Original title:

Trans-Sedenion Meditation with the Moufang Clan

(Contains 0% real Moufang Loops.)

Actual topic:

Three Discoveries in Multiplying Trigintaduonion Bases, and an Application.

by Henry Strickland, 2016, for G4G12

Main web page: http://wiki.yak.net/1093

My Discoveries

My Application: a Hyper-Complex C*ndyl*and game.

Instead of taking whole number steps from START to FINISH, our board positions are trigintaduonion numbers, and we multiply (instead of add) steps to get from 1 to FINISH.

Hyper-Complex Summary

 num         num     num
 real  imagimary   total
 dims       dims    dims    Name
 ----       ----    ----    -----------------
    1         0        1    Real Numbers
    1         1        2    Complex Numbers
    1         3        4    Quaternions
    1         7        8    Octonions
    1        15       16    Sedenions
    1        31       32    Trigintaduonions
    1    (2^n)-1     2^n    ...etc...

How we will write the bases:

1 Real Number:
                 1
2 Complex Numbers:
                 1  a             ( We use "a" instead of "i". )
4 Quaternions:
                 1, a, b, ab     ( Instead of "i", "j", & "k". )
8 Octonions:
                 1, a, b, ab, c, ac, bc, abc
16 Sedenions:
                 1, a, b, ab, c, ac, bc, abc,
                 d, ad, bd, abd, cd, acd, bcd, abcd
32 Trigintaduonions:
                 1, a, b, ab, c, ac, bc, abc,
                 d, ad, bd, abd, cd, acd, bcd, abcd,
                 e, ae, be, abe, ce, ace, bce, abce,
                 de, ade, bde, abde, cde, acde, bcde, abcde

Trigintaduonion Bases, I choose you!

From here on, we only use the Trigintaduonion Bases (and their negatives) for multiplication.

But it would apply generally to any hyper-complex system.

Multiplication is defined by the usual Cayley-Dickson Construction (see Wikipedia or “The Octonions” by John C. Baez [2001].)

Canonically we write our imaginary bases with letters:

Some are a single letter: they are like primary bases.

Some are multi-letter. They are independant imaginary bases, but they are also the product of 2 or more single-letter bases.

Our convention: Multiply Left-to-Right: “abcde” means “(((ab)c)d)e”

Warnings:

The good news:

The set of 32 bases and their 32 negatives is closed under multiplication.

Multiplying by 1 and -1 work as we want (on left or right). Two -1’s cancel.

Multiplying any basis (except 1) by itself gives -1 (that is, the letter bases are all imaginary).

Annihilating-Leapfrog Identity

As you discovered in the Solitaire Game.

But it only works for a single-letter multiplier!

Examples:

        acx(b)  =  a (b) -c -x  =  --abcx  =  abcx

To alphabetize, the (b) jumps over x and then c, producing a minus each time.

        acx(c)  =  a  c(c) -x  =  a (-) -x  =  --ax  =  ax

To alphabetize, the (c) jumps over x, producing a minus. Then it annihilates with the other c, producing a second minus.

You end up with the product in canonical form: alphabetized and no duplicates.

Jump the multiplier over letters from right to left, until it is in alphabetical order, adding a minus sign every time you leap.

Then repeated letters annihilate and become a minus sign.

Letter-Gap Symmetry

(Related to index-cycling & index-doubling, but different.)

Suppose you already know

        abc(ac) = -b

but you now want to know what is

        bde(be) = ?

You can reassign letters (introduce or remove gaps) with lines from old to new letters, but do not cross the lines!

        a b c d e      abc(ac) = -b
         \ \ \         ||| ||     |
          | \ \        ||| ||     |
          |  \ \       ||| ||     |
        a b c d e      bde(be) = -d

If you cross the lines, you might prove that “ab = ba” which is wrong!

Multiplying by Dissociate-Then-Fix

Below is a Twist Table for multiplying trigintaduonion bases: it’s gray if the product is negative.

Below that is another Twist Table, for fixing “Dissociations”: it’s gray if the dissociation is the negative of the product.

The second Twist Table looks simpler than the first, so we prefer to use it instead.

Dissociating is my name for removing parentheses. Remember that multiplication is not associative, so this can change the result, so we have to fix it later.

Say you want to multiply bcd by de. Drop the parentheses, and use the Annihilating Leapfrog technique to absorb these extra letters and canonicalize the result:

        bce(de)
        bce d e   ; dissociate d & e
        -bcde e     ; leapfrog the d (producing a minus)
        -bcd(-)       ; annihilate the e (producing another minus)
        bcd           ; cancel the minuses

However this is not the final answer, because dissociating is not safe.

But we can look up the entry for “bcd” & “de” in the Dissociating Twist Table, and we get -1. So we multiply the entire result by it:

        (-1) bcd  =  -bcd

and that will be correct.

The Advanced Card Deck for the Game uses this technique to multiply by multi-letter bases, without the full complexity of the Multiplication Twist Table.

Twist Table for Multiplication

1 a b ab c ac bc abc d ad bd abd cd acd bcd abcd e ae be abe ce ace bce abce de ade bde abde cde acde bcde abcde
a -1 ab -b ac -c -abc bc ad -d -abd bd -acd cd abcd -bcd ae -e -abe be -ace ce abce -bce -ade de abde -bde acde -cde -abcde bcde
b -ab -1 a bc abc -c -ac bd abd -d -ad -bcd -abcd cd acd be abe -e -ae -bce -abce ce ace -bde -abde de ade bcde abcde -cde -acde
ab b -a -1 abc -bc ac -c abd -bd ad -d -abcd bcd -acd cd abe -be ae -e -abce bce -ace ce -abde bde -ade de abcde -bcde acde -cde
c -ac -bc -abc -1 a b ab cd acd bcd abcd -d -ad -bd -abd ce ace bce abce -e -ae -be -abe -cde -acde -bcde -abcde de ade bde abde
ac c -abc bc -a -1 -ab b acd -cd abcd -bcd ad -d abd -bd ace -ce abce -bce ae -e abe -be -acde cde -abcde bcde -ade de -abde bde
bc abc c -ac -b ab -1 -a bcd -abcd -cd acd bd -abd -d ad bce -abce -ce ace be -abe -e ae -bcde abcde cde -acde -bde abde de -ade
abc -bc ac c -ab -b a -1 abcd bcd -acd -cd abd bd -ad -d abce bce -ace -ce abe be -ae -e -abcde -bcde acde cde -abde -bde ade de
d -ad -bd -abd -cd -acd -bcd -abcd -1 a b ab c ac bc abc de ade bde abde cde acde bcde abcde -e -ae -be -abe -ce -ace -bce -abce
ad d -abd bd -acd cd abcd -bcd -a -1 -ab b -ac c abc -bc ade -de abde -bde acde -cde -abcde bcde ae -e abe -be ace -ce -abce bce
bd abd d -ad -bcd -abcd cd acd -b ab -1 -a -bc -abc c ac bde -abde -de ade bcde abcde -cde -acde be -abe -e ae bce abce -ce -ace
abd -bd ad d -abcd bcd -acd cd -ab -b a -1 -abc bc -ac c abde bde -ade -de abcde -bcde acde -cde abe be -ae -e abce -bce ace -ce
cd acd bcd abcd d -ad -bd -abd -c ac bc abc -1 -a -b -ab cde -acde -bcde -abcde -de ade bde abde ce -ace -bce -abce -e ae be abe
acd -cd abcd -bcd ad d abd -bd -ac -c abc -bc a -1 ab -b acde cde -abcde bcde -ade -de -abde bde ace ce -abce bce -ae -e -abe be
bcd -abcd -cd acd bd -abd d ad -bc -abc -c ac b -ab -1 a bcde abcde cde -acde -bde abde -de -ade bce abce ce -ace -be abe -e -ae
abcd bcd -acd -cd abd bd -ad d -abc bc -ac -c ab b -a -1 abcde -bcde acde cde -abde -bde ade -de abce -bce ace ce -abe -be ae -e
e -ae -be -abe -ce -ace -bce -abce -de -ade -bde -abde -cde -acde -bcde -abcde -1 a b ab c ac bc abc d ad bd abd cd acd bcd abcd
ae e -abe be -ace ce abce -bce -ade de abde -bde acde -cde -abcde bcde -a -1 -ab b -ac c abc -bc -ad d abd -bd acd -cd -abcd bcd
be abe e -ae -bce -abce ce ace -bde -abde de ade bcde abcde -cde -acde -b ab -1 -a -bc -abc c ac -bd -abd d ad bcd abcd -cd -acd
abe -be ae e -abce bce -ace ce -abde bde -ade de abcde -bcde acde -cde -ab -b a -1 -abc bc -ac c -abd bd -ad d abcd -bcd acd -cd
ce ace bce abce e -ae -be -abe -cde -acde -bcde -abcde de ade bde abde -c ac bc abc -1 -a -b -ab -cd -acd -bcd -abcd d ad bd abd
ace -ce abce -bce ae e abe -be -acde cde -abcde bcde -ade de -abde bde -ac -c abc -bc a -1 ab -b -acd cd -abcd bcd -ad d -abd bd
bce -abce -ce ace be -abe e ae -bcde abcde cde -acde -bde abde de -ade -bc -abc -c ac b -ab -1 a -bcd abcd cd -acd -bd abd d -ad
abce bce -ace -ce abe be -ae e -abcde -bcde acde cde -abde -bde ade de -abc bc -ac -c ab b -a -1 -abcd -bcd acd cd -abd -bd ad d
de ade bde abde cde acde bcde abcde e -ae -be -abe -ce -ace -bce -abce -d ad bd abd cd acd bcd abcd -1 -a -b -ab -c -ac -bc -abc
ade -de abde -bde acde -cde -abcde bcde ae e abe -be ace -ce -abce bce -ad -d abd -bd acd -cd -abcd bcd a -1 ab -b ac -c -abc bc
bde -abde -de ade bcde abcde -cde -acde be -abe e ae bce abce -ce -ace -bd -abd -d ad bcd abcd -cd -acd b -ab -1 a bc abc -c -ac
abde bde -ade -de abcde -bcde acde -cde abe be -ae e abce -bce ace -ce -abd bd -ad -d abcd -bcd acd -cd ab b -a -1 abc -bc ac -c
cde -acde -bcde -abcde -de ade bde abde ce -ace -bce -abce e ae be abe -cd -acd -bcd -abcd -d ad bd abd c -ac -bc -abc -1 a b ab
acde cde -abcde bcde -ade -de -abde bde ace ce -abce bce -ae e -abe be -acd cd -abcd bcd -ad -d -abd bd ac c -abc bc -a -1 -ab b
bcde abcde cde -acde -bde abde -de -ade bce abce ce -ace -be abe e -ae -bcd abcd cd -acd -bd abd -d -ad bc abc c -ac -b ab -1 -a
abcde -bcde acde cde -abde -bde ade -de abce -bce ace ce -abe -be ae e -abcd -bcd acd cd -abd -bd ad -d abc -bc ac c -ab -b a -1

Gray marks negative products. 528 white, 496 gray, 1024 total.


Twist Table for Fixing Dissociatiion

1 a b ab c ac bc abc d ad bd abd cd acd bcd abcd e ae be abe ce ace bce abce de ade bde abde cde acde bcde abcde
a -1 ab -b ac -c -abc bc ad -d -abd bd -acd cd abcd -bcd ae -e -abe be -ace ce abce -bce -ade de abde -bde acde -cde -abcde bcde
b -ab -1 a bc abc -c -ac bd abd -d -ad -bcd -abcd cd acd be abe -e -ae -bce -abce ce ace -bde -abde de ade bcde abcde -cde -acde
ab b -a -1 abc -bc ac -c abd -bd ad -d -abcd bcd -acd cd abe -be ae -e -abce bce -ace ce -abde bde -ade de abcde -bcde acde -cde
c -ac -bc -abc -1 a b ab cd acd bcd abcd -d -ad -bd -abd ce ace bce abce -e -ae -be -abe -cde -acde -bcde -abcde de ade bde abde
ac c -abc bc -a -1 -ab b acd -cd abcd -bcd ad -d abd -bd ace -ce abce -bce ae -e abe -be -acde cde -abcde bcde -ade de -abde bde
bc abc c -ac -b ab -1 -a bcd -abcd -cd acd bd -abd -d ad bce -abce -ce ace be -abe -e ae -bcde abcde cde -acde -bde abde de -ade
abc -bc ac c -ab -b a -1 abcd bcd -acd -cd abd bd -ad -d abce bce -ace -ce abe be -ae -e -abcde -bcde acde cde -abde -bde ade de
d -ad -bd -abd -cd -acd -bcd -abcd -1 a b ab c ac bc abc de ade bde abde cde acde bcde abcde -e -ae -be -abe -ce -ace -bce -abce
ad d -abd bd -acd cd abcd -bcd -a -1 -ab b -ac c abc -bc ade -de abde -bde acde -cde -abcde bcde ae -e abe -be ace -ce -abce bce
bd abd d -ad -bcd -abcd cd acd -b ab -1 -a -bc -abc c ac bde -abde -de ade bcde abcde -cde -acde be -abe -e ae bce abce -ce -ace
abd -bd ad d -abcd bcd -acd cd -ab -b a -1 -abc bc -ac c abde bde -ade -de abcde -bcde acde -cde abe be -ae -e abce -bce ace -ce
cd acd bcd abcd d -ad -bd -abd -c ac bc abc -1 -a -b -ab cde -acde -bcde -abcde -de ade bde abde ce -ace -bce -abce -e ae be abe
acd -cd abcd -bcd ad d abd -bd -ac -c abc -bc a -1 ab -b acde cde -abcde bcde -ade -de -abde bde ace ce -abce bce -ae -e -abe be
bcd -abcd -cd acd bd -abd d ad -bc -abc -c ac b -ab -1 a bcde abcde cde -acde -bde abde -de -ade bce abce ce -ace -be abe -e -ae
abcd bcd -acd -cd abd bd -ad d -abc bc -ac -c ab b -a -1 abcde -bcde acde cde -abde -bde ade -de abce -bce ace ce -abe -be ae -e
e -ae -be -abe -ce -ace -bce -abce -de -ade -bde -abde -cde -acde -bcde -abcde -1 a b ab c ac bc abc d ad bd abd cd acd bcd abcd
ae e -abe be -ace ce abce -bce -ade de abde -bde acde -cde -abcde bcde -a -1 -ab b -ac c abc -bc -ad d abd -bd acd -cd -abcd bcd
be abe e -ae -bce -abce ce ace -bde -abde de ade bcde abcde -cde -acde -b ab -1 -a -bc -abc c ac -bd -abd d ad bcd abcd -cd -acd
abe -be ae e -abce bce -ace ce -abde bde -ade de abcde -bcde acde -cde -ab -b a -1 -abc bc -ac c -abd bd -ad d abcd -bcd acd -cd
ce ace bce abce e -ae -be -abe -cde -acde -bcde -abcde de ade bde abde -c ac bc abc -1 -a -b -ab -cd -acd -bcd -abcd d ad bd abd
ace -ce abce -bce ae e abe -be -acde cde -abcde bcde -ade de -abde bde -ac -c abc -bc a -1 ab -b -acd cd -abcd bcd -ad d -abd bd
bce -abce -ce ace be -abe e ae -bcde abcde cde -acde -bde abde de -ade -bc -abc -c ac b -ab -1 a -bcd abcd cd -acd -bd abd d -ad
abce bce -ace -ce abe be -ae e -abcde -bcde acde cde -abde -bde ade de -abc bc -ac -c ab b -a -1 -abcd -bcd acd cd -abd -bd ad d
de ade bde abde cde acde bcde abcde e -ae -be -abe -ce -ace -bce -abce -d ad bd abd cd acd bcd abcd -1 -a -b -ab -c -ac -bc -abc
ade -de abde -bde acde -cde -abcde bcde ae e abe -be ace -ce -abce bce -ad -d abd -bd acd -cd -abcd bcd a -1 ab -b ac -c -abc bc
bde -abde -de ade bcde abcde -cde -acde be -abe e ae bce abce -ce -ace -bd -abd -d ad bcd abcd -cd -acd b -ab -1 a bc abc -c -ac
abde bde -ade -de abcde -bcde acde -cde abe be -ae e abce -bce ace -ce -abd bd -ad -d abcd -bcd acd -cd ab b -a -1 abc -bc ac -c
cde -acde -bcde -abcde -de ade bde abde ce -ace -bce -abce e ae be abe -cd -acd -bcd -abcd -d ad bd abd c -ac -bc -abc -1 a b ab
acde cde -abcde bcde -ade -de -abde bde ace ce -abce bce -ae e -abe be -acd cd -abcd bcd -ad -d -abd bd ac c -abc bc -a -1 -ab b
bcde abcde cde -acde -bde abde -de -ade bce abce ce -ace -be abe e -ae -bcd abcd cd -acd -bd abd -d -ad bc abc c -ac -b ab -1 -a
abcde -bcde acde cde -abde -bde ade -de abce -bce ace ce -abe -be ae e -abcd -bcd acd cd -abd -bd ad -d abc -bc ac c -ab -b a -1

Gray marks extra -1 is required for the product. 560 white, 464 gray, 1024 total.