS-9 procedure file. It contains OS-9
commands to be executed immediately after booting the system.

While some modules and devices, such as the kernel, should be loaded
from the sysboot file, having the startup file load most modules can
be advantageous. For example, it is easier to upgrade a system by
modifying the startup file. To change this file, you simply use a text
editor and make the changes. To change the sysboot file, you must
also use the bootgen utility.

A procedure file is made up of executable commands. Each command
is executed exactly as if it were entered from the shell command line.
Each line starting with an asterisk (*) is a comment and is not executed.

From the root directory, the startup file can be examined by entering:

$ list sys/startup

A listing similar to the following is displayed:

-t -np
*
* OS-9000
* Copyright 1996 by Microware Systems Corporation
*
* The command in this file are highly system dependent and should
* be modified by the user.
*
* setime; * start system clock
link shell csl ; * make "shell" and "csl" stay in memory
* iniz r0 h0 d0 t1 p1 ; * initialize device
* load -z=sys/loadfile ; * make some utilities stay in memory
* load bootobjs/r0.dd ; * get default device descriptor
* tsmon /t1 & ; * start other terminals
list sys/motd
Using OS-9 231

9 OS-9 System Management
The first executable line, -t -np, turns on the talk mode option of the
shell and turns off the prompt option for the duration of this procedure.
The talk mode option echoes each executed command to the terminal
display. This allows you to see what command are being executed.

NoteNote
For systems with battery-backed up clocks, run setime with the -s
option to start time-slicing. The date and time are read from the clock.

The other executable lines in the distributed startup file are followed
by a comment explaining the purpose of the command. Some standard
commands are provided as comments. If you want the command
executed during the startup procedure, use a text editor to remove the
asterisk preceding the command.

For example, to execute the setime command when the startup file
is executed, remove the asterisk preceding the command.

Initializing Devices: iniz r0 h0 d0 t1 p1

The iniz r0 h0 d0 t1 p1 commented command initializes the
following specific devices:

Table 9-2 iniz Initialiized Devices

Device Description

r0 RAM disk

h0 Hard disk

d0 Floppy disk
232 Using OS-9

9OS-9 System Management
When OS-9 opens a path to a device, it first checks to see if the device
is known to OS-9. To be known, a device must be initialized and
memory must be allocated for its device driver. If the device is unknown
at the time of the request, OS-9 initializes the device, allocates memory
and opens the path. For example, a simple dir /d0 command
initiates this sequence of events if d0 has not been previously initialized.

The iniz utility initializes devices. iniz performs an I_ATTACH
system call on each device name passed to it. This initializes and links
the device to the system.

To initialize a device after the system has been started, type iniz and
the name(s) of the device(s) to attach to the system. iniz goes through
the procedure of initializing the device(s) and allocating the memory
needed for the device. If the device is already attached, it is not
re-initialized, but the link count is incremented.

For example, to increment the link count of modules, t2 and t3, type:

$ iniz t2 t3

The device names can be read from standard input with the -z option
or from a file with the -z=<file> option. To increment the link counts
of devices listed in a file called /h0/add.file, type:

iniz -z=/h0/add.files

You can use the deiniz utility to deinitialize a device. deiniz checks
the link count before removing the device from storage. If the link count
is greater than one, deiniz lowers the link count. If the link count is
one, deiniz lowers the link count to zero, and removes the device from
the system device table. The device then becomes unknown to OS-9.

t1 Terminal

p1 Serial Printer

Table 9-2 iniz Initialiized Devices (continued)

Device Description
Using OS-9 233

9 OS-9 System Management
NoteNote
Non-sharable devices must be placed in a bootfile to become known to
the system. If a non-sharable device is initialized, it is unusable
because the link count has been incremented, which makes it appear to
be in use.

To use the deiniz utility, type deiniz followed by the name(s) of the
devices(s) to remove from the system.

For example, to decrement the link count of module p2, type:

$ deiniz p2

deiniz can read the device names from standard input with the -z
option or from a file with the -z=<file> option. To remove the file
listed in a file called /h0/not.needed, type:

$ deiniz -z=/h0/not.needed

NoteNote
This initialize/de-initialize sequence can result in slower execution of
programs and may cause memory fragmentation problems. To avoid
these symptoms, Microware recommends all devices connected to the
system at startup be initialized in the startup file.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the iniz and deiniz utilities, refer to the
Utilities Reference manual.
234 Using OS-9

9OS-9 System Management
Initializing the connected device at startup initializes the device and
allocates memory for its driver for the duration of the time the system is
running, unless specifically de-initialized. For example, a system with
two floppy drives and one hard disk drive can initialize these devices in
the startup file:

iniz h0 d0 d1 t1 p1 p

Loading Utilities Into Memory: load -z=sys/loadfile

The next line of the startup file loads a number of utilities into
memory. If a utility is not already in memory, it must be loaded into
memory before it is used. Pre-loading basic utilities at startup time
avoids the necessity of loading the utility each time it is executed.

To load utilities into memory at startup, you must create a file containing
the names of each utility to load, one utility per line. While the file may
have any name, Microware recommends loadfile. You can locate
this file in any directory as long as its location is specified on the
command line. If loadfile is located in the SYS directory, the startup
file command line is:

load -z=sys/loadfile

Previous versions of the operating system had the following commented
line in the startup file:

load utils

This method involved creating a utils file by merging the desired
utilities into a single file in the command directory. While you may still
use this method, using loadfile is preferable because it uses less
disk space and is easier to edit.
Using OS-9 235

9 OS-9 System Management
Loading the Default Device Descriptor: load
bootobjs/r0.dd

Many OS-9 compilers and application programs look for definition files
and libraries in directories located on the default system device. The
default system device is known as dd. dd may be defined as any disk
device, but it is usually synonymous for one of the following devices:

If a default device is to be used (dd) and the device descriptor is not in
the bootfile, then the device descriptor must be loaded. The next line in
the startup file loads the device descriptor. The default device used is
the RAM disk named r0. If you want another device to be the default
device descriptor, change the .r0 extension to reflect the appropriate
device. If you have a dd device in your bootfile or if no default device is
to be used, leave this line as a comment.

Multi-user Systems: tsmon /t1 &

The tsmon utility is used to make your system a multi-user system. This
utility supervises idle terminals and initiates the login procedure for
multi-user systems. The startup file command line, tsmon /t1&,
initiates the time-sharing monitor on the serial port /t1.

Table 9-3 Disk Devices

Device Description

r0 RAM disk

h0 Hard disk

d0 Floppy disk
236 Using OS-9

9OS-9 System Management
tsmon can monitor up to 28 device name pathlists. Therefore, if you
have multiple devices for tsmon to monitor, you can name up to 28
devices on each tsmon command line. Use the ex built-in shell
command to execute tsmon without creating another shell. This
conserves system memory. For example:

ex tsmon /term /t1 /t2 /t3 /t4 /t5&

When a carriage return is entered on any of the specified paths, tsmon
automatically forks login and standard I/O paths are opened to the
device.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

For more information on the tsmon utility, refer to the Utilities
Reference manual.

The login procedure uses the password file located in the SYS
directory for individual login validation. The provided password file
has two example login entries. Each of the fields in an entry in the
password file is explained in the chapter on the shell and in the login
utility description in the Utilities Reference manual. If login fails
because you could not supply a valid user name or password, control
returns to tsmon.
Using OS-9 237

9 OS-9 System Management
System Shutdown Procedure

There are times when, for one reason or another, you want to shut your
system down. When you reset or power down your system, you may
need to do more than just press the reset button. Certain programs
need to be shut down gracefully. For example, most network
communications, print spoolers, and inter-system processes need
special attention. These processes may have options or other
arrangements needing consideration before shutting down your system.

In addition to taking care of processes requiring special attention, you
should prepare the system users for the shutdown. If at all possible,
users should be allowed enough time to save their file and close their
workstation. One way of alerting users that the system is going down is
by echoing a message using the echo and tee utilities. However, you
should realize messages sent over the system in this manner are not
seen by users who do not press a carriage return after the message
has been sent. For example, if a programmer is sitting at a shell prompt,
the message does not appear on the terminal screen until a carriage
return is entered.

In this case, verbal warnings are important. This means in addition to
sending a warning message out over the system, you may want to use
either an intercom system or the telephone to talk to each person
connected to the system.

You can simplify the process of actually shutting down your system by
creating a procedure file. Once created, you can run the procedure from
the shell command line prompt or a separate password entry may be
created for the sole purpose of shutting down the system.

For example, if you have a procedure file called shutdown.sys, you
could create the following password file entry:

sys,shutdown,0.0,128,.,sys,shell shutdown.sys

Once you login as user sys with password shutdown, the shutdown
procedure begins because the system immediately has the shell
execute the shutdown.sys file.

The following is an example of a useful procedure file for shutting down
the system:
238 Using OS-9

9OS-9 System Management
-t -nx -np
*
* System Shutdown Procedure
*
echo WARNING The system will shut down in 3 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 60
echo WARNING The system will shut down in 2 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 115
echo WARNING 5 seconds to system shut down ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 5
spl -$; * terminate spooler
sleep -s 3; * wait 3 seconds
break; * call ROM debugger

The first six commands after the comment identifying the procedure
function broadcast three warnings to the terminals on the system. The
first warning tells the users the system is going down. The other two
warnings serve as reminders.

The remaining command lines shut down the system:

Table 9-4 Command Lines

Command line Description

spl -$ This command terminates the spooler. All
unfinished jobs are lost when the spooler is
terminated.

sleep -s 3 This command causes the system to wait three
seconds before executing the next command line.
This allows the previous command time to complete
execution.

break This command sends a break call to the low-level
debugger. When this debugger receives this call, it
takes control of the system.
Using OS-9 239

9 OS-9 System Management
Managing Processes in a Real-time
Environment

The ability to manage processes in a real-time environment is one of
the advantages of OS-9. OS-9 has three primary methods by which
system managers can manage processes in a real-time environment:

• Manipulating process priority.

• Using d_minpty and d_maxage to alter the system process
scheduling.

• Having system-state processes as well as user-state process.

Manipulating Process’ Priority

When processes are executed on the command line, their initial
priorities can be changed using the process priority modifiers discussed
in the chapter on the shell. This enables users with a crucial task to set
the priority on their process higher so it runs sooner and more often
than less crucial processes.

NoteNote
The initial priority is also a parameter for the fork and chain system
calls.
240 Using OS-9

9OS-9 System Management
Using d_minpty and d_maxage to Alter the System’s
Process Scheduling

The way OS-9 schedules processes can be affected by the d_minpty
and d_maxage system global variables. d_minpty and d_maxage are
available to super users through the _os_setsys system call. These
system variables can be used to effect the aging of processes.

NoteNote
The initial priority of a process is aged each time it is passed by for
execution while it is waiting for CPU time.

d_minpty defines a minimum priority below which processes are
neither aged nor considered candidates for execution. Processes with
priorities less than d_minpty remain in the active queue and continue
to hold any system resources they held before d_minpty was set.

NoteNote
d_minpty is usually set to zero. All processes are eligible for aging and
execution when this value is set to zero because all processes have an
initial priority greater than zero.

If you have a critical process needing to be run and several other users
have processes they want to run, use the process priority modifier to
increase the priority of the critical process. Then, set d_minpty to a
value less than the priority you assigned to the critical process but
greater than the priority of the other processes. The critical process now
continues using the CPU until another process with a priority greater
than d_minpty is entered into the active queue or the critical process
is finished.
Using OS-9 241

9 OS-9 System Management
For example, if d_minpty is set to 500 and you set the priority of your
process at 600, your process continues to use the CPU while processes
with priorities less than 500 are not able to run until d_minpty is reset.

WARNING!
 d_minpty is potentially dangerous. If the minimum system priority is
set above the priority of all running tasks, the system completely shuts
down and can only be recovered by a reset. It is crucial to restore
d_minpty to zero when the critical task finishes or to reset d_minpty
or a process’ priority in an interrupt service routine.

NoteNote
d_maxage defines a maximum age over which processes are not
allowed to mature. By default, this value is set to zero. When d_maxage
is set to zero, it has no effect on the processes waiting to use the CPU.

When set, d_maxage essentially divides tasks into two classes: low
priority and high priority. A low priority task is considered to be any task
with a priority below d_maxage. Low priority tasks continue aging until
they reach the d_maxage cutoff, but they are not executed unless there
are no high priority tasks waiting to use the CPU.

A high priority task is any task with a priority above d_maxage. A high
priority task receives the entire available CPU time, but it is not aged.
When the high priority task(s) are inactive, the low priority tasks run.

For example, if d_maxage is set to 2000 and three processes with initial
priorities of 128 are in the active queue, the processes run just as if
d_maxage had not been set. Then, if a process with an initial priority of
2500 is entered into the active queue, it receives CPU time when the
process currently in the CPU has finished. Once using the CPU, the
high priority process runs uninterrupted until a process with a higher
242 Using OS-9

9OS-9 System Management
priority is entered into the active queue or the process finishes. When
the process finishes executing, the low priority processes again are able
to use the CPU.

Any process performing a system call is not preempted until the call is
finished, unless the process voluntarily gives up its timeslice. This
exception is made because these processes may be executing critical
routines affecting shared system resources and could be blocking other
unrelated processes.

Using System-State Processes and User-State
Processes

The second method OS-9 uses to manage real-time priority processing
is the existence of system-state processes. System-state processes are
processes running in a supervisor or protected mode. System-state
processes basically have unlimited access to system memory and other
resources. When a process in system state wants to use the CPU, it
waits until it has the highest age.

User-state processes do not have access to all points in memory and
do not have access to all of the commands. When a process in
user-state gains time in the CPU, it runs only for the time specified by
the timeslice. When it has finished using its timeslice, it is entered back
into the active queue according to its initial priority.
Using OS-9 243

9 OS-9 System Management
Using the tmode and xmode Utilities

The tmode and xmode utilities are also available to help you customize
OS-9. Use the tmode utility to display or change the operating
parameters of the user’s terminal. The xmode utility is similar to the
tmode utility. Use the xmode utility to display or change the initialization
parameters of any SCF-type device such as a video display, printer, or
RS-232 port. Some common uses are to change the baud rates and
control key definitions.

Using the tmode Utility

To use the tmode utility, type tmode and any parameter(s) you need
changed. If no parameters are given, the present values for each
parameter are displayed. Otherwise, the parameter(s) given on the
command line are processed. You can pass any number of parameters
on a command line. Each parameter is separated by a space.

If a parameter is set to zero, OS-9 no longer uses the parameter until it
is re-set to a code OS-9 recognizes. For example, the following
command sets the <tab> and <bell> output characters to zero.

tmode tab=0x00 bell=0x00

Consequently, OS-9 does not output tabs or bells until the values are
re-set.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The tmode parameters are documented in the Utilities Reference
manual.

To re-set the values of a parameter to their default as given in this
manual, specify the parameter with no value.
244 Using OS-9

9OS-9 System Management
You can use the -w=<path#> option to specify the path number to be
affected. If a path number is not provided, standard input is affected.

If tmode is used in a shell procedure file, the option -w=<path#> must
be used to specify one of the standard paths (1 or 2) to change the
terminal’s operating characteristics. The change remains in effect until
the path is closed.

To effect a permanent change to a device characteristic, you must first
initialize the device, and then use the xmode utility to alter the device’s
initial operating parameters.

Using the xmode Utility

To use the xmode utility, type xmode and any parameter(s) to change. If
no parameters are given, the present values for each parameter are
displayed. Otherwise the parameter(s) given on the command line are
processed. You can give any number of parameters on a command line.
Each parameter is separated by spaces or commas. You must specify a
device name if the given parameter(s) are to be processed.

For More Information
More In
fo More
Informatio
n More Inf
ormation M
ore Inform
ation More

-6-

The xmode parameters are documented in the Utilities Reference
manual.

Like tmode, if a parameter is set to zero, the device no longer uses the
parameter until it is re-set to a recognizable code. To re-set the values
of parameters to their default, specify the parameter with no value. This
re-sets the parameter to the default value as given in this manual.

Using xmode, you can also define control keys affecting the input line.
For example, <control>B is, by default, defined as a backspace key
for the command line. You can use xmode to redefine <control>B to
perform another function or to redefine another key to backspace on the
input line.
Using OS-9 245

9 OS-9 System Management
The termcap File Format

The termcap file is a text file containing control code definitions for one
or more types of terminals. Each entry is a complete description list for
a particular kind of terminal.

The first section of a termcap entry is divided into three parts.

• A two character entry.

• The most common name.

• A long name.

Each part is a different way of naming the terminal. A bar (|) character
separates the parts of a termcap entry. The first part is a two character
entry. The second part is the most common name for the terminal. This
name must contain no blanks. The final part is a long name fully
describing the terminal. This name may contain blanks for readability.
For example:

kh|abm85h|kimtron abm85h:

You can check the values stored in TERM by using the printenv
command:

$ printenv
TERM=abm85h

You must set the TERM environment variable to the name used in the
second part of the name section. In the following example, TERM is set
to abm85h:

$ setenv TERM abm85h

The rest of the entry consists of a sequence of control code
specifications for each control function. Each item in the list is
separated by a colon (:) character. An entry may be continued onto the
next line by using a backslash (\) character as the last character of the
line. It must appear after the last colon of the previous item. The next
line must begin with a colon. For example:

ka|amb85|kimtron abm85:\
:ct=\E3: ...
246 Using OS-9

9OS-9 System Management
Each item begins with a terminal capability. Each capability is a two
character abbreviation. Each capability is either a boolean itself or it is
followed by a string or a number. If a boolean capability is present in the
termcap entry, then the capability exists on that terminal.

All numeric capabilities are followed by a pound sign (#) and a number.
For example, the number of columns capability for an 80 column
terminal could be described as follows:

co#80:

All string capabilities are followed by an equal sign (=) and a character
string. A time delay in milliseconds may be entered directly after the
equal sign (=) if padding is allowed in that capability. The padding
characters are supplied by tputs() after the remainder of the string is
transmitted to provide the time delay. The time delay may be either an
integer or a real. The time delay may be followed by an asterisk (*). The
asterisk specifies the padding is proportional to the number of lines
affected.

It is often useful to specify the time delay using the real format. For
example, the clear screen capability is specified as ^z with a time delay
of 3.5 milliseconds by the following entry:

cl=3.5*^z:

Escape sequences are indicated by a \E . A control character is
indicated by a circumflex (^) preceding the character. The following
special character constants are supported:

Table 9-5 Supported Special Character Constants

Escape
sequence Character Hexadecimal code

\b backspace ($08)

\f formfeed ($0C)

\n newline ($0A)

\r return ($0D)
Using OS-9 247

9 OS-9 System Management
Characters are specified as three octal digits after a backslash (\). For
example, if a colon must be used in a capability definition, it must be
specified by \072. If it is necessary to place a null character in a
capability definition use \200. C routines using termcap strip the high
bits of the output, therefore \200 is interpreted as \000.

termcap Capabilities

The following table contains a list of termcap capabilities recognized by
termcap. Not all of these capabilities need to be present for most
programs to use termcap. They are provided for completeness. (P)
indicates padding may optionally be specified. (P*) indicates the
optional padding may be based on the number of lines affected:

\t tab ($09)

 \\ backslash ($5C)

\^ circumflex ($5E)

Table 9-5 Supported Special Character Constants (continued)

Escape
sequence Character Hexadecimal code

Table 9-6 termcap Capabilities

Name Type Padding Description

ae string (P) End alternate character set

al string (P*) Add new blank line

am boolean End alternate character set

as string (P) Start alternate character set
248 Using OS-9

9OS-9 System Management
bc string Backspace if not ^H

bs boolean Terminal can backspace
with ^H

bt string (P) Back tab

bw boolean Backspace wraps from
column 0 to last column

CC string Command character in
prototype if terminal settable

cd string (P*) Clear to end of display

ce string (P) Clear to end of line

ch string (P) Horizontal cursor motion
only, line stays same

cl string (P*) Clear screen

cm string (P) Cursor motion

co numeric Number of columns in line

cr string (P*) Carriage return (default ^M)

cs string (P) Change scrolling region
(VT100), like cm

cv string (P) Vertical cursor motion only

Table 9-6 termcap Capabilities (continued)

Name Type Padding Description
Using OS-9 249

9 OS-9 System Management
da boolean Display may be retained
above

dB numeric Number of milliseconds of
backspace delay needed

db boolean Display may be retained
below

dC numeric Number of milliseconds of
carriage return delay
needed

dc string (P*) Delete character

dF numeric Number of milliseconds of
formfeed delay needed

dl string (P*) Delete line

dm string Delete mode (enter)

dN numeric Number of milliseconds of
newline delay needed

do string Down one line

dT numeric Number of milliseconds of
tab delay needed

ed string End of delete mode

Table 9-6 termcap Capabilities (continued)

Name Type Padding Description
250 Using OS-9

9OS-9 System Management
ei string End insert mode
NOTE: If ic is used, enter:
ec=:

eo string Can erase overstrikes with a
blank

ff string (P*) Hardcopy terminal page
eject (default ^L)

hc boolean Hardcopy terminal

hd string Half-line down (1/2 linefeed)

ho string Home cursor (if no cm)

hu string Half-line up

hz string Hazeltime: cannot print
tildas (~)

ic string (P) Insert character

if string Name of file containing
initialization string

im boolean Insert mode (enter).
NOTE: If ic is specified use
:im=:

in boolean Insert mode distinguishes
nulls on display

Table 9-6 termcap Capabilities (continued)

Name Type Padding Description
Using OS-9 251

9 OS-9 System Management
ip string (P*) Insert pad after character
inserted

is string Terminal initialization string

k0-k9 string Sent by other function keys
0-9

kb string Sent by backspace key

kd string Sent by down arrow key

ke string Take terminal out of keypad
transmit mode

kh string Sent by home key

kl string Sent by left arrow key

kn numeric Number of other keys

ko string termcap entries for other
non-function keys

kr string Sent by right arrow key

ks string Put terminal in keypad
transmit mode

ku string Sent by up arrow key

l0-l9 string Labels on other function
keys

Table 9-6 termcap Capabilities (continued)

Name Type Padding Description
252 Using OS-9

9OS-9 System Management
li numeric Number of lines on screen
or page

ll string Last line, first column (if no
cm entry)

ma string Arrow key map

mi boolean OK to move while in insert
mode

ml string Memory lock on above
cursor

ms boolean OK to move while in
standout and underline
mode

mu string Turn off memory lock

nc boolean Carriage return down not
work

nd string Non-destructive space

nl string (P*) Newline character

ns boolean Terminal is a non-scrolling
CRT

os boolean Terminal overstrikes

pc string Pad character (rather than
null)

Table 9-6 termcap Capabilities (continued)

Name Type Padding Description
Using OS-9 253

9 OS-9 System Management
pt boolean Has hardware tabs

se string End stand out mode

sf string (P) Scroll forwards

sg numeric Number of blank characters
left by se or so

so string (P) Begin stand out mode

sr string (P) Scroll reverse

ta string Tab (other than ^I or
without padding)

tc string Entry of terminal similar to
last termcap entry

te string String to end programs
using cm

ti string String to begin programs
using cm

uc string Underscore one character
and move past it

ue string End underscore mode

ug numeric Number of blank characters
left by us or ue

Table 9-6 termcap Capabilities (continued)

Name Type Padding Description
254 Using OS-9

9OS-9 System Management
Of the capabilities, the most complex and important capability is cm:
cursor addressing. The string specifying the cursor addressing is
formatted similar to the C function: printf(). It uses % notation to
identify addressing encodings of the current line or column position.

ul boolean Terminal underlines but
doesn’t overstrike

up string Upline (cursor up)

us string Start underscore mode

vb string Visible bell

ve string Sequence to end
open/visual mode

vs string Sequence to start
open/visual mode

xb boolean Beehive terminal
(f1=<esc>, f2=^C)

xn boolean Newline is ignored after
wrap

xr boolean Return acts like ce \r\n

xs boolean Standout not erased by
writing over it

xt boolean Tabs are destructive

Table 9-6 termcap Capabilities (continued)

Name Type Padding Description
Using OS-9 255

9 OS-9 System Management
The line and the column to be addressed could be considered the
arguments to the cm string. All other characters are passed through
unchanged. The following is the notation used for cm strings:

Table 9-7 cm String Notation

Notation Description

%d A decimal number (origin 0)

%2 Same as %2d

%3 Same as %3d

%. ASCII equivalent of value

%+x Adds x to value, then %

%>xy If value > x adds y, no output

%r Reverses the order of row and column, no output

%i Increments line/column (for 1 origin)

%% Gives a single %

%n Exclusive or row and column with 0140

%B BCD (16*(x/10) + (x%10), no output

%D Reverse coding (x-2*(x%16)), no output
256 Using OS-9

9OS-9 System Management
Example String Notations (continued)

The following examples illustrate the use of the preceding notations:

cm=6\E&%r%2c%2Y

This terminal needs a 6 millisecond delay, rows and columns reversed,
and rows and columns to be printed as two digits

cm=5\E[%i%d;%dH

This terminal needs a 5 millisecond delay, rows and columns separated
by a semicolon (;), and because of its origin of 1, rows and columns are
incremented. The <esc>[, ; and H are transmitted unchanged.
(VT100)

cm=\E=%+ %+

This terminal uses rows and columns offset by a blank character.
(ABM85H)

Example termcap Entries

ka|abm85|kimtron abm85:\
:ce=\ET:cm=\E=%+ %+ :cl=^Z:\
:se=\Ek:so\Ej:up=^K:sg#1

If two entries in the same termcap file are very similar, one can be
defined as identical to the other with certain exceptions. To do this, tc is
used with the name of the similar terminal. This capability must be the
last in the entry. All exceptions to the other terminal must appear before
the tc listing. If a capability must be cancelled, use <cap>@. For
example, this might be a complete entry:

kh|abm85h|kimtron abm85h:\
:se=\EG0:so\EG4:tc=abm85:
Using OS-9 257

9 OS-9 System Management
258 Using OS-9

Appendix A: ASCII Conversion Chart

This chapter includes an ASCII conversion chart for your convenience.
259

A ASCII Conversion Chart
ASCII Symbol Definitions

ASCII is an acronym for American Standard Code for Information
Interchange. It consists of 96 printable and 32 unprintable characters.
The following conversion table includes binary, decimal, octal,
hexadecimal, and ASCII. The unprintable characters are defined in the
following tables.

Table A-1 ASCII Symbol Definitions

Symbol Definition Symbol Definition

ACK acknowledge FS file separator

BEL bell GS group separator

BS backspace HT horizontal tabulation

CAN cancel LF line feed

CR carriage return NAK negative
acknowledgment

DC device control NUL null

DEL delete RS record shipment

DLE data link escape SI shift in

EM end of medium SO shift out

ENQ enquiry SOH start of heading

EOT end of transmission SP space
260 Using OS-9

AASCII Conversion Chart
ESC escape STX start of text

ETB end of transmission SUB substitute

ETX end of text SYN synchronous idle

FF form feed US unit separator

VT vertical tabulation

Table A-2 ASCII Conversions

Binary Decimal Octal Hexadecimal ASCII

0000000 0 0 0 NUL

0000001 1 1 1 SOH

0000010 2 2 2 STX

0000011 3 3 3 ETX

0000100 4 4 4 EOT

0000101 5 5 5 ENQ

0000110 6 6 6 ACK

0000111 7 7 7 BEL

0001000 8 10 8 BS

Table A-1 ASCII Symbol Definitions (continued)

Symbol Definition Symbol Definition
Using OS-9 261

A ASCII Conversion Chart
0001001 9 11 9 HT

0001010 10 12 A LF

0001011 11 13 B VT

0001100 12 14 C FF

0001101 13 15 D CR

0001110 14 16 E SO

0001111 15 17 F SI

0010000 16 20 10 DLE

0010001 17 21 11 DC1

0010010 18 22 12 DC2

0010011 19 23 13 DC3

0010100 20 24 14 DC4

0010101 21 25 15 NAK

0010110 22 26 16 SYN

0010111 23 27 17 ETB

0011000 24 30 18 CAN

0011001 25 31 19 EM

Table A-2 ASCII Conversions (continued)

Binary Decimal Octal Hexadecimal ASCII
262 Using OS-9

AASCII Conversion Chart
0011010 26 32 1A SUB

0011011 27 33 1B ESC

0011100 28 34 1C FS

0011101 29 35 1D GS

0011110 30 36 1E RS

0011111 31 37 1F US

0100000 32 40 20 SP

0100001 33 41 21 !

0100010 34 42 22 "

0100011 35 43 23 #

0100100 36 44 24 $

0100101 37 45 25 %

0100110 38 46 26 &

0100111 39 47 27 ’

0101000 40 50 28 (

0101001 41 51 29)

0101010 42 52 2A *

Table A-2 ASCII Conversions (continued)

Binary Decimal Octal Hexadecimal ASCII
Using OS-9 263

A ASCII Conversion Chart
0101011 43 53 2B +

0101100 44 54 2C ,

0101101 45 55 2D -

0101110 46 56 2E .

0101111 47 57 2F /

0110000 48 60 30 0

0110001 49 61 31 1

0110010 50 62 32 2

0110011 51 63 33 3

0110100 52 64 34 4

0110101 53 65 35 5

0110110 54 66 36 6

0110111 55 67 37 7

0111000 56 70 38 8

0111001 57 71 39 9

0111010 58 72 3A :

0111011 59 73 3B ;

Table A-2 ASCII Conversions (continued)

Binary Decimal Octal Hexadecimal ASCII
264 Using OS-9

AASCII Conversion Chart
0111100 60 74 3C <

0111101 61 75 3D =

0111110 62 76 3E >

0111111 63 77 3F ?

1000000 64 100 40 @

1000001 65 101 41 A

1000010 66 102 42 B

1000011 67 103 43 C

1000100 68 104 44 D

1000101 69 105 45 E

1000110 70 106 46 F

1000111 71 107 47 G

1001000 72 110 48 H

1001001 73 111 49 I

1001010 74 112 4A J

1001011 75 113 4B K

1001100 76 114 4C L

Table A-2 ASCII Conversions (continued)

Binary Decimal Octal Hexadecimal ASCII
Using OS-9 265

A ASCII Conversion Chart
1001101 77 115 4D M

1001110 78 116 4E N

1001111 79 117 4F O

1010000 80 120 50 P

1010001 81 121 51 Q

1010010 82 122 52 R

1010011 83 123 53 S

1010100 84 124 54 T

1010101 85 125 55 U

1010110 86 126 56 V

1010111 87 127 57 W

1011000 88 130 58 X

1011001 89 131 59 Y

1011010 90 132 5A Z

1011011 91 133 5B [

1011100 92 134 5C \

1011101 93 135 5D]

Table A-2 ASCII Conversions (continued)

Binary Decimal Octal Hexadecimal ASCII
266 Using OS-9

AASCII Conversion Chart
1011110 94 136 5E ^

1011111 95 137 5F _

1100000 96 140 60 ‘

1100001 97 141 61 a

1100010 98 142 62 b

1100011 99 143 63 c

1100100 100 144 64 d

1100101 101 145 65 e

1100110 102 146 66 f

1100111 103 147 67 g

1101000 104 150 68 h

1101001 105 151 69 i

1101010 106 152 6A j

1101011 107 153 6B k

1101100 108 154 6C l

1101101 109 155 6D m

1101110 110 156 6E n

Table A-2 ASCII Conversions (continued)

Binary Decimal Octal Hexadecimal ASCII
Using OS-9 267

A ASCII Conversion Chart
1101111 111 157 6F o

1110000 112 160 70 p

1110001 113 161 71 q

1110010 114 162 72 r

1110011 115 163 73 s

1110100 116 164 74 t

1110101 117 165 75 u

1110110 118 166 76 v

1110111 119 167 77 w

1111000 120 170 78 x

1111001 121 171 79 y

1111010 122 172 7A z

1111011 123 173 7B {

1111100 124 174 7C |

1111101 125 175 7D }

1111110 126 176 7E ~

1111111 127 177 7F DEL

Table A-2 ASCII Conversions (continued)

Binary Decimal Octal Hexadecimal ASCII
268 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index

Symbols
! 148
- 141
137
$ 184
& 145, 147, 153
()

surrounding macro names 184
* 83, 131, 143
+ 141, 145, 147
.history file 124
.login file 114, 157
.logout file 132, 157, 158
< 138
> 138
>> 138
? 83, 143
@ 188

replaced by number of shells in prompt 166
^ 142
_sh environment variable 128, 157, 166

A
abort

message 172
process 124, 125, 132, 137, 154, 172, 173
program 56

access
to command 243
to device 55
to environment variable 126, 129
Using OS-9 269

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
to file/directory 13, 55, 69, 70, 71, 77, 92, 93, 94,
110, 111, 120, 166

to functions 135
to information 229
to memory 243
to module 110–120

active queue 243
add utility 206, 207
allocating memory

for a device driver 233
altering the system’s process scheduling 240
alternate module directory 114
application programs 51, 53, 236
ASCII conversion table 260
assembler

command lines 187
default 183
options 186

assign utility 131, 132, 158, 159
assignment 158
attr utility 92, 93
attribute

changing 93
directory 71, 76

module 111, 116, 117
displaying 92
file 70–71

B
background mode 147, 153, 173
background process 14, 56
backing up the system disk 38–??
backup 38

procedure 43, 202, 209
strategies

single tape backup 210
small daily backup strategy 209

backup utility 38, 43, 44
bad sectors 42
batch processing 165
270 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Binary conversion table 261
block

defined 64
bootfile 227, 231

RBF 228
bootgen utility 227, 228, 231
booting 34–37
bootlist file 227, 228
bootstrapping

see booting
build utility 67, 91
byte

defined 64

C
cache module 224
capability

cursor addressing 255
numeric 247
string 247, 255
termcap 248

cc 183, 185
cd utility 158
cfp utility 163, 164
changing shell options 125
chd utility 75, 84, 85, 126, 131, 134, 158, 205, 222, 228
child process 138, 171
child shell 132, 134, 156, 159
chm utility 114, 115, 127, 131
cht utility 207
chx utility 84, 85, 131, 134, 222
climbing directory trees 86–88
clock

see system clock
cold start 34
command

* 131
history

see hist utility
multiple 133
Using OS-9 271

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
see also utilities
shell

see shell
command interpreter

see shell
command line 51, 99, 125

assembler 187
compiler 187
execution modifier 133–??
features 135
generating with make 187
keyword 133, 134
linker 187
parameter 133, 134
separators 133
wildcards 136

command separator 145
& 145
+ 145

commands
accessing 243

compiler
command lines 187
default 183

concurrent execution 147
CONFIG macro 225
control keys 53–55

interrupt 56
copy utility 94, 151
copying file 94–101
count

link 111, 112
CPU directory 26
CRC value

see Cyclic Redundancy Check value
creating a temporary procedure file 163–164
creating new memory module directory 118
csl 16
current

data directory 74–88
directory 74–76
272 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
execution directory 74–88
memory module directory 109
module directory 110, 114, 115, 119, 120

Cyclic Redundancy Check value 108

D
d_maxage 240, 241, 242

high-priority tasks 242
low-priority tasks 242, 243

d_minpty 240, 241, 242
date utility 37
Decimal conversion chart 261
default

assembler 183
compiler 183
device descriptor 236
directory 183
linker 183

defining macros 184
de-initializing device 232, 233, 234
deiniz utility 233, 234, 235
del utility 103, 145, 206
deldir utility 103, 104, 145
deleting a module directory 120
delmdir utility 120
dependency list 180
dependents 180
destination disk 43
device

de-initializing 232, 233, 234
descriptors

for a RAM disk 229
RBF 225
SCF 225

driver
allocating memory for 233

initializing 232, 233, 234
name 139
source 196
standard 139
Using OS-9 273

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
dir utility 82–84, 151, 205
options 84

directory
accessing 13, 55, 69, 77, 92, 93, 94, 110, 111, 120
attributes

see attribute
backups 102
changing 126
CPU 26
creating 88
current data 74–88
current execution 74–88
default 183
defined 13
deleting 103, 104
displaying 82–84
extended listing 84
home 75, 126
module 113–??

alternate 114
creating 118
current 109, 110, 114, 115, 119, 120
directory attributes 111, 116, 117
displaying contents 115

parent 73, 86
restoring 207
root 73
root module 115
SRC 27
tree 86

disk
destination 43
source 43

displaying the contents of module directory 115
driver

allocating memory for 233
RAM disk 229

dsave utility 97–??
274 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
E
echo utility 238
edt utility 91
environment 126–130
environment variable 126–134, 153–157

_sh 128, 157, 166
accessing 126, 129
changing 127, 129, 130, 132, 156, 157
global

see global variable
HOME 75, 126
MDHOME 115, 127, 157
MDPATH 52, 114, 119, 120, 127
PATH 52, 110, 127, 134, 157
PORT 126
PROMPT 128, 157
SHELL 126
TERM 128, 157, 225, 246
USER 127

error
reporting 177

ex utility 131, 237
executable program module file 67
execution

concurrent 147
modifier 137

command line 133–??
of multiple commands 133
sequential 146

expansion 184
extension module 224

F
file

.history 124

.login 114, 157

.logout 157, 158
accessing 13, 55, 69, 77, 92, 93, 94, 110, 111, 120,

166
Using OS-9 275

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
attribute
see attribute

bootfile 227
RBF 228

bootlist 227, 228
copying 94–101
creating 67, 91
data 67, 68
deleting 103
dependencies 188
executable program module 67
listing 93
loadfile 235
makefile 226
managers

RBF 229
marking 206, 207
naming 89
object 183
password 69, 161
procedure 51, 97, 153, 231, 238, 245
relocatable 183
restoring 207
source 183
startup 34, 113, 231, 232, 234, 235, 236
startup procedure 160–162
sysboot 34, 216, 231
systype.h 225
target 180, 183
temporary procedure file 163–164
termcap 246–257
text 67
unmarking 206, 207
util 235

files
target

see target file 180
filter 148–151
fixmod utility 112
floating point unit (FPU) module 224
foreground process 14, 56
276 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
forking a shell 165
format 39

bad sectors 42
physical verification 42

format utility 38, 41, 42
parameters 40

free utility 60
frestore utility 202–208

options 203
fsave utility 202, 211
function

accessing 135

G
generating command lines with make 187
global variable 126
Greenwich Mean Time (GMT) 223
group.user ID 68, 69

H
help utility 59
Hexadecimal conversion chart 261
hist utility 124, 131, 175
history of commands

see hist utility
home directory 75, 126
HOME environment variable 75, 126

I
I/O

device naming conventions 139
ident utility 110
information, accessing 229
Init module 36, 216
initial priority 241
initializing device 232, 233, 234
iniz utility 232, 233, 234
Using OS-9 277

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
install program 39
interactive restore process 204

K
kernel 227, 231
keyboard

using 53–57, ??–58
keyword 133

command line 134
kill utility 132, 172, 173

L
library 16
line editing features 53
link count 111, 112
link utility 111, 112
linker 185

command lines 187
default 183
options 185

linking modules 111
list utility 93, 150, 151
list, dependency 180
load utility 41, 109, 110, 235
loadfile 235
loading

memory modules 109
modules 114
utilities into memory 235

logging in 49, 50, 157
logging out 49, 157
login procedure 237
login shell 157
login utility 49, 50, 127, 157
logout utility 49, 123, 132, 157
278 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
M
macro

command line 184
CONFIG 225
defining 184
expansion 184
form 184
names 184
placing 184
recognizing 184
reserved 186
special 185
TERM 225
wildcards 186

makdir utility 88
make utility 180–??, 226

generating command lines 187
makefile 226

building 188
defined 180
dependencies 188
macro definitions 184

makmdir utility 118, 119
marking file 206, 207
mdattr utility 116, 118
MDHOME environment variable 115, 127, 157
mdir utility 115, 116
MDPATH environment variable 52, 114, 119, 120, 127, 157
memory

access 243
allocation 60

for a device driver 233
module 15, 109–??

loading 109–114
using 109

module directory
current 109

size modifier 137
mfree utility 60
modifier
Using OS-9 279

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
execution
see execution modifier

memory size (#) 137
process priority 141
redirection 138, 139

module
accessing 110–120
body 108
cache 224
CRC value

see Cyclic Redundancy Check value
directory 109, 113–??

alternate 114
attributes 111, 116, 117
creating 118
current 110, 114, 115, 119, 120
deleting 120
displaying contents 115
root 115

executable program 67
extension 224
floating point unit (FPU) 224
header 108, 137
Init 36, 216
library 16
linking 111
loading 235
memory 15, 109–??

loading 109–114
using 109

position-independent 108
program 15
re-entrant 108
sticky 112
system 34
system security (SSM) 224

multi-tasking 147
features 14
280 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
N
named pipe 149, 150
naming conventions for I/O devices 139
navigating directories

see climbing directory trees
numeric capability 247

O
object file 183

relinking 187
Octal conversion chart 261
operating system

defined 12
function 12

options
talk mode 232

P
page pause 57
parameter 52

command line 133, 134
using with procedure files 154

parent directory 73, 86
parent process 138
parent shell 126, 134, 159
parentheses

surrounding macro names 184
password file 69, 161
PATH environment variable 52, 110, 127, 134, 157
pathlist

full 77
naming conventions 79
relative 77, 79, 86

pd utility 88, 166
permission

access 110, 110–120
defined 70
Using OS-9 281

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
pipe 148–151
see also separator

placing macros 184
PORT environment variable 126
printenv utility 129
priority 243

age 141, 241
d_maxage 241
d_minpty 241
definition 142
initial 142, 241
manipulating 240

procedure file 51, 97, 231, 238, 245
applications 153
startup file 231
using parameter 154

procedures
login 237
stopping 172
system shutdown 238, 239

process
abort 124, 125, 132, 137, 154, 172, 173
age 141
background 14, 56
child 138, 171
foreground 14, 56
parent 138
priority 240
priority modifier 141
scheduling 241
system state 240, 243
terminating 174
user state 243

process scheduling
altering 240

procs utility 130, 148, 151, 167–175
profile utility 132, 156
program

abort
see abort

application 51, 53
282 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
install 39
programming languages 51, 53
prompt

see system prompt
PROMPT environment variable 128, 157

Q
queue

active 243

R
RAM disk 229

driver 229
non-volatile 229, 230
volatile 229

RBF
bootfile 228
Device Descriptor 225
file manager 229

re-assembling source file 187
recognizing macros 184
recompiling source file 187
redirection

modifier 138, 139
< 138
> 138
>> 138

relinking object file 187
relocatable file 183
reporting errors 177
reserved macros 186
rest utility 207
restoring

directories 207
file 207
interactive restore process 204

ROM
configuration values 225
Using OS-9 283

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
root directory 73
root module directory 115

S
SCF Device Descriptor 225
seek system call 65
segment

defined 64
separator

& 147
+ 147
command 145
command line 133
pipe 148

named 149, 150
unnamed 149

sequential execution 146
set utility 125, 132, 157
setenv utility 127, 129, 130, 132, 156, 157
setime utility 36, 160, 232
setpr utility 132
setting up a time-sharing system startup procedure file 160–162
shell 49, 51–57, ??–58, 121–??, 216

built-in command 131, 132
changing options 125
child 132, 134, 156, 159
command line 125
command line parsing 133–151
command separators 145
environment variable

see environment variable
execution modifier 137
forking 165
login 157
memory size modifier 137
multiple 165–170
parent 126, 134, 159
procedure file 153
process priority modifier 141
prompt 37
284 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
redirection modifier 138, 139
special command line features 135

SHELL environment variable 126
source device 196
source disk 43
source file 183

re-assembling 187
recompiling 187

special macros 185
SRC directory 27
standard device 139
standard error path

see stderr
standard input path

see stdin
standard output path

see stdio
startup file 34, 113, 231, 232, 234, 235, 236
status summary

see procs
stderr 138
stdin 138
stdout 138
sticky module 112
stopping a procedure 172
string capability 247, 255
super user

defined 69
sysboot file 34, 216, 231
sysgo 216, 231
system

calls
seek 65

clock 36
set 36, 37

defaults 216
disk 34

backing up 38–??
module 34
prompt 37
security module (SSM) 224
Using OS-9 285

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
shutdown procedure 238, 239
time zone 223

system state processes 240, 243
systype.h 225, 226

T
talk mode option 232
tape utility 213–214
target file 180, 183

defined 180
dependents 180

task
high-priority 242
low-priority 242, 243

tee utility 238
temporary procedure file 163–164
TERM environment variable 128, 157, 225, 246
TERM macro 225
termcap

capability 248
file 246–257

terminal capability 247
numeric 247
string 247

terminating a process 174
time and date, setting 36
time-sharing systems

startup procedure file 160–162
timeslice 243
tmode utility 56, 57, 244, 245
tsmon utility 126, 160, 236, 237

U
uMACS 91
unassign utility 132, 158, 159
unlink utility 111, 112
unmarking file 206, 207
unnamed pipe 149
286 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
unsetenv utility 129, 132
USER environment variable 127
user state processes 243
using

memory modules 109
utilities

chd 84, 85
chx 84

utility
add 206, 207
assign 131, 132, 158, 159
attr 92, 93
backup 38, 43, 44
basic 58
bootgen 227, 228, 231
build 67, 91
cd 158
cfp 163, 164
chd 75, 85, 126, 131, 134, 158, 205, 222, 228
chm 114, 115, 127, 131
cht 207
chx 85, 131, 134, 222
copy 94, 151
date 37
deiniz 233, 234, 235
del 103, 145, 206
deldir 103, 104, 145
delmdir 120
dir 82–84, 151, 205
dsave 97–??
echo 238
edt 91
ex 131, 237
fixmod 112
format 38, 41, 42

parameters 40
free 60
frestore 202–208
fsave 202, 211
help 59
hist 124, 131, 175
Using OS-9 287

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ident 110
iniz 232, 233, 234
kill 132, 172, 173
link 111, 112
list 93, 150, 151
load 41, 109, 110, 235
loading into memory 235
login 49, 50, 127, 157
logout 49, 123, 132, 157
makdir 88
make 180–??, 226
makmdir 118, 119
mdattr 116, 118
mdir 115, 116
mfree 60
pd 88, 166
printenv 129
procs 130, 148, 151, 167–175
profile 132, 156
rest 207
set 125, 132, 157
setenv 127, 129, 130, 132, 156, 157
setime 36, 160, 232
setpr 132
tape 213–214
tee 238
tmode 56, 57, 244, 245
tsmon 126, 160, 236, 237
unassign 132, 158, 159
unlink 111, 112
unsetenv 129, 132
w 132, 171
wait 132, 171
xmode 244, 245

utils file 235

V
variable

environment
see environment variable
288 Using OS-9

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
global
see global variable

variable storage 15
verifying a format 42

W
w utility 132, 171
wait utility 132, 171
wildcards 83, 135, 136, 145

* 143
? 143
macros 186
matching 143–??

X
xmode utility 244, 245
Using OS-9 289

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
290 Using OS-9

Product Discrepancy Report

291

Product Discrepancy Report

To: Microware Customer Support

FAX: 515-224-1352

From:___

Company:_______________________________________

Phone:__

Fax:_____________________Email:__________________

Product Name: OS-9

Description of Problem:
__

__

__

__

__

__

__

__

__

__

Host Platform_____________________________________

Target Platform____________________________________

	HOME
	Using OS-9®
	Table of Contents
	Chapter 1: OS-9 Overview
	Operating System Overview
	Using OS-9 Functions
	Storing Information
	Multi-tasking and Multi-user Functions
	The Memory Module and Modular Software

	Development Options
	The MWOS Directory Structure
	About the Directory Structure
	Development versus Runtime
	Multiple MWOS Directories
	NFS and Other Package Directories

	Directories Included on the System Disk
	OS9000/<CPU Family> Directory Structure
	Target Port Directories

	Chapter 2: Starting OS-9
	Booting OS-9
	Failure to Boot
	Setting the System Time and Date
	Checking the Date and Time
	The System Prompt

	Backing Up the System Disk
	Formatting a Disk
	Multiple Drive Format
	Single Drive Format
	Continuing the Formatting Process
	The Backup Procedure
	Multiple Drive Backup
	Single Drive Backup

	Chapter 3: Basic Commands and Functions
	Learning the Basics
	Logging on to a Timesharing System
	An Introduction to the Shell
	Using the Keyboard
	Line Editing Control Keys
	Interrupt Keys
	The Page Pause Feature

	Basic Utilities
	The help Utility and the -? Option
	free and mfree

	Chapter 4: The OS�9 File System
	OS-9 File Storage
	The File Pointer
	Text Files
	Executable Program Module Files
	Random Access Data Files
	File Ownership
	Attributes and the File Security System
	Directory Attributes

	The OS-9 File System
	Current Directories
	On Single-User Systems
	On Multi-User Systems
	The Home Directory
	Directory Characteristics

	Accessing Files and Directories: The Pathlist
	Full Pathlists
	Full Pathlist Example

	Relative Pathlists
	Relative Pathlist Example

	Basic File System Utilities
	dir: Display Directory Contents
	Wildcards and dir
	dir Options
	chd and chx: Moving Around in the File System
	Using chd
	Using chx

	Moving Up Directory Trees
	Using the pd Utility
	Using makdir to Create New Directories
	Rules for Constructing File Names
	Creating Files
	The build Utility
	The edt Utility
	µMACS
	Examining File Attributes with attr
	Listing Files
	Copying Files
	Copying a File into an Existing File
	Copying Multiple Files
	Copying Large Files
	dsave: Using Procedure Files to Copy Files
	Selectively Copying Multiple Files with dsave
	Errors During dsave
	Indenting for Directory Levels
	Keeping Current Directory Backups
	del and deldir: Deleting Files and Directories
	Deleting Files
	Deleting Directories

	Chapter 5: OS-9 Memory Modules
	OS-9 Memory Modules
	Using Memory Modules
	Loading Modules into Memory
	Module Security
	The Link Count
	Modules Remaining in Memory

	Module Directories
	Current Module Directory
	Displaying the Contents of Module Directories
	Memory Module Directory Attributes
	Creating New Memory Module Directories
	Deleting Memory Module Directories

	Chapter 6: The Shell
	The Function of the Shell
	Shell Options

	The Shell Environment
	Changing the Shell Environment
	Using Environmental Variables as Command Line Parameters

	Built-In Shell Commands
	Shell Command Line Processing
	Special Command Line Features
	Execution Modifiers
	Additional Memory Size Modifier
	I/O Redirection Modifiers
	Standard Devices

	Process Priority Modifier
	Wildcard Matching
	Command Separators
	Sequential Execution
	Multi-tasking: Concurrent Execution
	Pipes and Filters
	Unnamed Pipes
	Named Pipes
	Command Grouping

	Shell Procedure Files
	Using Parameters with Procedure Files
	Using profile When Running Procedure Files
	The login shell and Special Procedure Files: login and logout
	Using assign When Running Procedure Files

	Setting up a Time-Sharing System Startup Procedure File
	The Password File

	Creating a Temporary Procedure File
	Multiple Shells
	The procs Utility

	Waiting for Background Procedures
	Stopping Procedures

	Command History
	Error Reporting

	Chapter 7: Making Files
	The make Utility
	Running the Make Utility
	Implicit Definitions
	Macro Recognition
	make Generated Command Lines
	make Options

	Example: Updating a Document
	Example: Compiling C Programs
	Refining the C Compiler Example

	Example: A makefile Using Macros
	Example: Putting It All Together

	Chapter 8: Making Backups
	Incremental Backups
	Making an Incremental Backup: The fsave Utility
	fsave Options
	The fsave Procedure
	Example fsave Commands

	Restoring Incremental Backups: The frestore Utility
	frestore Options
	The Interactive Restore Process
	Example Command Lines

	Incremental Backup Strategies
	The Small Daily Backup Strategy
	The Single Tape Backup Strategy
	Use of Tapes or Disks

	The tape Utility

	Chapter 9: OS-9 System Management
	Setting Up the System Defaults: the Init Module
	Extension Modules
	Changing System Modules
	Making Bootfiles
	Bootlist Files
	Bootfile Requirements
	Making RBF Bootfile

	Using the RAM Disk
	Volatile RAM disks
	Non-Volatile RAM disks

	Making a Startup File
	Initializing Devices: iniz r0 h0 d0 t1 p1
	Loading Utilities Into Memory: load -z=sys/loadfile
	Loading the Default Device Descriptor: load bootobjs/r0.dd
	Multi-user Systems: tsmon /t1 &

	System Shutdown Procedure
	Managing Processes in a Real-time Environment
	Manipulating Process’ Priority
	Using d_minpty and d_maxage to Alter the System’s Process Scheduling
	Using System-State Processes and User-State Processes

	Using the tmode and xmode Utilities
	Using the tmode Utility
	Using the xmode Utility

	The termcap File Format
	termcap Capabilities
	Example String Notations (continued)
	cm=6\E&%r%2c%2Y
	cm=5\E[%i%d;%dH
	cm=\E=%+ %+

	Example termcap Entries

	Appendix A: ASCII Conversion Chart
	ASCII Symbol Definitions

	Index
	Product Discrepancy Report

