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FOREWORD

CoMmpPUTATION SEMINAR, sponsored by the International Business
A Machines Corporation, was held in the IBM Department of
Education, Endicott, New York, from August 13 to August 17, 1951.
Participating in this Seminar were ninety research engineers and scien-
tists representing computing facilities which employ IBM Card-
Programmed Electronic Calculators. The discussion centered on the
mathematical and computational aspects of a variety of important
problems which have been solved on the Card-Programmed Elec-
tronic Calculator. The formal papers of the Seminar and a digest of
the ensuing discussion are published in this volume. In addition,
informal papers were presented at several valuable supplementary
sessions. Dr. W. J. Eckert presided at a session on Training of Personnel
for Computing Laboratories at which Mr. Murray Lesser, Mr. Walter
Ramshaw and Professor Frank Verzuh led the discussion. Mr. P. M.
Thompson presided at a session on the Organization of a Computing
Installation at which Mr. W. D. Bell, Dr. H. R. J. Grosch, and Mr.
J. D. Madden gave short papers. Mr. E. B. Gardner presided at a
session in which there was widespread discussion of the subject of
Data Reduction. More generally, all participants in the Seminar con-
tributed generously in discussions. The International Business Ma-
chines Corporation wishes to express its appreciation to all who

participated in this Seminar.
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Application of the IBM

Card-Programmed Electronic Calculator to Engineering
Procedures ar The Glenn L. Martin Company

WARREN B.

KOCH

The Glenn L. Martin Company

THE PURPOSE of this paper is to describe the most
important engineering problems that have been adapted
for processing on the IBM Card-Programmed Electronic
Calculator at The Glenn L. Martin Company. However,
before starting upon any such discourse, it is advisable to
consider first the tools of operation—in this case, the type
of control panels that are in use.

It has been found necessary to design only two control
panels for the CPC, the operations available from one or
the other proving adequate to cover all needs up to the
present time. They are a floating decimal type with seven-
digit capacity and a fixed decimal with six-digit capacity.
Of course, it would always be advantageous to program
jobs on a floating decimal setup, but because of the addi-
tional complications involved in wiring such a control panel,
fewer operations are available than on a fixed decimal
design.

The operations programmed on the floating decimal con-
trol panel include only addition, subtraction, multiplication,
division, and square root, while the fixed decimal control
panel allows for all these operations in addition to that of
substitution of an argument into a polynomial of at most
the fourth degree. This latter operation works in conjunc-
tion with a selection which makes it possible to select any
one of a number of polynomials, depending upon the magni-
tude of the argument used. This type of operation is par-
ticularly valuable when it is necessary to approximate
graphical data with polynomials, and different equations
must be used over certain ranges of the curve.

Froarinc DEciMAL JoBs
Simultaneous Linear Algebraic Equations

We shall now consider the more or less routine jobs that
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have been adapted for the floating decimal control panel. .

The first of these is the solution of simultaneous linear alge-
braic equations. The method used is essentially the Gauss-
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Jordan method resulting in a unit diagonal matrix. Since
the floating decimal setup is used, no attempt has been
made to select the largest terms as divisors; rather, these
operator coefficients are selected down the main diagonal.
The solution is substituted back into the original equations
and, when necessary, the errors thus resulting are operated
upon to obtain corrections to the original results.

Flutter Analysis

The only type of flutter analysis which has been thus far
investigated is that of determining the critical flutter speed
of any aircraft; that is, the speed at which the damping
of the structure is attained. This job is laborious in that it
involves the expansion of a number of determinants of
order equal to the number of degrees of freedom for which
the aircraft is designed. The Dynamics Department has lim-
ited the size of these determinants to fourth order through
various simplifying assumptions, but a setup is now being
evolved which will handle sixth order determinants on the
CPC. The result of an expansion of one of these determi-
nants is a polynomial with complex coefficients of degree
equal to the order of the determinant.

A method has been devised of applying the CPC to the
solution of any polynomial with coefficients either properly
complex or real. Because of the limitations of storage, the
system has been designed for polynomials of degree no
more than eight. The mathematical technique involved is
Newton’s method. Up to the present time, no difficulty has
been realized in obtaining any roots—in fact, the number of
iterations required to obtain six-digit accuracy in the root
usually has been less than twenty.

Vibration Frequency Analysis

A method has been developed in the Dynamics Depart-
ment for determining the natural vibration frequencies of a
beam for either bending vibrations alone or coupled bend-
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ing-torsion vibrations. The calculation is initiated by first
dividing the beam into sections with discrete masses con-
centrated at each station and then describing these stations
by series of matrices.?

The matrices are written with the frequency factor, K, as
a variable. Then, by simply multiplying the proper coeffi-
cients by any value of K, the problem may be processed for
any particular frequency. The routine is simply one of trial
and error, where a value of K is substituted, and the asso-
ciated matrices of successive beam stations are continually
premultiplied until a final matrix equation is obtained re-
lating the boundary conditions on both ends of the vibrating
beam. The imbalance of any chosen end condition is plotted
against K and the process repeated for a new value of K
until a K is found which gives no imbalance. The K result-
ing in this balance condition determines the vibrating fre-
quency desired. The machine calculations begin after the
matrices have been written and cover the substitution of the
K values, the matrix multiplication, and the determination
of the imbalance between end conditions.

Transfer Functions

Quite extensive use of the CPC has been made in the
formulation and evaluation of transfer functions in the in-
vestigation of dynamic stability of guided missiles. The
transfer function of any component is essentially its equa-
tion of motion expressed in differential operator form as
the ratio of the input to the output. The closed loop stability
characteristics can be determined fromthe so-called Nyquist
diagram obtained from the evaluation of the transfer func-
tion. For a sinusoidal input, the phase and amplitude of the
output are plotted in the complex plane as a function of
frequency. The stability is determined as a function of the
encirclements of the —1 point on the real axis.

For the airframe itself, any transfer function (such as a
function of elevator, roll as a function of aileron, etc.) is
completely determined by the flight condition and aero-
dynamic properties as determined in a wind tunnel. A CPC
procedure has been set up to accept this type of data in
order to formulate any transfer function describing the
missile dynamics. The transfer functions of other compo-
nents (servos, amplifiers, valves, etc.) are determined by
either analysis or test.

Given the transfer functions of # consecutive components
in a control system—call them 4;, where: = 1, ..., n—
another procedure on the CPC obtains the response as a
function of frequency of not only each component A; but
also of the products A; X Ay, A1 X As X As, . . .
Ay X As X ... X A,.

b

aThe method of developing these matrices has been fully described
in an article in the October, 1947, issue of the Journal of the Aero-
nautical Sciences by W. P. Targoff entitled “The Associated Mat-
rices of Bending and Coupled Bending-Torsion Vibrations.”

COMPUTATION

Fixep DEciMAL JoBs
Stmultaneous Ordinary Differential Equations

The most important use of the fixed decimal control
panel, and in fact of the CPC itself, has been in the solution
of simultaneous ordinary differential equations. This prob-
lem has become one of frequent occurrence with the en-
trance into the guided missile field and its attendant prob-
lems of automatic control and trajectory computations. Of
course, this problem occurs within other problems but, by
far, the preponderance of work done on the CPC at The
Glenn L. Martin Company has been concerned with trajec-
tory calculations.

A stepwise method is used to solve the equations with
values of the dependent variables at the beginning of each
step determined by quadratic extrapolation from previous
information. These extrapolated values are then improved
upon later by a single iteration and the difference between
extrapolated and iterated values compared. This error is
used to determine the maximum allowable interval into
which the independent variable may be divided and also
serves as a check on the machine calculations.

There is almost no limit on the number of equations (or
dependent variables) that may be handled simultaneously,
and there is no problem in taking care of complicated non-
linearities in the coefficients.

Recently, a trajectory has been calculated at The Glenn
L. Martin Company in which three distinct rectangular co-
ordinate systems, each in three dimensions, were handled
simultaneously. It was necessary to write a set of 76 equa-
tions to describe the system completely. Of these, about
one-third were differential equations, and the rest were
either simply definition or angular resolution equations. Of
course, it was impossible to store all values of the dependent
variables; so it became necessary to summary punch many
of them and reload them into the machine at various times
in the following interval. This was done by prepunching
decks of summary cards with operation instructions and
then merely running the deck of program cards through the
402 once, replacing the pertinent cards with newly punched
summary cards and continuing this process until a com-
plete trajectory was calculated. Under this system, it was
possible to go through one complete cycle of processing
about 400 cards through the accounting machine, reloading
the new summary cards and starting to process again in five
minutes. A complete solution required approximately 80
machine hours and described 13 seconds of flight time.
Manually, this job would have taken some 3,000 hours.

Analysis of a Cabin Conditioning System

During the course of a recent investigation of the per-
formance of a cabin air conditioning and pressurization
system, an analytical method for studying this problem was
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devised. This method, although applied to just this one sys-
tem, should have extended application, and it can be tied in
exceedingly well with CPC methods. This is so because the
system is basically one of trial and error, where each trial
involves a lengthy calculation on a small amount of data.

The system contains essentially a primary compressor,
secondary compressor turbine unit, two heat exchangers, a
water separator, two combustion heaters and fans, and vari-
ous ducts, valves, and control mechanisms. The primary
problem is the establishment of criteria for determining an
unique set of operating points for the various components.
The only parameter known is the primary compressor im-
peller speed. All other compressor variables are unknown;
furthermore, the performances of the secondary compressor
and turbine are dependent on each other, and the perform-
ances of this entire unit and the primary compressor unit
are dependent on each other. Therefore, the performance of
the entire system cannot be predicted by any straightfor-
ward method of calculation, and a trial-and-error system
must be adopted.

T'he method most frequently used in this type of problem
is to assume several values of each of the independent vari-
ables, and calculate the performance until the values chosen
satisfy the equilibrium criteria. However, because of the
wide variations of the conditions of flight, and because of
the customary use of various automatic limiting devices
which arbitrarily change the functional configuration, it is
felt that this simple trial-and-error method is unsatisfactory.
Rather, several values of two arbitrarily chosen variables

are assumed 1n a systematic relationship so that existing

trends become apparent. In addition, if the various assumed
operating points bracket (or nearly bracket) the actual
operating point, this point can be established with accept-
able accuracy.

The CPC is particularly suited to this procedure, since a
few points may be computed rapidly and then any desired
re-trials may be run by simply changing a few load cards.

Wind Tunnel Data Reduction

Until recently, all wind tunnel data reductions have been
calculated on the IBM Type 604 Electronic Calculating
Punch. It has been found that the CPC can be adequately
adapted to this calculation with a resultant time saving of
60% over the 604.

All computations, with the exception of the correction of
forces and moments for residual balance readings, are per-
formed on the CPC. This initial correction is obtained more
conveniently on the 604. The remaining calculations in-
clude:

1. Converting the force and moment data to coefficient

form.

2. Correcting these coefficients for:
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a. Tare and interference, which is the influence ex-
erted on the model by the supports and support
fairings.

b. Alignment, or inclination of the wind stream to
the balance system.

c. Effect of the constraint of the wind tunnel walls.

d. Buoyancy, which is the effect of fore and aft pres-
sure gradients in the tunnel.

All of the data required to apply these corrections are
determined by exacting wind tunnel testing, and the correc-
tions applied in equation form to the aerodynamic coeffi-
cients.

These corrected coefficients lie in a wind axis coordinate
system with the origin at the point of attachment between
model and support. The coefficients are finally transferred
to two other coordinate systems: (1) the wind axes with
origin at the center of gravity of the model, and (2) the
stability axes.

Aeroelastic Influences on Control Surface Effectiveness

The aeroelastic problem is concerned with the loss of
effectiveness of control surfaces, including ailerons, flaps
and elevators, because of the elastic deformations of wing
fuselage and tail. The deformations are brought about by
both the twisting and hending of these various parts, which
are due to angle of attack and deflection of the control
surfaces.

Twisting is brought about by the fact that the chordwise
centers of pressure of loads which are due to control surface
deflections and angle of attack are not located at the elastic
axis, thus producing powerful torques which tend to twist
the wing or tail surface and change the effective angle of
attack. This twisting, in turn, produces loads which further
influence the elastic deformation of the wing or tail.

The problem is one of iteration since, to begin with, the
final spanwise twist distribution cannot be predicted accu-
rately. A twist distribution must be assumed, the torques
which are due to this twist and basic loads must be com-
puted, and a new twist distribution is determined from
these torques. With this new twist distribution, the problem
is started anew, and the same steps are carried out to find a
third twist distribution, and so forth, until the solutions
converge to a final twist distribution.

Once the nature of the twist curve is determined, the
problem becomes simple and straightforward. Now the load
distributions, caused both by the basic load moments and
the moments resulting from the twist distribution loads, are
computed accurately by the Weissinger method.

This entire computation procedure is programmed by
approximately two thousand cards, of which half are used
as many times as necessary (usually three) in the iteration
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procedure. There are only about two hundred cards con-
taining data that must be changed for different configura-
tions, and these are specially coded so that they may be
changed readily between jobs. This system, which takes
about four hours per configuration, has replaced a proce-
dure that usually required three weeks to complete by hand-
computing methods.

DISCUSSION

My. Von Holdt: At Los Alamos we punch out eight dif-
ferent numbers and put the instructions in 1 to 10 auto-
matically. They are in the instruction deck and go into the
summary punched card; so it is not necessary to have pre-
punched cards.

Dr. Brown: When you mentioned the 80 hours of run-
ning time on the machine, Mr. Koch, how did that compare
with the number of hours it would have taken by hand
operations?

My. Koch. It would have taken 3,000 hours.

Mr. Lowe: If I understood you correctly, you extrapolate
in your trajectory programming with some quadratic ex-
trapolations involving a prior point. Is that correct, or do
you use two prior points?

Mr. Koch: We use two prior points.

Dr. Yowell: I am very much interested in some of the
systems you say you have handled with more than eight
differential equations at a time, where you have had to
punch out the results from one step to the next and put
them back in again. Has it been necessary to punch more
than two cards with the same values on them?

Myr. Koch: Yes, it has. Occasionally we have had to
punch the same value in a number of different cards to be
used at different places in the calculation.

Mr. Lesser: With regard to summary punching multiple
cards from the same set of data, the technique that we used
was to bring out the 12-impulse from the digit-emitter in
the summary punch back through the summary punch X
control wires to the accounting machine through a latch
selector on the accounting machine, and then back through
a second summary punch X control wire to pick up punch
selectors. On additional summary punch cycles, the punch
selectors caused the data to be gang punched from the lower
brushes back to the punch magnets as many times as we
desired.

COMPUTATION

Also I was wondering if you have done any investigating
so that, instead of having to predict the next stop, you use
a much simpler form of numerical analysis and just take
your intervals a little closer together.

My, Koch: No matter how small the intervals are made,
we always have to predict.

Dr. Grosch: I would like to suggest the possibility of
increasing rather than decreasing the interval, for this
reason: The steps of Mr. Koch’s procedure take him about
five minutes; so this looks like something of the order of
1,000 steps he has to go through in his 80 hours. But sup-
pose we could decrease the number of steps tenfold by tak-
ing the interval ten times as large, at the expense of having
to store more data for the extrapolation. For instance, if
you have nine space intervals you might have to store four
or five extra orders of differences for each one of those nine,
1.e., 36; and that might mean punching out twenty or thirty
extra summary cards, which will take up ten or twenty
per cent extra time per step. But if you have reduced the
number of steps tenfold, you still have a gain of eightfold
in your time of running, and cut down from 80 hours to
ten hours.

It is true that the programming will be more complex,
and it is also true that every time you get a discontinuity
you are going to have more trouble in getting past. But I
think you are more likely to get more results out of your
machine by increasing the interval than by decreasing it.

Dr. Thomas: I would like to warn people that while what
Dr. Grosch has said is likely to be very true for computa-
tions which are carried to great accuracy, like astronomical
computations, it is not at all likely to be true for calculations
which do not have to be carried to such great accuracy, like
trajectory problems. If you are only going to something
like a tenth of a per cent to start with, then the optimum
interval for simple formulas is not going to be very greatly
increased by using more complicated formulas.

If, however, you wanted to carry the same calculation to

‘twice as many decimal places, you would probably do very

much better by using more complicated formulas than by
using shorter intervals. But for calculations which are only
of relatively low accuracy, from the astronomical point of
view, the very complicated formulas with many differences
really do not pay.



Reduction of Six-Component Wind Tunnel Data
Using the IBM Card-Programmed Electronic Calculator,
Model IT*

MURRAY L.

LESSER

Northrop Aircraft, Inc.

TEST DATA taken during a wind tunnel program on
a scale model of a Northrop airplane, conducted in the ten-
foot pressure tunnel at Wright-Patterson Air Force Base,
were reduced to coefficient form using the IBM Card-Pro-
grammed Electronic Calculator, Model II. Six-component
test data® for each test point were key-punched into a single
IBM card (average key punch time was approximately 75
test points per hour). The data cards were machine collated
into a prepared program deck, and the results were com-
puted and printed in coefficient form for both stability and
wind axes (simultaneously) in one pass through the calcu-
lator at a rate of three test points per minute. Because of
the nature of the balance system and the small size of the
model relative to the tunnel, corrections were not required
for tares or wall effects.

The programming and wiring of the CPC for this com-
putation are discussed in more than usual detail as an illus-
trative example of the flexibility available in the CPC
Model II.P This flexibility allows parallel-serial operation
of the calculator where a small number of digits will carry
the required information. With few exceptions, the compu-
tations required are elementary, and no originality is
claimed for the manner in which they are accomplished.

It should be pointed out that the machine time for an
equivalent computation on the CPC Model I would have
been approximately twice as long. Also, it would have been
necessary to split the key-punched data for one test point
into two cards, thus increasing the possibility of error
through operator mishandling as well as increasing the
key-punch time.

aData key-punched into the card consisted of the six wind tunnel
strain gage readings, the uncorrected angles of attack and yaw, the
tunnel dynamic pressure, and an identifying run number.

bIt should be noted that the discussion on machine operation (Sec-
tion IT) assumes a speaking knowledge of IBM computing tech-
niques on the part of the reader ; in particular, familiarity with the
concepts of the CPC Model I is implied.

ot

17

I. Dara REpuctioN FORMULAS

The test data are recorded, from a strain gage balance
system located in the sting mount, in the form of readings
on a Brown self-balancing potentiometer. In order to elimi-
nate tares and effects of battery voltage variation, a “zero”
reading for each strain gage is subtracted from the particu-
lar reading before the point is recorded on the key-punch
form (Figure 1). The recorded values, as entered on the
form, are the net strain gage readings divided by 100. The
six-component data are recorded from the balance system
in the form of forward and rear normal force gage readings,
ny and ng, respectively; chord force reading, ¢; forward and
rear side force readings, s; and ss; and a rolling moment
reading, 7. The associated loads are obtained from the fol-
lowing calibration data:

Ny = 3160n (Ib.)

¢ = 317¢ (Ib)

Sy, = 4425, (Ib) (1)
Se = 2295, (Ib.)

R = 44607 (in-Ib.)

In addition to the chord force determined directly from
the reading of ¢, it was found during the calibration tests
that there existed interaction effects on ¢ because of the
other loads. Hence, the net chord force, in pounds, is given
by the foliowing expression:

C = C’' 4+ 0.0116 Ny + 0.0050 N5 + 0.011 §;
+0022R +0888y. (2)

The value of y used above is the preset value, ¢, cor-
rected for deflection in the mounting system due to air-
loads. Calibration tests provided the following correction

*The terms Model I and Model IT are used in this paper as simplified
CPC designations for the Type 402-417BB, 604-3, and the Type
402-417A A, 604-2, respectively; the terms Model I and Model II
do not refer to actual machine types.—Editor’s note.
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COMPUTATION

I0- FOOT WIND TUNNEL TEST DATA

IN BOX IN UPPER RIGHT CORNER.
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FiLL ALL SPACES TO RIGHT OF LEAST SIGNIFICANT

FIGURE WITH ZEROS.

Fiourg 1. TrsT Dara ForM

expressions for the angle of attack, «, and the angle of yaw,
¥, in degrees:

@ = @ - 0.0016 Ny + f(Ny)

f(N1) = 0.0022 N, (for N; > 0)

= 0.0032 N; (for N; < 0) (3)

¥ = Y + 0.0028 S; 4 0.0020 S, .

From the geometry of the model and balance system, and
the conventional definitions of the aerodynamic forces and
moments, the following expressions are derived:

A. Stability Axes

4)
Lift = Ly = (N1+ Nj)cosa — Csina (1b.)
Drag = Dy = Ccosa-t (Ny+ Ng)sina (1b.)

Y,

Pitching moment = M,

=814 S, (1b.)
—0.169 N, — 9.581 N3 (in.-Ib.)

(—1.134 5y — 10.546 S') cos «
— Rsin a (in.-1b.)

I;=(—1134 5, — 10.546 S5) sin «
+ R cos & (in.-1b.)

Side force =

Yawing moment = #, =

Rolling moment ==



SEMINAR

B. Wind Axes

Lift = Ly =L,

Drag = Dy = Dscosy + YV,sinyg

Side force = Yw=Yscosy — Dysiny (5)
Pitching moment=M,, = M, cos ¢y + l;siny

Yawing moment = #n,, = #,

Rolling moment= [, = l;cos ¢y — M,siny

The aerodynamic coefficients are determined from the
airloads in the conventional manner.

C‘L = L/qu

Cp =D/qSw

Cy = Y/qSw (6)
Cu = M/qSwc

Cn = n/qSypb

Cr=1/gS,b

where
g = Dynamic pressure (lb./ft.%)
Sw = Model wing area (it:2)
Model mean aerodynamic chord (in.)
b = Model span (in.).

All numerical values are carried in five-digit (plus sign)
counters. The lift force and all moments are computed to
one decimal place, the chord and side forces to two decimal
places, and the angles of attack and yaw to three decimal
places. The final coefficients are presented to four decimal
places (a maximum of five significant figures in all cases).

s
It

1I. CompurATION PLANNING CHART

Detailed planning of the computation was carried out di-
rectly on the program-deck key-punch form in the normal
CPC manner. This planning sheet is shown in Figure 2.
However, before such a planning sheet could be prepared it
was necessary to establish the desired characteristics of the
particular computing machine to be used for the problem.
By this is meant that through proper design of the control
panel wiring, a card-programmed calculator having the par-
ticular arithmetic and transfer properties best suited to the
problem at hand was constructed from the available units in
the CPC Model II. The process of design for this problem
was somewhat as follows.¢

Since all of the numerical values to be computed would
be limited to five significant figures, the counters of the
IBM Type 417 Accounting Machine, Model AA, could be
divided into 12 six-digit counter groups, each having a
capacity of five numerical digits plus sign. (Note: Four
counter groups, counters 8A, 8B, 8C, and 8D, each have a

¢Schematic wiring diagrams of the Type 417 circuits are shown in
Figures 3A and 3B, pages 21 and 22. Definitions of the notation
used are given in Figure 3B.
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capacity of seven digits plus sign. The unused digits are not
wired to the entry or exit chains.) The use of 12 counter
groups was also suggested by the fact that there are twelve
items (exclusive of run number) to compute and print for
each point: a, y, C, Cy, and two values each of Cp, Cy, Cy,
and C;. Also, twelve is the maximum number of counter
groups that can be controlled by punchings in a single card
column, by numbering the counter groups from 0 to 9 and
X and R.% Thus, control of a given counter group for any
function desired (read-out, read-in, reset)® could be ef-
fected by splitting time pulses from punchings in a single
card column, for each function, through a coding selector
(for the digits) and a pair of co-selectors picked up by the
split column controls (for the X and R impulses). Sche-
matic diagrams of the various counter control circuits are
shown in Figures 3A and 3B, pages 21 and 22.

Inspection of equations 2, 3, 4 and 5 indicate that most
of the arithmetic operations involved may be put into the
forms

Fi = a1x + byy
F2 = Q¥ — bgy, (7)

where the a’s and b’s are either constants or trigonometric
functions of variables, and the #’s and y’s are the variables
involved in the equations. Consequently, the entry selector
chains, i.e., the relay paths or channels over which informa-
tion is transmitted from specified 417AA counter groups to
the 604 Electronic Calculator (the arithmetic unit of the
CPC), were designed with these two functions in mind.
The two built-in channels, A and B, are used only for entry
of constants from cards in the program deck, or of factors
from the storage register (where the needed sines and co-
sines are stored as computed). Channels D and E are made
up from selector chains to carry information from the
417AA counters. Card read-in (positive numbers only) is
also available on channel D. The “normal” control proce-
dure for reading information from the storage registers
(16 registers of ten digits plus sign) over channels A and B
is modified to allow choice of either the five low-order digits
(with sign) or the five high-order digits (positive numbers

(Continued on page 23)

dQver-punches referred to as X and R are 11 and 12 punches, re-
spectively.
¢As wired for this problem, numbers stored in 417AA counters are
left unchanged when they are read out to the IBM Type 604
Electronic Calculator. Numbers read in to the counter from the
604 are added algebraically to the previous value standing in the
counter. Resetting the counter destroys the number, and leaves the
counter standing at zero. The control panel wiring is such that only
one of these three functions may be performed on a given counter
group during a single card cycle. However, because the read-out
instructions are obtained from upper brushes and reset instructions
from lower brushes, read-out and reset may be programmed on a
single card, the two events occurring on consecutive card cycles.
It is not possible (as wired here) to read-out and reset on one card
cycle and have the same counter group available for a read-in on the
following cycle, i.e., the results of a 604 operation cannot be imme-
diately stored in a 417AA counter group from which one of the
factors used was obtained. This restriction is recognized in pro-
gramming.



Channel A

Channel B

Channel D

Cr

«wB[F 2l ela.
Card R.I. Card R.L Card R.I. Inst. Inst. jInst. Tn;f Inst. |Inst. :55 §' % E gz (ﬁ:'i Remarks
1 2 3 4 5\6 7 8 9 10\ 12 13 14 1556 57|58 59| 60 |61 |62 63| 64 |65 |66 |67 | 68| 60 |77 78« Card Column No.
+. + -?;_” + +]o oo o 107 31 X |0 1| LoadgSw & Data (1)
1 8 X 0 2| Load Run No.
3. 1 6 0 0 0 3 9 (3 3|1 0 38|N,
.8 0 8 ) 4 0|4 (3|1 0 4N,
3 1 7 0 0 o 5 b AFRERE! 0 s5(cC
4 4 2 0 0 0 6 R{6 |31 0 6|5,
.2 2 9 0 0 o 7 37|31 0o 78S,
4. 4 8 0 0 o 8 4|8 )31 0 8|R
0.0 0 1 6 0 o 0 1 3|3 0 9 |ag
0. 0 0 2 2{0. 0 0 3 2 o olo o 9 1 213 10| aa,=[F(Ny]
0. 0 0 2 8[o0. 0 0 2 0 o olo o|R|3 2 3|2 1 1]
1 7 4 5 3 1. 0 o 1 )2 7 1 | X 1 2|cosasing
1 7 4 5 3 1. 0 0 2 |2 s 1 (X 1 3 |cosy,sing
0 1 1 6 010 0 5 0 0 0o oo o|9]o x| |3 |1 1 4 ]ac
0 1 1 o0 0 2 2 0 0o oo o|R|[3 X 3|1 1 5{ACG
2 2 0 0 o0 .8 8 8 0 0o 0]0 o 42 X 3o 1 6] ac
1. 1. 0 o0j0 of9fo 5 315 1 7] N+ N,
1 6 9 §lo .5 8 1 % o ofo o090 6o (3|1 18|,
2 7 5 0 3|2 1 9| (N, + Npsing
2 ¥ X 0 311 2 0| Ccosa (D))
2 X 5 8551 2 1| (N, +N)cosa
2 7 X g8 |xX {510 2 2| —Csina (L)
1. 1. 0 010 o0 3 X 315 2 3|S5+, (¥)
1.1 3 ¥l1 0.5 4 X o olo ol R|a BEEE 2 4| —(11345,410.5465,)
2 8|2 Flo(x |1 1 5 |1 2 517,
17 8 3|84 |5 2 6]|C
2 702 Elalo R 5|1 2 7 |n
2 X2 7f/4fo N 2 8|l
T 1 6 3|2 2 9| aSe?
L L ) 3|3 3 0 |gSub
2 ¥l2z 8|e6|s |1 2 3|1 3 1| M,
2 8l2 X|6|8 |1 3 5|1 3 21l
2 Xl2 8|o|x |1 14 3|1 3 3|D,
17 0 40 [4fa 3 4{cCp,
1 6 6 5|6 |4 |4 3 5| Cu,
17 X 6 |X |4 |4 3 6|Cy,
105 8 7 |8 |4 |4 3 7|C
1 5 R 8 R |4 |4 3 8lc,
1 3|1 5 9 6 |4 3 o|a,
1 2|1 & 0 6|4 4 0| cCy,
1 o417 X 6 |4 4 1[Cp,
1 1|1 7 R 6 |4 ¢ 2|cCy,
X 4 3 |Prnt
)f 8 0 0 | Compare Run No.

Note 1. The information on program-deck card 1 is gang punched into all the data cards key punched from Figure 1. These
cards are collated into the series of program decks (using X-69), and become, in turn, card 1 of each program deck.

Ficure 2. ProcraM-Deck Kry Punca ForMm
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al s,
-
G.S. 2 EXIT[G.S. 4 EXIT [+ 604 COUNTER EXIT|-
ps,

CS 58, 59, 60 S 58

lX.P.UrL.B. 67|

|cH. ¢ SHIFT ENTRY (MATCH LOW)|-]

DATA CARD ENTRY CIRCUITS

|LOWER BRUSHES [ 16-20 | 21-25 | 26-30 [ 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |

|COUNTER ENTRY]C.G. 1]c.G. 2] c.G. 3[c.G. 4[c.G. 5[c.G. 6]C.G. 7|C.G. 8|

X.P.U-U.B. 69

MQ RI

NOTE 3

PS 6 8 9¢ 109 15

2 3 4

alflf ]

FSRI 1, 2, 3, 4

[ALL-CYCLES 10 COMMON]

)
I“;_-..

o

li] m [ 7] M — COUNTER

CONTROL

CONTROL CIRCUITS

CARD
5 CYCLE
Ps1

ASSIGN FS1 6-4

1-2 ONLY)

[L.B. 66}——]OPERATION]

[L.B. 67}———]sHIFT]

[L.B. 62, 63}{CH. C CONT,]

[u.B. 56, 57cCH. A conT.]
[u.B. 58, s9}—{cH. B cONT.]

NOTE 1: 12 C.G. CHAIN CONTROL

* 0 11

SPLIT COL CTRL

NOTE 2: CHANNEL D CHAIN. Since FS 1, 3 requires six digits for complementing negative counter readings,
take sixth place from C.G. sixth-order position. Carry this digit in unused side of PS chain (sign chain). Note,
also, there is no provision for negative numbers on channel D card read-in.

NOTE 3: Data entry sign control pilot selectors picked up by U. B.—X. P, U, X in low order of field denotes
negative value.

Ficurg 3A. ScerMaric or TyrE 417 ConrTrOL PANEL WIRING DIAGRAM
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{D.P.U. (CODE SEL. 4) — L.B. 65 (NOTEHI

417 COUNTER RESET & PRINT CONTROL CIRCUITS

fﬂ‘
o
T CYCLES elg
CYCLES 5|
TO ALL C.G. 5|2 e
T PS 74, CS 70,71 P ‘ -
Ps 61-72 ¢ (TYP) it " 2 ~
slil s
C.G. () TOTAL a2 :.
|-
C.G. () =
NEG, BAL. =2}
TEST EXIT 8
n ‘ =
.o v
PS 61-72 (rYp) 2|8 =
- TO ALL C.G. Qe fay
Al

INDIV, p'rs.l PS 73, CS 68, 69
+— C.G. () NEG. BAL. CONTROL |

SIGN CHAINS

CH, D& E

CARD CYCLES

SPACE CONTROL 0

cs1
*

PS5

L]

X.P.U~LB 68
PS

RUN-SPACING CONTROL CIRCUIT

U.B. 6-10

cs2
COMPARING
ENTRY

COMPARING
EXIT

ENTRY

ICOMPARING

PS,CS 55

MIN. PROGRAM START|

CHANN. HOLD l

* SYMBOL 4

MINOR STOP

SEQUENCE CONTROL

U.B. 79-80

L.B. 77-78

COMP. ENTRY
COMP. ENTRY

DIAGRAM NOTATION

BRUSH. READING CARD

U.B. 73 (UPPER BRUSH - SECOND READING)
COLUMN 73 (etc.)

L.B. 73 (LOWER BRUSH - THIRD READING)
PS 14 (CS 14) PILOT (CO-) SELECTOR 14
SELECTORS are double-throw relays.
PILOT SELECTORS are two-pole and have three types of pickup.
X.P.U. picks on X or R. } ONE-CYCLE DELAY
D. P.U. picks on any pulse except X or R.
L P.U. immediate pickup (and coupling exit). .
CO -SELECTORS are five-pole and have I,P, U, only (usually picked up
from PS coupling exit):
CODE SELECTOR: Takes digit (0-9) pulse at common and distributes it
. according to digit.
FIELD SELECTOR: Ten-pole, eleven-throw (0-9 plus normal) relay, thrown
to appropriate level by digit (one-cycle delay).
SU. CH. 1 (SETUP CHANGE 1): Emits pulse every cycle when toggle switch
is thrown.
A CARD COLUMN has 12 possible punches: the digits 0-9, and X and R.

SYMBOLS:
SELECTOR SELENIUM RECTIFIER

COMMON HUB
PS 14 / :]

~—DIRECTION PULSE CAN
TRAVEL

®<-TRANSFERRED

NORMAL
X
"“~SOURCE OF P.U. PULSE

NOTE: Only onre point shown, but all are wired individually.

MISCELLANEOUS

CALC.

NBAC

SPECIAL PROGRAM

NOTE: Setup change switch number 1 for checking

only.

PRINT CIRCUITS

TYPE BARS
COUNTER GROUP || CTR EXIT | CR SYMBOL
(2A 4B) A -12 | AN 13
(2B 4B) Al -19 | AN 20
(6A) AN 22-26 | AN 27
4 (6B Al -3 AN 34
5 (8A Al -40 [ AN 41
(8B Al -N3 4
7 (2C 4C) N 6-10 N 11
(2D 4D) 3-
9 (6C -20-24
0 (6D, 7-
X (8C 4-38 N 39
R (8D N 40-44 N 45
See also: lower left section of Data Card Entry

Circuits.

Ficurg 3B. Scugmartic oF TyrE 417 ConTroL PANEL WirING DiscraM
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only) under control of X punches over the channels A and
B instruction columns. The reason for this will be discussed
below. Accounting machine wiring is such that all read-in
stations in the 604 reset on every card cycle if no new in-
formation is entered.

Read-out from the 604 to the 417AA or the storage regis-
ter is either from the electronic counter or from general
storages 2, 4, and 4-sign to the 417AA channel C shift
entry, under control of an X punch in the card column con-
trolling the shift. The primary purpose of this arrangement
is so that both the sine and cosine of an angle can be com-
puted simultaneously in the 604, the sine being computed
in general storage 4 (with sign) and the cosine in general
storage 2 (always positive, as all angles are in the first or
fourth quadrant). Thus, both the sine and cosine are com-
puted and stored in a single storage register on one card
feed. These two sources are wired into the channel C shift
entry, through co-selectors, such that a column shift of five
would match low-order digits at the channel C shift exit.
Successive low-order digits may be dropped off (and the
corresponding high-order digits picked up) by calling for
shifts of 4, 3, 2, 1, or 0. Numbers at the channel C shift exit
are available directly to any one of the 16 storage registers
under digit control from the cards to channel C control
(read-in of a new number to a storage register destroys the
number previously stored there). These numbers are also
made available to the various counter groups through the
channel C; selector chain, along with an “add” instruction
to the counter group receiving the number. As the 604 reads
out true numbers plus sign, the counter reversal controls
were wired to the channel C exit sign through the same
chain. As shown, the field selector was used for the major
portion of this chain. There are no provisions for alge-
braically subtracting the results of a 604 computation from
a counter group.

Provision is made for direct read-in of the test data to
eight counter groups (ay, Yu, #1, B, ¢, $1, S2, and ) from the
key-punched data card under control of an X in card col-
umn 69. Negative values are indicated by an X punched
over the low-order digit of the specific number; the X picks
up a pilot selector, which causes “counter minus” instead of
“counter plus” to be pulsed for that counter group. The run
number is printed directly from the card, and is also stored
in the 604 for later transfer to a storage register. The dy-
namic pressure, g, is multiplied by the wing area, .S, dur-
ing the data read-in cycle, and the product is stored in a
storage register.

The 604 operations are as follows. The operation num-
bers are those called out by card control and refer to the
calculate selectors used. The detailed planning sheet for the
604 is shown in Figure 4, page 24.
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Operation 1: sin x, cos x

Noting that

5

3

sinx:x—%—i—%—-.
and

2 4
cosx:l—;—!—l—%—... ,
2 3 4 5
sinx—}—cosx:1+x—;—!~§!+%—|—%—...
or sinx 4+ cosx = Y.,
n=0
where Vo= Yaus (2) (= 1))
YVo=1

and f(—=1) = —1 for a sin x term

= 41 for a cos x term

Thus, both sin » and cos # may be computed simultane-
ously by alternating the sign of the multiplication and the
location of the summed quantity on each sweep of the 604,
continuing until ¥, tests out to 0. In this process, use is
made of the fact that the 604 group suppress triggers act as
flip-flops; i.e., if both sides are pulsed simultaneously, the
group suppress will take on the condition (on or off) oppo-
site to that previously held. It should be noted that a “one”
must be read into channel D (initial value of »n) and
“17453” into channel B (to convert degrees to radians)
from the card in order to compute sin # and cos x.

Operation 2: {(N1) (see equation 3)

0.0022 is read into channel A and 0.0032 into channel B.
This operation discriminates on the sign of the number read
into channel E, and uses the proper multiplying coefficient.

Operation 3: BE + AD

This is the F; of equation 7. Note that there is no round
off, as all digits appear in the 604 counter. Unnecessary
decimal places are dropped off in the channel C shift. Note
also that D + E may be formed by reading “ones” into
channels A and B from the card, and that AD may be com-
puted by leaving either B or E blank.

Operation 4: E/B (B>E/10)

This is used to compute the stability-axes coefficients.
The various denominators (¢S, ¢S, and ¢S,b) are com-
puted and stored in appropriate storage registers, available
through channel B.

Operation 5: BE — AD
This is Fy of equation 7. E — D may be formed from
this. It should be noted that this is the only operation in
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SEMIN AR

which a choice of a particular counter group to channel D
is necessary. Thus, channel D is not wired to all counter
groups, but only to those requiring this operation.

Operation 6: A/B (B>A/10)

This is used to compute the wind-axes coefficients, as
the wind-axes airloads and moments are stored in registers
and are available only to channels A and B.

Operation 7: B—> General Storage 4

This is used in the initial data read-in to hold the run
number in the 604 for transfer to a storage register on the
next card cycle. The denominator term, ¢S5, is also com-
puted on this card cycle by picking up both calculate selec-
tors 3and 7 (g in A, run number in B, S, in D, and noth-
ingin E).

It should be noted that the 417AA counters are not con-
verted prior to resetting except during checking runs
(checking runs are made by listing all cycles through use
of setup change switch number one). However, all counters
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are wired for conversion at print-out time. The manner in
which this is accomplished is shown in Figures 3A and 3B.

The only other 417AA control of interest is the spacing
control between runs. Prior to the calculation of each test
point, the run number on the data card is compared to that
stored from the previous point. If they are different, an
automatic total cycle is initiated, which causes the tape to
skip four spaces before starting the new calculation. The
only purpose of this is to separate the different runs for
ease in reading.

There is also a sequence control to stop the machine if
cards in the program deck should be out of proper sequence.
The wiring of this is obvious from the schematic diagram
(Figure 3), and the fact that each card carries its own num-
ber in columns 77-78, and the number of the preceding card
in columns 79-80. Cards are numbered from 0100 (columns
77-80) to 0041, 0100 being the data card, and the remaining
41 cards being the associated program deck.

Card-column assignments for factor read-in and the vari-
ous control operations are shown in Table 1.

TasBLe 1
Carp CoLUMN ASSIGNMENTS
Column
Nuwmbers Ttem Value on Data Card
1-5 Channel A read-in (X-5, negative)...... Dynamic pressure, g
6-10 “ B (X-10, “ H...... Run number
11-15 «“ D ¢ Wing area, Sw
16-20 Counter group 1 read-in (X-20, negative) .......... o
21-25 “ “ 2 4 (X-25, ) Vu
26-30 “ “ 3« (X-30, “ ) o
31-35 “ “ 4« (X-35, ) N2
36-40 “ « 5 ¢ (X-40, ). c
41-45 “ “ 6 “  (X-45, “ ) $1
46-50 “ “ 7 “ (X-50, ) S2
51-55 “ “ 8 “ (X-55, ) r
Column
Numbers Item Value on Program Card
1-5 Channel A read-in (X-5, negative)...... Constant
6-10 “ B (X-10, “ H)...... “
11-15 “ D e e “
56-57 “ A instructions................. Choose card or storage register
58-59 “ B e “ oo« “ “
60 “ D e Choose card (blank) or counter
61 “ E e Choose counter group
62-63 “ C to storage instructions........ Choose storage register
64 “ C: to counter O .. Choose counter group
65 Reset counter group (or groups)........ Digit to reset specified group
66 Operation........eueeieineenninnennns Choose 604 operation
67  Shift .vtii i e Channel C shift control
68  Print.......i.iiii i X prints out counters
69 Dataread-in...............ccciiinnia. X loads data in all counters
70 Clear all counter groups............... (not used)
77-80 Sequence control
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APPENDIX

The procedure used to design the control panel wiring
described in the body of the paper may be extended to apply
to any problem within the selector capacity of the machine.
In a similar manner, general-purpose panels may also be
built. The distinguishing feature of a general-purpose panel
is that the numbers in any 417AA counter group are avail-
able, under card control, to any of the read-in stations being
used in the 604. There are a variety of such panels in use
at Northrop, varying in the manner in which numbers are
presented to the type bars, the use of net-balance conver-
sion, whether or not the 417AA counter “read out and
reset” feature (an 80 code on the CPC Model 1) is wired,
the manner, if any, in which numbers on cards may be read
directly into 417AA counters, and in the number of counter
groups available and the number of digits in each. Use of
one of these general-purpose panels, together with a gen-
eral-purpose 604 panel, allows card programming of the
simple, infrequent problem in a manner similar to that used
for the Model I. Problems worked on such panels include
solutions of sets of simultaneous differential equations, in-
version of low-order matrices (within the storage capacity
of the machine), calculation of the matrix for the spanwise
airload distribution on a swept wing, etc.

However, if a problem is very complex or if the problem
is to be repeated time after time, it is usually found that the
additional planning time involved in a special set of panels
is more than paid for by the decreased running time. As an
~ example, a more sophisticated version.of the Monte-Carlo
problem described by W. W. Woodbury at the November,
1949, Seminar was run using a single card per process. In
this problem, on each card two types of “scattering” were
considered, two sets of “capture” probabilities were com-
pared, two different mean free paths were considered, and
tests were run on the geometrical limits on the problem.
A choice was made of each of the alternatives as a function
of the location of the particle within the space considered
by the problem. The necessary tests were about evenly di-
vided between the 417AA and the 604. Almost every selec-
tor in the machine was used. This problem was literally
impossible to perform on the Model I because of card han-
dling difficulties, lack of counter flexibility, and elapsed time
limitations.

COMPUTATION

Probably the most spectacular examples of elapsed time
savings due to the use of special panels on the Model II are
in the field of structural calculations. A typical ratio for
most routine calculations, such as wing and fuselage section
properties, show an elapsed time savings of about 15 to 1
over the equivalent computations using the maximum effec-
tive number (usually about four) of operators at desk cal-
culators. The ratio over the same problem on the Model I
is about 3 to 1 in favor of the Model II, including consider-
ably less card handling with its associated possibility of
accidental error. The elapsed time savings have allowed us
to compute structural analyses, rather than to use “best
guesses” for early preliminary design purposes.

DISCUSSION

Mr. Bell: We have had some experience in doing wind-
tunnel work, and have done several things to help remedy
the problem of getting enough numbers in the machine. By
spread loading, seven numbers can be put in the seven
counters. Also, two more numbers can be read into channels
A and B, and hence into the 604. The two numbers in the
604 can then be added and their sum stored. On the follow-
ing card cycle one of the numbers is wiped out by reading
nothing in and storing the one number. Then, a little later,
that one number can be subtracted from the sum, thus giv-
ing the remainder. _

My. R. W. Smith: We have the Model I CPC, and we
find by using a digit selector as a shift unit we can load in
13 numbers on one card, loading two five-digit numbers
into a counter at a time. To avoid difficulty with negative
numbers, we add a constant to the numbers so that they
will all be positive.

Mr. Lowe: I wonder if Mr. Lesser has made an analysis
as to just how much time was saved in this wind-tunnel
problem by wiring this Model I control panel versus using,
let us say, the simplest sort of general-purpose setup.

My. Lesser: Actually it is about a two-to-one saving.

Dy. Grosch: How many cards are in a program deck?

Mr. Lesser: Forty-one, including two blank cards that I
found necessary afterward.



IBM Card-Programmed Electronic Calculator Operations
Using a Type 402-417BB and 604-2

MARTHA KENYON
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U.S. Naval Ordnance Test Station, Inyokern

DURING the past few years, the art of technical compu-
tation using punched card methods has advanced very rap-
idly, and the fact that the International Business Machines
Corporation has sponsored five Seminars on Computation
in the last three years is evidence of this advancement.
Further evidence no doubt is in the minds of many of the
members of this 1951 Seminar, devoted to the IBM Card-
Programmed Electronic Calculator, who were in 1948 per-
forming calculations with the IBM Type 601 Electric Mul-
tiplier. In the space of three years most IBM installations
have made several changes in equipment, and are very
pleased with the rapid progress in the development of elec-
tronic computing equipment.

In rather rapid succession the IBM Type 602 Calculat-
ing Punch, the Type 603 Electronic Multiplier, the Type
602-A Calculating Punch, the Type 604 Electronic Calcu-
lating Punch and, finally, the Card-Programmed Electronic
Calculator were each-the “latest thing” in IBM computing
machinery. In a comparatively short time after the CPC
was introduced, increased storage was available, and now
improved machines known as the Model AA 402-417 and
Model 2 604 are being manufactured.

In December, 1950, a CPC using a Model 2 604 was put
into operation at the Naval Ordnance Test Station, Inyo-
kern, California, and has been found to be superior to the
standard CPC for many problems. It is the purpose of this
presentation. to describe the special features of the Model
2 604 and to demonstrate how these have been employed in
two computational problems. The first is a data reduction
method for which the required computational time on the
standard CPC was reduced by one-half, using the Model 2.
The second is the solution of certain differential equations,
the numerical methods for which were found to be better
suited to the Model 2 than the standard 604 (Model 3).2

Dara REDUCTION PROBLEM

As one might expect at an establishment where rockets
and guided missiles are tested, efficient and rapid data re-

aThe first problem to be discussed was the responsibility of Mr.
Bruce Oldfield, the second was that of Miss Martha Kenyon.
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duction procedures are very important aspects of the devel-
opment program. One particular reduction procedure for
which the Model 2 604 was best suited was that of deter-
mining the space coordinates of a missile in flight, making
use of elevation and azimuth angles as recorded by cine-
theodolites.

The particular mathematical procedure was such that the
CPC method which appeared to be the most efficient in
terms of computation time per point made it necessary to
break the procedure into more than one part. In addition,
the 604 control panels as used in each CPC run were so
laden with wires that it was time-consuming for checking
purposes. Although fully wired control panels are certainly
nothing new to CPC and 604 users, it may be interesting to
note that one of the 604 control panels originally used in
this problem contained approximately 330 feet of wiring.

In an effort to improve the CPC procedure for the data
reduction and other problems, modifications of the basic
604 were undertaken. The modifications were based on
operational experience gained at Inyokern, as well as at
other CPC installations. The Model 2 604, as the advanced
version has been designated, differs from the basic CPC 604
in the following ways:

Three program levels.
Program pickup.

Additional calculate selectors.
Program repeat selectors.
Repeat delay.

Program expanders.
Program source filters.
Program suppression filters.
Channel C shift.

Before indicating how the special Model 2 features were
used in the data reduction work previously mentioned, it
should be emphasized that this discussion is not intended to
evaluate the mathematics of the method but to demonstrate
how a particular procedure was actually fitted to the ma-
chine. Several mathematical approaches to the problem are
possible, and different ones have been used at the Naval
Station, depending in part upon the available facilities. For

RN LN =
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example, the method used with a 602 was different from
that using a 604. Likewise, the CPC permits the use of a
different mathematical approach than the 604 alone because
of the possibility of sequencing calculations.

The method now in use® is a multi-station solution where,
in our work, elevation and azimuth angles from three cine-
theodolites located along the range line are given for dif-
ferent times during the missile’s flight. Each of the three
cinetheodolites, therefore, establishes a line in space, and
the missile is at their intersection. Actually, two lines are
sufficient to locate the point in space, but an intersection is
rare in practice because the data are not exact. There are
several reasons for errors in data, including those associated
with the many components of the system, the misalignments
of the theodolites and the measurement of the film. The
CPC solution corrects the angles for certain errors of the
type just mentioned and makes use of a method of least
squares to locate the most likely point in the region where
the three lines nearly intersect.

As a check on the machine computation, on certain con-
stants associated with the station coordinates, as well as on
the original data, residual angles are determined. From the
point just located, the problem is done in what might be

called the reverse order, and the elevation and azimuth .

angles are computed for each of the three stations which
would be required to determine that point. The residuals
are the differences between these recomputed angles an
the corrected original angles. ‘

The present method, which is designed for a computer
capable of considerable sequencing, such as the CPC, makes
use of certain weighting factors in the computation. The
cinetheodolite stations are widely separated from each other
along the range line; hence, the three missile-to-station dis-
tances are different. Since for any one point in space the
data from far stations does not have the same importance
as that from near stations, weighting factors, which are
functions of the missile-to-station distances, are determined
from the space coordinates of the missile at the last com-
puted point and are introduced into the computational
procedure.

bThis method was submitted to the IBM Section by Dr. John Titus
of the Station’s Assessment Division.

COMPUTATION

The computation cycle accomplishes four steps:

1. Applies corrections to original elevation and azimuth
angles.

Determines the space coordinates of the missile.
3. Computes residual angles.

Stores results as required to weight data for the next
point.

The equations used in the first three steps of this reduc-
tion process are shown in Figures 1, 2, and 3, respectively.

As previously mentioned, using the original equipment,
the most rapid and efficient method developed at the Naval
Station required four runs on the CPC. The first CPC run
computed certain corrections and converted the original
angles to their first quadrant equivalents. On the second
CPC run, a card for each point which contained the sines
for each of the six angles as recorded at the three cinetheo-
dolite stations was computed and punched out on the Type
521 Punch Unit. The third CPC run computed the cosines.
These sine and cosine cards were then placed in an instruc-
tion deck, and computations as described in Figures 2 and 3
were completed. The corrections which were made to the
angles in this original procedure were not so complete as
those now employed.

Although this original CPC procedure was superior to
that used previously, which required nearly twenty 604 con-
trol panels or about forty 602 panels, it was preferable to
make only one run since such a procedure not only saves
time but decreases the chances for errors. By using the
greater capacity of the Model 2, only a single run is neces-
sary. Figure 4 shows the operations which were wired in
the 604 control panel.

The total machine time for the Model 2 procedure is ap-
proximately 2.5 minutes, and uses a 295-card instruction
deck which includes three data cards. This time is much
better than that obtained with the former CPC method
using the Model 3 604, which required about 5.5 minutes
per point and, as previously mentioned, did not compute all
of the corrections currently used. A breakdown of the prob-
lem in terms of groups of instruction cards is shown in
Figure 5.

A=A +dsinA" tanE' 4 6
, 4 X?tanE’
E=E+dCOSA —liT‘é—

where

and

E' = E0+AEC2+ (yp—'YQ)C4 + OE

—222(10-7) V(#—X) F (=22 (1—.0106 E")

A = So + ASC] + [(Xp—Xo)C;; + C] SCCEl [1 +

(Yp—Yo)C4 tan E’
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Program

Operation Level Remarks*
1. 4A4+B=C A
2. A—-B=¢C A
3. A+ B=2"C A
4, A - B=C A
5. -4 - B=¢C A
6. (A1°B1) & (A2-Bz) + (A3-Bs) = C A Uses results of previous step(s).
7. 'Transfer: A May drop high-order digit if
Resultin C'to 4 desired.
Resultin Cto B
Result in C to 604 storage
8 1-B2=C A
9. A/B=C B
10. VA=C B Final answer in B if needed.
11. Reduction of angles to first quadrant B Program level change to compute
sine or cosine.
12. Convert degrees to radians, keep C Functions to 7 decimals.

correct sign for sine or cosine and
compute function

*All operations are 10 X 10 except computation of sine and cosine.

F1cURE 4. OPERATIONS WIRED IN 604 PANEL

Card
Group Numbers Operation

A 1- 40 Make corrections. Compute sine and
cosine for angles at first station.

B 41- 80 Same as Group A but for second
station.

C 81-120 Same as Group A but for third station.

D  121-126 Compute direction cosines.

E  127-129  Compute tangents of measured eleva-
tion angles to be used in computation
of residuals.

F 130-139 Compute weighting factors, p?.

G  140-206 Compute coefficients of matrix.

H  207-210 Compute tangents of measured azi-
muth angles to be used in computation
of residuals.

I 211-237 Solve matrix.

J 238-287 Complete computation of residuals.

K 288-295 Print results and store quantities as
required for next point.

Fi1cure 5. CARD-PROGRAMMED OPERATIONS
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DIFFERENTIAL EQUATIONS PROBLEM

Whereas the work just presented is a routine data reduc-
tion operation, the second problem is of a theoretical nature
in which it was required to solve some differential equations
by numerical means in order to determine the desired geom-
etry for certain components of an ordnance item.

The sequential nature, the accuracy requirements and
the comparative simplicity of each particular step suggested
that it was a very good problem for the CPC. The main
difficulty was associated with the number and length of
operations involved. The problem was considered for a
CPC with a standard 604 but was found to be much more
easily set up for the Model 2. The operations which were
required on the 604 are shown in Figure 6.

The 180 program steps were treated as three separate
sets of 60, and there was no attempt to go through all 180
at once, but instead to pick up the appropriate program
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level. Operations which were used together were grouped
together. However, it was not necessary to have consecutive
operations on the same program level, provided the same
program steps were not required on both levels. The usual
wiring was to plug the program pickup source into the com-
mon of the controlling calculate selector and the transferred
side connected to the program pickup.

Much use was made of the program suppression filters.
Programs were frequently suppressed on plus, minus, zero
or non-zero balance or on pairs of these. Some programs
were also suppressed without balance test through the nor-
mal points of calculate selectors. T'o prevent back circuits,
the suppress on minus, for example, was wired to one “in”
hub of a program suppress filter and suppress on zero to the
other “in”” hub. The “out” hub was then wired to program
step suppress to control suppression of that particular step
on either of the above conditions, without affecting any
other step wired to those suppress sources.

Addition.
Subtraction.

8 - 8 multiplication.
8 - 8 division.

Transfer C to A.
T'ransfer C to B.
4 adjust.

O 0NN

1.25, 1.60, 1.80.
a® =1+ xloga—+

V# to 5 decimal places with the requirement that / —x = O.

a® for 0.1<a< 1.8 with x having one of three values:

(v log a)?

2!
where :

10. A =1029B
A = 500.00
11. C = [10 (#—18 — x—18)]3
C = 6581
12. D= 7225 [1 + (#—1)3]
Do 7225
ST152z@-1)

loga = (a—1) — 3(a—1)2 + 3(a—1)% — ...

whichever is larger.

(#loga)?
TRCI DN

2>a>0.

if =0
iHxr>b .
if0<r<1

fl<r<<oo .

13. Test to check agreement between the first and second approxima-

tions for a variable, with non-agreement to cause the accounting
machine to stop, allowing an additional deck of iteration cards to
be inserted.

Ficurg 6. OrErATIONS WIRED IN 604 CoNTROL PANEL
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A feature of the machine mentioned previously, but not
used in the first problem described, is the channel C shift.
This {feature is essentially a single-position, five-level “field
selector.” The level to which this selector transfers is de-
pendent on the digit punched in the channel C shift control
column of the instruction card read in the accounting ma-
chine. For this particular problem each of the channel shift

hubs was wired to the appropriate position of the usual 604

sshift unit, and by this means the instruction card could be
made to control a shift for transfer from C to A or C to B
within the 604.

The initial values for any point were determined during
the previous point’s calculation. If desired, the intermediate
results for any point, which were ordinarily stored to be
used for the next point’s calculation, could be punched out
on the 521 by inserting a special deck at the end of the
regular deck. This was a very useful part of the initial plan-

COMPUTATION

ning, for in cases of machine error it was not difficult to
return to some previously computed point and begin again.
The frequency of punch-out depended upon the expected
machine error rate at the time.

DISCUSSION

Mpr. Lesser: How many cards did you end up with?

My. Tillitt: One hundred eighty.

Dr. Yowell: I notice Mr. 'Tillitt says he has obtained a re-
duction in time of a factor of two with his half of the ma-
chine. Mr. Lesser reports the same. Does that mean that the
rest of us can expect a reduction of a factor of four with a
full machine?

Dr. Hurd: 1 think we need more experience to answer
that question.



The Combomat
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THE COMBOMAT is a system installed at RAND
whereby customers with computation jobs which fit into a
certain loosely-defined class may program the calculations
directly for the IBM Card-Programmed Electronic Calcu-
lator. That is, any person in the company who has a job in
this category may code it for one of the CPC setups and
submit it directly to the IBM Section for processing, by-
passing the procedure preparation which normally takes
place within the Numerical Analysis Department. This class
of jobs considered appropriate for the Combomat will be
discussed later.

Briefly, the process works as follows:

1. The customer marks mark-sense cards to accomplish
the calculation he requires. These cards are printed
for Combomat use.

He submits these, along with a form which describes
the order in which the cards are to be used, to the
IBM Section.

A machine operator who is familiar with Combomat
work “senses” the cards and expands the deck to a
convenient size.

The cards are run through the CPC and the printed
results delivered to the customer along with his origi-
nal cards.

In theory, the customer obtains all the information required
concerning machine operation and coding from a 14-page
manual prepared by the Numerical Analysis Department.
However, in practice a consultation is usually necessary be-
fore a customer’s first job is in shape for IBM processing.
Quite often the single briefing suffices, and the ideal ar-
rangement is reached where the customer submits the cards
directly to the IBM Section and no analysis time is required
by the Numerical Analysis Department.

The derivation of the name Combomat is somewhat in-
teresting. Several years ago when Northrop Aircraft had
the prototype machine, it was sometimes called the
“Combo.” The “mat” suffix comes from words like “laun-
dromat.” Instead of paying for both the use of laundry ma-
chinery and the services of people who work in the laundry,
in a “laundromat” one pays only for the use of the washing
machine and the clothes drier. In using the Combomat,
rather than employing the services of an analyst plus the
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“Combo,” one buys only the use of the CPC plus a mini-
mum of operator time. Thus, a Combomat system makes
possible the handling of a tremendous number of machine
jobs without putting any additional strain on an analysis
staff.

At RAND there is a particular need for this kind of
service. Not many of the various research divisions have a
relatively steady hand-computing work load throughout the
year. The load is apt to be light much of the time but ex-
tremely heavy at several times during the year. Hence, few
of the divisions can afford to keep a large staff of hand
computers. The Combomat provides a solution to this prob-
lem. It is believed that the Combomat is, in any case, much
more economical than a central pool of hand computers be-
cause the CPC’s are installed at RAND, and the regular
continuing machine work suffers very little by interrupting
it to do Combomat jobs. Every effort is made to get Combo-
mat work done in 24 hours. Generally, jobs which are sub-
mitted in the afternoon are processed and out by the next
morning. This is made possible by the fact that the RAND
IBM Section works three shifts and has two CPC’s with
two identical Combomat setups.

The setup currently in use employs an eight-place floating
decimal, where the power of ten is stored beside the num-
ber; that is, the actual power of ten plus fifty is stored beside
the number. The power of ten is translated fifty units to
make certain that any algebraic sign associated with the
number and its power of ten represents the sign of the
number. This limits the true powers of ten to the range
—50 to +49.

For Combomat work the CPC is represented as having
only sixteen words of storage. The manual does not men-
tion the accounting machine storage. This omission is made
for two reasons. First, the instructions for use of the system
would be somewhat more complicated if an explanation of
the two kinds of storage were required. Also, some storage
positions must be available to take care of sub-routines
which the customer may need.

Operations available to the Combomat customer are mul-
tiplication, division, addition, and transfer. The last opera-
tion is used for shuffling numbers from one storage to an-
other or from a card to storage. Allowance is made for
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reading the answer from one card into channel A, channel
B, or both for the succeeding card. The setup actually has
several other operations, but it was deemed wise to restrict
the operations allowed in Combomat work in the interest of
simplicity. In addition to the four Combomat operations,
some additional functions of the setup are:

1. Operations which compute (4B + K), (KB + A4),
(A/B 4+ K),and (K/B + 4), where 4 and B refer
to the conventional channels, and K must be read
from the card.

2. Two special operations which are used in obtaining
common logs and antilogs, respectively. One of them
puts the power of ten associated with a number on
the number part of channel C, and the other takes a
number out of scientific notation separating the whole
number and decimal parts.

3. Provision for switching from the ordinary control
field to an alternate control field on the basis of a
negative balance obtained in the 604. Some means of
making a decision is the operation requested most
frequently by customers. With this current method of
decision-making, a seven-column alternate control
field is required to make use of the decision. This is
not possible with the system of submitting data now
in use.

By far the knottiest problem associated with installing a
Combomat system is that of writing a usable manual to be
distributed to prospective customers. It is extremely diffi-
cult for one familiar with the machines to write a manual
using language which will be understandable to the layman;
and yet, unless the writer understands the functions of the
setup, he is not really qualified to do the job. The current
manual is a third attempt and is still a “preliminary draft.”
The first draft was tried on some selected members of the
Numerical Analysis Department. They prepared a lengthy
list of suggested additions and criticisms, all of which were
then incorporated into the second version. This one re-
ceived a more general distribution throughout the company,
and a second list of additions and criticisms was obtained.
This second list was screened carefully, and all of the
changes considered desirable were made. This gave the
present manual.

Several questions arise in installing the system. Perhaps
the first is how the raw data are to be submitted. Three
methods of presentation were considered: mark-sense cards,
cards key punched by the customer on punches spotted in
the various departments, and manuscripts prepared by the
customer for key punching by IBM Section card punch
operators. Each of the methods has its advantages and dis-
advantages. The mark-sense card system was chosen be-
cause it was felt that this would require a minimum of effort
on the part of the IBM Section and disrupt least the flow of
regular work. One disadvantage connected with using
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mark-sense cards is that on the first job submitted by a
particular customer difficulty with the “sensing” is often
encountered—his marks are either too light or he fails to
put some of his marks in the ovals provided. This is a prob-
lem which resolves itself as the customer submits more and
more jobs. Also, mark-sense cards effectively add a restric-
tion of using only 27 columns. It was found necessary to
restrict reading in from the card to only one channel be-
cause of this. Requiring one and only one mark per mark-
sense column, so that blank column and double punch de-
tection may be used, further restricts the system. The idea
of spotting card punches around the RAND building was
eliminated because it was suspected that too much time
would be consumed in instructing people in the use of the
punch and in removing cards jammed in the machine by
inexperienced operators. Further, it was felt that customers
would make more errors key punching than card marking.
The manuscript approach was discarded because it did not
seem in keeping with the aim of placing as little of the
burden of the work on the IBM Section as was absolutely
necessary.

Another question is how the answers are to be presented.
Detail printing is a natural product of CPC computation so
that it is certainly one “painless” method of returning re-
sults. Selective listing may prove more useful than listing
all cards, however. This has been handled informally
through notes on the expansion form. Another possible way
of transmitting answers is by summary punching. It was
decided to install the system without mentioning this possi-
bility and to see if there was much demand for it. To date
the demand has been slight.

Another problem which arises is that of devising a sure-
fire, completely mechanical system whereby the user can
communicate to the operator the order in which the cards
are to be used. At the outset this sounds like a trivial prob-
lem, since one might argue that a sequence number will
suffice. In practice, however, to minimize card marking
some of the sub-decks are used over and over again, while
some are used less frequently, and some may be used only
once. This makes it imperative to have a communication
scheme which is completely flexible. It was found that the
section of the manual which explains this scheme, the ex-
pansion form section, was the most difficult to write. The
word “expansion” is used because the form gives the opera-
tor a clue on how many copies of which sub-decks to pre-
pare in order to have a deck of convenient size for running
the job. This form actually constitutes a translation of the
flow diagram which shows the structure of the calculation.
Concentration on making this section clear “mushroomed”
it into the longest section in the manual. Further, more
comments of “unclear” have been received from users re-
garding this than regarding any other section. It is hoped
that this is due to the content of this portion of the paper
rather than to how it is written.
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A final consideration in installing the system is to what
extent sub-routines are to be used. By sub-routines are
meant decks already prepared to compute particular func-
tions. The use of these decks is encouraged. In fact, almost
every Combomat job processed uses at least one of the sub-
routines. The library of such decks was started with a few
very basic ones, and some have been added as the need has
arisen.® Sub-routines currently available to Combomat cus-
tomers include logso#, log.x, 107, €2, \/x, /%, sin x (# in
degrees), sin x (« in radians), cos # (x in degrees), cos &
(# in radians), sin—'x (degrees), sin—1x (radians), cos—1x
(degrees), cos—'x (radians), tan—'x (degrees) and tan—1x
(radians).

A few random observations about the system follow.

It is emphasized that the name, Combomat, refers to a
system rather than to a particular machine setup—that the
setup used may be as simple or as complex as necessary to
meet the needs of the installation using the system. One
group may feel that a floating decimal with its coding sim-
plifications is necessary, while another may feel that it is
willing to substitute log and exponential operations for the
floating decimal features. A Combomat system may be used
equally well with either setup.

Just as some jobs are better suited for a parallel type of
calculation rather than a serial type, some jobs are better
suited for Combomat work than others. The ratio of the
amount of input required to the amount of arithmetic re-
quired is a good index of the suitability of the job for
Combomat computation. If this ratio is small, the job prob-
ably may be done efficiently using a Combomat system. Of
course, this is a fairly good index for judging all CPC jobs,
but its value is even more critical in Combomat work, be-
cause only one number enters the machine at a time. Pilot
studies for large machine computations, iterations, and
some kinds of small parameter studies are best suited for
the Combomat. As far as volume of work is concerned, it is
felt that jobs which fit in the large hand computation or
small machine computation categories go most efficiently in
the Combomat system.

It has been observed that on some Combomat jobs, espe-
cially the smaller ones, it pays to do the job “stupidly.”
That is, it pays in elapsed time with negligible loss in ma-
chine time to use the first workable program which occurs
+to the coder. He may well waste considerably more time
than the job warrants in searching for an optimum pro-
gram. This is emphasized in the manual.

It is felt that the system would be very worthwhile even
if jobs were accepted from members of the immediate de-
partment only. Many jobs are received which in the past
have been considered border-line cases where the calcula-
tions may be done about equally efficiently on either desk

aMr. Cecil Hastings, Jr., of The RAND Corporation has been of
invaluable aid in developing efficient approximations for needed
sub-routines.
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calculator or IBM machinery. At present, more and more
of these jobs are finding their way to the CPC within the
framework of the Combomat. This occurs because the
analyst may do a little rapid coding and “wash his hands”
of the job until he is presented with the results.

In April, 191 hours of CPC time were logged on Combo-
mat jobs exclusive of the time logged on work for members
of the Numerical Analysis Department. Note that this is al-
most eight full 24-hour days. In May, only 65 hours of such
time were logged. The 191 hours were due largely to only
two contributors, while the 65 hours represented work from
more customers.

An example of a small parameter study which was done
efficiently with the Combomat is the following. It was re-
quired to compute

F =P, [1 — (1 = CyFiF2)?2] ,
—P3F;
where F; = ¢ G’
— PPy
Fy=e CoFy

and where Fj is a polynomial function of P;. Here the C’s
indicate constants, the F’s indicate computed functions, and
the P’s indicate parameters. The routine involved evaluat-
ing F3, then F,, then Fy, and finally F. This was done for
3,660 parameter combinations. The job as coded by the cus-
tomer took about thirty machine hours. A similar job done
by hand computers in the user’s division took 280 man
hours. This job was longer than what is believed to be the
optimum length for a Combomat job, although it does show
a very favorable ratio of Combomat time to hand-comput-
ing time.

Another example of an efficient Combomat job is the
following. The customer required calculation of

0

¢ = ) Ajpi~t1
J=L+1
©0
and ¢1 = ) jd;pi=t1,
j=L+1

where A; = (2ydj—y — Aj2) (j + L)~ (j—L—-1)"",
AL = 0, andAL+1 =1.

Here 16 combinations of #, p, and L were used. The cus-
tomer set up the problem so that the inputs were read in,
and then a computation deck was run over and over again,
each time computing terms for each of the summations. This
process was continued until a final term was less than a
specified value. Summations for each parameter set took
approximately ten terms to reach the desired accuracy. One
hour of CPC time was logged on this job, and it is believed
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that it would have taken much longer doing the work on
desk calculators. The fact that this calculation was of a
recursive nature made it extremely easy for the customer to
code as well.

DISCUSSION

Dr. Hurd: This paper represents a great contribution to
the art of automatic computing.

Mr. Tillitt: You remarked about running out of space in
the mark-sensed card. You might consider turning it over
and getting 27 more spaces.

Mvr. Madden: That is a good point which we haven’t
considered.

Dr. Berkowitz: What is the cost to the research people in
this setup? In other words, how does the time they spend
writing up a program compare with the time that they
would spend giving a problem to the analysis group to pro-
gram? The customer has two choices: he can either code it
himself or come to you and let you code it. It is going to
take him some time to explain the problem to you. Is this
time of the same order of magnitude as the time it would
take him to encode the problem for himself?

Myr. Madden: 1 think that is likely.
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Dr. Hurd: Is there anybody else who is using similar
ideas and would like to discuss them at this time?

My. Cheydleur: We are not using mark-sensed cards, but
we are using more and more systems that are flexible and
that enable our customers to do more of their own coding.

Professor Verzuh: At MIT “A Guide for Coding” has
been prepared and distributed to allow users to prepare
their own sets of instructions for the Whirlwind. The ma-
chine is arranged in such a fashion that codes can be
printed out. This has facilitated detecting errors in coding.

Dr. Hurd: Thank you. As you know, it is standard oper-
ating procedure to print operation codes and intermediate
results on the CPC while the calculation is in progress.

My. Lowe: It has been our practice to select out those of
our accounting machine operators in different divisions
who evidence particular interest in the computing work. We
then bring these people into our computing group and have
them work with us for a few days to a week. In that period
they actually come to understand quite a bit about the way
we normally code for the machine and the use of the ma-
chine; they go back and code their problems for us from
then on. However, under these circumstances we always re-
serve the right to edit, audit and check over their programs.

My. Lesser: It is easy to train a selective few of the cus-
tomers so they can get the “feel” of the machinery.



The IBM Type 604 Electronic Calculating Punch

As a Miniature Card-Programmed Electronic Calculator
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IN ENGINEERING work there are a great many
computations carried out to slide-rule accuracy which re-
quire the repeated evaluation of rather simple formulas. If
an IBM Type 604 Electronic Calculating Punch is avail-
able, there is a possibility of adapting it for this work and
making a small sequence-controlled calculator with storage
and all the other features of larger machines. With the co-
operation of the Statistical Department of the Chrysler
Corporation, we, in the Engineering Division, have wired a
special set of control panels for their machine to use as an
interim calculator until a larger card-programmed machine
is delivered. Besides doing useful problems, this machine
has served as a training ground for programmers and oper-
ators. This training was a necessary preliminary to the use
of the Model II Card-Programmed Electronic Calculator,
which was recently delivered.

Card Programming

The IBM Type 604 Electronic Calculating Punch is nor-
mally used to perform identical simple arithmetic operations
on data in a series of cards placed in the hopper. However,
the flexibility of the control panel wiring is such that it is
possible to operate “card-controlled,” that is, to perform a
different arithmetic operation on each card, depending on
operation codes punched in the card. Such operation per-
mits sequential calculation, i.e., following in order all of the
arithmetic steps required for the evaluation of a quantity
given by a complicated algebraic formula with given param-
eters. The sequence can then be repeated for other values of
the parameters.

As wired for this purpose, the 604 is capable of receiving
(at one time) 7 five-digit numbers. These numbers are en-
tered in storage registers A, B, D, E, F, G, and H but not
in the output register C. When an operation code is punched
in a card, the factors in A and B are operated upon and the
result placed in the output register C as well as in storage
register B. The result in B is thus immediately available
for the next calculation. The result in C may be punched in
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the card or stored in one of registers D, E, F, G, or H but
not both at the same time.

On the next card, a new factor may be entered in A, or
transferred to A from a storage unit, another operation per-
formed on it and the quantity in B, and the result punched
or stored.

Operations

The four fundamental operations are addition, subtrac-
tion, multiplication, and division, and they are performed
with due regard for the location of the decimal point (to be
discussed later) and for the signs of the quantities. In addi-
tion, it is possible to shift, i.e., multiply the result of the
above operation by 10 without using another card cycle; to
look up entries in a table of functions punched on successive
cards; to obtain square roots by an iterative process; to stop
the machine when unwanted negative answers occur; and
to stop the machine if a check quantity is greater than 9 in
the last digit. The control panel wiring for all of these func-
tions is given in an appendix and need not be rearranged
from problem to problem.

This control panel wiring of the machine is set up on the
assumption that all numbers are less than 1. That is, .99999
is the largest number used in a calculation, and powers of
ten are cared for by the programming of suitable shift
operations. Note that the operating codes give .1(A4 4 B)
and .1(B =+ A) unless a shift is called for.

Problem-Solving Procedure

The proposer of a problem for solution will have first to
reduce his problem to a sequence of the elementary arith-
metic and other operations listed above. Presumably, the
formula is to be evaluated for a number of values of the
parameters, and a trial calculation should be made by hand
for one set of values of the parameters. This will give the
order of magnitude of the quantities involved and permit
keeping track of the decimal point in the programming.



38

COMPUTATION
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Average Problem 01 1 5 00123[00000
« « 12
0 2 1 5 00321
« « 12
03 1 5 00456
/,_1/
Last Card to Add 12 1 5 lg 031 4
Divide by 1.2 13 4 112 2000
1/10 of Answer on (13) 14 1 lg 0000
Ficure 1
Programming is worked out on forms like that of Fig-  REGISTER TO READ INTO A Carp CoLuMN
ure 1. The 80 narrow columns represent the 80 columns in 3 4 5
the cards to be punched. Each line represents one card, and :
the programmer writes in the squares the digits he wants B 11 11
punched on the card. D 11
E 11 11
Organization of the Calculator F 11
. . . G 11 11
As stated, the various operations of the machine were o 1 1 11

obtained by special control panel wiring. The procedure set
forth in this paper is for a minimum capacity 604; i.e., 20
program steps. In this section the features of the machine,
as wired, are taken up in some detail, in the order in which
the card is punched to control them.

Card Number. This punching is not read by the machine
but is used to sort and collate the cards in preparation for
the machine run. Enough columns could be included to
permit two independent numbering schemes on the same
deck of cards, which is of use with certain subsequence
operations, like square root or table look-up.

Transfer to A. As all operations itivolve only the num-
bers in registers A and B, these three columns, 3-5, provide
a means of transferring numbers during calculate time from
storage registers B through H into register A. Control or
“11” punches are used in this fashion:

These control punches are put in the same card as the
punching for the operation to be performed on the data
transferred to A. Transfer of data from storage units D
through H into B takes otie card by itself. On this card the
data are transferred to A, 00000 is entered in B, addition is
performed, and the result multiplied by 10 to preserve the
decimal location. On the next card, another factor can bhe .
entered in A and an operation performed.

Operations. A single digit in column 6 controls the basic
machine operations. The digit 1 calls for 1/10 (4 + B)
and 2 for 1/10 (A — B). The reason for the 1/10 factor is
to insure that the sum has no more than five digits and
hence does not run over the digit capacity of the registers.
Normally the sum of two 5-digit numbers might be six
digits, but the 1/10 operation drops the last digit. In the
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event it is known that the result will not exceed 5 digits, a
“5” punch in column 10 will prevent the 1/10 operation
and preserve all the digits of the sum.

The digit 3 calls for multiplication 4 X B and the result
retained is the first five digits. For example, .90000 X
90000 = .81000.

The digit 4 calls for division 1/10 (B/A4). Here again
the 1/10 factor is intended to keep the answer within
the digit capacity of the registers. For example, 1/10
(.90000/.20000) = .45000. However, care must be used
in programming division, as too small a denominator will
cause too large a quotient to be attempted. For example,
1/10 (.90000/.02000) = 4.50000 and the answer will
overflow the B register. In such a case, zeros are punched
and stored for an answer, and all subsequent calculations
with this data will be in error.

The digit 6 calls for the basic step for the extraction of a
square root; that is, it is one step of the iteration process
used. The actual operation is:

5+1)

and the use of this operation is taken up in a later section
headed Examples of Programming, part 3. The X 10 oper-
ation may not be used with operation 6.

If no code is punched in column 6, the answer storage
unit C will be cleared, but the numbers in the other storage
units are undisturbed.

Transfer from C. The result of an operation is always
stored in B and in C. Normally, on the next card cycle, the
number stored in C is punched in columns 75-80, and C is
reset to zero. However, if a set of “11” punches is put in
columns 7-9, then at punch time, the number in C is trans-
ferred to one of the storage units D through H instead of
being punched. The code used is the same as that for read-
ing into A from the storage units except that there is no
need for transferring from C to B.

X 10. A “5” punch in column 10 will multiply the result
of any arithmetic operation by 10. For example, if operate
code 2 were used (subtraction) and a “5” punched in col-
umn 10, the answer developed in B and C would be 4 — B
with no shifting of the decimal. If operate code 3 (multipli-
cation) were punched in column 6 and “5” in column 10,
the result developed in B and C would be 10 (4 X B). If
no operation code is punched, a “5” in column 10 will trans-
fer ten times the number in B into C, without changing the
number in B. The larger number in C can be transferred to
storage D through H for further use. The digit “5” was
used instead of an “11” punch to prevent any possibility of
early transfer of calculate selector 5 interfering with the
last program step of the calculation for the previous card.
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Punch Suppress. Quite often it will be desirable not to
punch intermediate results in order that the program cards
can be used over and over with new data. An “11” punch in
column 11 will suppress punching without affecting other
operations.

Table Look-up. An “11” punch in column 12 is used on
each card of a sequence forming part of a table of trigono-
metric or other functions. This prepares the machine for the
look-up operation which will be described later under Ex-
amples of Programming, part 5. When the proper table
entry is found, storage units E, F, G, and H are impulsed
to reset and to read in the information punched in their
fields on the card. If no information is punched, the storage
unit is simply reset. On every table card an “11” must be
punched in column 11 to protect the card.

Negative Balance Stop. Every result developed in stor-
age C is examined for sign and, if an “11” punch is in
column 48 of the following card, the machine will stop
when the quantity is negative. This is useful in checking
operations of various types where, for example, it is known
that the difference of two quantities, or some other result,
cannot be negative.

Check Stop. In certain other checking operations, it is
known that the check quantity should be +.00009 or less.
If an “11” punch is in column 49 of the card, the machine
will stop if the result in C is greater in absolute value than
.00009. This test is actually made on the second and third
digits from the right so that a large error like .01000 or
.11000 will not be found.

Punch D, E, F. An “11” punch in column 50 will cause
the contents of registers D, E, and F to be punched in the
same card in columns 61-75 without clearing these registers.
This operation may not be performed if any number is being
transferred from C to a storage register on the same card.
That is, nothing must be punched in columns 7, 8, and 9 of
the same card.

Double Punch Siop. The machine is wired to stop if it
senses two numbers punched in the same column in the field
76-79. This is of use when the accuracy of machine calcula-
tion is being checked by running the same cards twice.

Card Entry into A and B. Numbers punched in columns
13-17 will be entered in storage A provided a “12” control
punch is also punched in column 13. They will be entered
as a negative quantity if an “11” control punch is also
punched in column 17. Likewise, numbers in columns 18-22
will enter storage B if there is a “12” in column 18, and will
be negative if there is an “11” in column 22. These numbers
enter the storage units before the calculation or transfer to
A, called for on the card, takes place and, hence, will be
used in the calculation and transfer. If the “12” code for
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entry is punched but there are no digits, the storage unit is
cleared. A “12” code was used for entry to insure reading
the “11” code for negative numbers.

Card Entry into D through H. The entry and sign codes
are the same as for A and B, that is, a “12” punch in col-
umns 23,28, 33, 38 and 43 controls entry,and an “11” punch
in columns 27, 32, 37, 42 and 47 makes the quantity nega-
tive. However, the quantities are entered into the storage
units on the third card cycle and hence may not be trans-
ferred to A for use until the third card after the one on
which they are punched. Because of this, the second and
third cards in a program sequence are often blank except
for their card number, and computations are made with the
first, fourth, and succeeding cards. It is not possible to read
into D through H if the following card has a transfer from
C to D through H, as these two operations would occur
simultaneously.

Punch Exit from D, E, F, and C. Answers from C are
usually punched in columns 76-80, but the contents of regis-
ters D, E, and F may be punched in columns 61-75 as men-
tioned above. These columns ate never read and can also
be used for identifying data if necessary.

Examples of Programming

1. First, as a simple example, consider the problem of
finding the average of 12 three-digit numbers punched in 12
successive cards (see Figure 1). Card number one would
carry the first number punched in card entry A (cols.
13-17) and would have zero punched in card entry B
(18-22). To make the machine read these numbers, col-
umns 13 and 18 would have, in addition to the digit punch,
a “12” or special control punch. To make the machine add,
a 1 would be punched in column 6. As the numbers are
small, of the form .00369, there is no need to allow the ma-
chine to divide the sum by 10 as it usually does. Hence,
shift or “X 10” is ordered with a “5” punch in column 10.

The second card carries the next card entry into A, but
no entry into B as it now has the first partial sum in it. Suc-
ceeding cards continue to enter numbers in A and add them
to the amount in B. Card 13 is coded to divide the sum
(about .09999) by .12 and to retain 1/10 of this quotient.
This is equivalent to dividing by 1.2. As we wanted division
by 12, card 14 is coded to add zero to the quotient, and this
divides the sum by 10 again, as nothing is punched in col-
umn 10. This gives the same result as originally dividing
the sum by 12.

2. The greatest use of the machine is in more compli-
cated sequences. These sequences are built up of simple sub-
routines. Let us consider the evaluation of

Z(X+Y)+ VT
774

for values of the parameters in the neighborhood of Z = 2,
X =300,Y =-20,V =3, T = —.5,and W = .0l
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There are six quantities to enter into the seven registers so
that we can enter them all on card one, as shown in Figure
2. This is convenient, as re-evaluation of the formula for
other numerical values will involve changing only card one
(the entry card) and the last card (the answer card).

As a general rule, the quantities within parentheses
should be evaluated first, because the result is then ready
for further multiplication or division. Hence, X and ¥ are
entered in registers A and B. To locate the decimal point in
a handy place, we write 10—3 X = .30000 and 10-3 ¥ =
—.02000. Addition can be performed on the next card, and
we can form 10—3(X + V) without fear of overflowing the
storage registers. Hence, X 10 is punched. Punching is
suppressed, as only a final result is needed, and this inter-
mediate result appears in B. A blank card is inserted to give
the storage registers time to read in.

On the third card we can multiply by Z; the decimal point
needs no adjustment, so that 1032 (X 4 V') is developed
in B. This result is stored in E, as the number there pre-
viously is no longer needed.

Card 4 is used to bring T into register B by adding it to
zero, read from the card, and ailowing division by 10 to save
trouble later on. Card 5 multiplies " by T and the product
is 10—3 IV T'. Card 6 adds this to 103 Z(X 4 Y) to give
10-4 [Z(X + V) + V T]. Card 7 divides by W to give

10-% [Z(X + V) + V T]
(10 W)

103 [Z(X+ YY)+ VT]
o ,
and the result is punched in columns 76-80. The decimal
point is after column 80, i.e., the number punched is a whole
number.

3. Another example is programming for square root, as
shown in Figure 3. The number whose square root is
wanted, N, is usually developed in some previous sequence
of calculations so that it will be in storage B normally. We
can, on the same card in the development, put it also in
storage D for future reference. In what follows, it is as-
sumed that we start with N in D and develop V/N in B by
successive approximations. N is, of course, of the form
64000 X 102 so that when /.64000 is found then /102 =
101, and there is no decimal trouble.

For the purposes of the example in Figure 3, the number
.64000 is loaded in storage D, and the loading card is fol-
lowed by two blank cards. The fourth card assumes an ap-
proximate root of .5 (midway of all probable roots) and
makes the first iteration, storing the result in B. Card 5 is
the second iteration so that this result is transferred to A
in the usual way. Card 6 is the third iteration and is identi-
cal with card 5. As many iterations as are needed can be
used, but 7 seems to be enough, based on some test runs.
The result will be in B.

which is




S| Be S P i~ "3 5 < Tole =
< g- 5 5 L S 8 1 & 8 S 8 -
g |l E | 8¢ B B > & B > S N
s| 5 |8 5| A8 Z 2 g 2 = g g idad
Z % |8 % 5% i i i o =] 43t = e
o =1 =1 o & o <] o kel o o o g
= o & o ~ £ .o o = o 5 =4 = Sf_g g
S| £ |8 & £l & 8 3 3 3 3 8 |64
1 2[3 4 5(6(7 8 91011 12[13 15 15 16 17|18 19 20 21 22[23 24 25 26 27|28 29 30 31 32]33 3¢ 35 36 37|38 39 40 41 42(43 44 45 46 47|48 49 50
1 12 12 11 12 12 12 12
[Z(X+Y)+ VT] jp (Load) | ¢ 1 n 3000002000 20000/0300°0/5000°0/1000°0
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COMPUTATION

. S} @ < M I 1)
< g ) e 2 2 2

5 E Jé E = g e '3 § Ig =
5| & 18] & |FE8 B 3 3 3
1 213 4 5{6[7 & 9|10 11 12|13 14 15 16 17{18 19 20 21 22 33 34 35 36 37|38 39 40 41 42

Load 0 1 11 1626900152000011200001(?0000

1/104/¢ 0 2 4 1

1/100 (/c)® 0 311 3 1 1

1/10h 0 4 1 1. 5 11 l02 00 0 0

1/100 42 0 5|1 11 3|1 1

1/10k 0 6 mof1 5 11 102 00 0 0

1/100 k2 0 7111 3|n 11 1

1/100 hke 0o 8 1 3 11

1/100 (h2+-hk) 0 9|1 1 5 1

1/100 (h2--hk+E?) 1 01 11 Js5 1

10 X .13333 x 1/100 (h2+-hk+k2) [1 1 3 5 11 112 3 3 3 3

1/100[4/3(h2+-he+k2) + (I/c)?] 11 2 |1n 1t 11|1 |1t 5 1'1

v 1 3 6 1 Y9 00 0

v 7 1 4|un 6 1

Transfer V to A 1 9in 1 11

Answer 2 0 4 122 4 5 5 0

Ficure 4.d = .

4. 'The program for another actual problem is shown in
Figure 4.2

5. As a final example, we consider the programming for
table look-up (sin #). The table look-up wiring permits
subtracting the argument on each table card from an argu-
ment stored in A. When the difference is negative, i.e.,
when the table card next above the wanted argument is
sensed, the previous card is read into storage units F, G,
and H. This means the card for an argument next below
the wanted argument is read. Figure 5 shows the program.

The procedure for quadrant selection is as follows. If the
angle is not in the first quadrant, then we must put a plus or
minus sign on the result of a table look-up, depending on the
quadrant. This can be done with a small preliminary table
look-up operation, where the table consists of quadrants and
signs. This operation should be performed before looking
up the sine or other function. It is assumed that x is in A to
start the sequence. The sign is carried along by reading in

aThis problem was proposed by the Physics Research group at the
Chrysler Corporation and is concerned with some work with the
X-ray spectroscope.

(4/3(PFhk+#2) + (/)77

99999 with the appropriate sign to use as a multiplier for
the function to be determined later. On card 6 we transfer »
to B. On card 7 we form xy — #, and on card 8 we transfer
it to E for future use. On card 9 we transfer the sign to D.
In the main portion of the table look-up which follows,
three quantities are read to permit second-order interpola-
tion if desired. For this example, we assume the sine read
into F, modified first difference into G, and modified second
difference into H. The interpolation formula is an adapta-
tion of Stirling’s formula:®

—x+ xo) |:3—1/2 + 841/2
2

X1 — %o

—x+.$l$'0 36’
_(xl—xo )7] )
—%+ %0 _
x1 — %o

siny = sinxo—~(

Here 1 — x¢ = 10 degrees, so that

is obtained simply by subtracting and dividing by 10.

bThis method of interpolation is explained in a paper by Eleanor
Krawitz entitled “Punched Card Mathematical Tables on Standard
IBM 'Equipment,” published by IBM in Proceedings, Industrial
Computation Seminar, September, 1950.
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8—_1—/2%—«@ is the average of the adjacent first differences

or the modified first difference which is punched in field G.
8,/2 is half of the second difference or the modified sec-
ond difference and is punched in field H. Therefore, our

formula is:  sin x = sinxy — p(G — xH) .

43

Card 11 begins evaluation by putting x in B. Card 12 forms
1/10(xo — x) = p with the decimal shifted and puts the
result in E. Card 13 forms pH with another decimal shift,
and card 14 forms G — pH. Card 15 gives p(G — pH),
card 16 gives the sine, and card 17 gives the proper sign.
A similar procedure is used for any other function.

8] @ < @ [=] w < < =
< ] §% ° 9 Q ) o) o ° & ™
g g g e 2 = 2 e g =
e el 2| 2 > 2 B 2 2 g [2gH
K] Ll 5 51 = = = )=t g s = =3
Z1 % 5 ¢ |29 A& = 5 5 5 o & A% =
o =1 = {o=) — b=l o k=] o k=1 o =l " 9
& ] & < —qg-ﬁ - o = f=1 b o = 50}:’5
S| e |8 & &g S S 9] S 3 S 3 Z 0
1 213 4 5{6|7 & 91011 12(13 14 15 16 17|18 10 20 21 22|23 24 25 26 27{28 29 30 31 32|33 34 35 36 37|38 39 40 41 42|43 44 45 46 47|48 49 50
QUADRANT LOOK-UP
12 11
Search 01 2 s 000.00 00000/999909
« 12 11
02 2 5111 090.00 09000/999909
w 12 11 11
03 2 51111 180.00 18000/999909
« 12 11 11
0 4 2 5 1111 270.00 27000/999909
« 12 1
05 2 51111 36 0.00 36000[(9990909
Transfer x to B 06 1 5 11 102 00.0 0
+ao— o 7l nf1 511
Shift 08 nooujs 1
. 12
Transfer Signto D 09 11 1l 5 11 000 0
TABLE LOOK-UP
12
Transfer to A o 1 1z s 111 00.000 00000G[0000O0GOG[173635(0000°0
Search 12
earc 02 2 5111 10,000 1000017 365[17101/002¢64
« 12
03 2 51111 20,000 20000[(34202[16317[005109
) 12
‘ 04 2 51111 30.000 30000[50000(1 5038007509
« 12
0s 2 5111 £0.000 40000[642709(13302/000977
« 12
06 2 s 1111 §0.000 50000|76604(11162{011%63
« 12
07 2 51111 6 0.0 00 60000[86603/08682/01316
« 1z
08 2 51111 7 0.000 70000{93969[(059309[/01427
« 12
09 2 s 1111 80.000 80000/98481{03015(014097
« 12
10 2 51111 90.000 90000[(9999900000[01518
12
Transfer 11 1 511 0 0.0 00
1/100 (+ %o—x) = p/10 12in uizin ulsu
pH 1 3j1a1 41 3 511
G — puH 1 4] nulz2 511
w(G—pH) 1 s|n 13 511
sing =sinxo—n (G—pH) |1 6| 11 |2 5 11
Adjust Sign 1 7 3

Freure 5. TaBrLE Look-up, SiN # (x 1N A)
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APPENDIX
Wiring Diagrams '

The diagram in Figure 6 gives the read-in wiring, but the
selector diagrams are repeated in Figures 7 to 11. The cal-
culate control panel is not diagrammed, but the connections
are listed in detail in Table I.

The basic operations are obtained by wiring them all on
the calculate panel but suppressing all steps (except step 1)
until one or more calculate selectors pick up. This permits a
complete assortment of operations from one panel with no
setup changes between problems. There are other possible
arrangements of the various functions which might save
some program steps in Table I; for example, step 5 is iden-
tical with step 11.

The various units of electronic storage are assigned to
the storage registers mentioned under programming as
follows:

COMPUTATION

Read-into A and B (F S2and M Q) is at first reading,
as are all transfer and operation codes except table look-up.
A “12” punch is used to control read-in to permit reading
of the “11” punches for sign control. Most of the rest of
the control punches (transfer operations, table look-up,
stop, etc.) are “11” punches. However, a “5” punch is used
for X 10 (column 10) because this picks up calculate se-
lector 5, and a “12” punch might transfer it early enough to
affect the previous electronic cycle: The timing chart, Fig-
ure 12, explains this.

Read in to D through H (all of the remaining electronic
storage units) is at second reading. While this may be
slightly inconvenient for spread entry of quantities into
storage, it permits the table look-up operation to occur as
neatly as it does, the same second-reading brushes being
used in table look-up. A “12” punch is normally used to
control read-in (through a column split) but storage E, F,
G, and H also obtain a card cycle read-in pulse when the
negative balance selector picks up and an X is punched in
column 21 of the card.

Product Overflow Stop. An X punch in column 49 trans-
fers pilot selector 2 at punch time and makes a product
overflow check of the second and third digits. This is of use
in checking that the difference of two quantities is nearly
zero. For example, it may be used in checking the result of
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a square root operation by squaring the root and subtract-
ing from the original number.

Negative Balance Stop. An X punch in column 48 of the
following card will go through a set of negative balance
selector contacts, if the number in C is negative at the end
of a calculation. This stops the machine and is used to check
results which cannot be negative.

Punch Selectors. The punch selector wiring of units 4-8,
as shown in Figure 10, is intended to permit punching or
transfer to a particular storage unit as shown. The pickup
wires for these selectors are wired to pilot selectors 3, 4,
and 5, as shown in Figure 9. Read-in pulses are supplied
through punch selector 3 from the same digit pulses used
to pick up punch selectors 4-5.

Square Root Wiring. As the square root iteration
1/2[(D/A) + A] is compounded of simple arithmetical
operations, the regular calculating steps are used by arrang-
ing the various operations in the proper order. Table I
shows that, after transfer to A and addition, there are in
sequence a division, a special set of steps for square root,
and a multiplication. Thus, if calculate selectors 3, 4, and 5

TasLe I
WirinG oF ELECTRONIC CALCULATING STEPS
Operation  Step Wiring
Clear 1....Read out and reset counter.

2....Read out general storage 1 and 3 or general

storage 2, as selected; read in factor stor-

age 2.

.Read out general storage 4 or factor storage

4, as selected ; read in factor storage 2.

4....Read out factor storage 1 and 3 or multiplier
quotient, as selected ; read in factor storage 2.

Transfer 3...

5....Read out factor storage 2; read in counter .

6. ...Read out multiplier quotient ; read in counter

+ -+ or —, as selected.

7....Read out and reset counter, out of 2nd or 1st,
as selected ; read in multiplier quotient.

( 8....Read out multiplier quotient (or general stor-
age 1 and 3, as selected) ; read in counter 4,
- < into 5th or 6th, as selected.

9....Read out factor storage 2; divide.
10....Read out and reset counter.

11....Read out factor storage 2; read in counter 4.
12....Read out multiplier quotient ; read in counter
VA -+, into 1st.
13....Read out and reset counter, out of 2nd; read
in factor storage 2.
14....Emit 5; read in multiplier quotient, into 5th.

" 15....Read out factor storage 2; multiply .
X 16....1/2 adjust, into 5th or 4th, as selected.
117....Read out and reset counter, out of 6th or 5th,

L as selected ; read in multiplier quotient.

+,%,+,\/ 18....Read out multiplier quotient; read in
counter .

X 10 19....Read out multiplier quotient; read in

counter -4, into 2nd.
20....Balance test for selector pickup.

45

are picked up by punch selector 2, all the parts of one
square root iteration are performed. The coding is shown in
Figure 3.

Calculate Selector Wiring. The wiring of suppress pulses
and of read-in pulses is shown in Figures 7 and 8. This
wiring is fairly complex because few selectors were avail-
able. Note that the logic of switching suppress pulses is the
inverse of Shannon’s logic of relay and switching circuits.

ADDITION AND SUBTRACTION

Sup. without g::z g
bal. test 1 2 Step 7
Step & = R.L ctr. +
Rl ctr. —
MULTIPLICATION Step 15
Sup. withous "’“‘3 [ Step 16
bal. test Step 17
DIVISION — Step 8
Sup. without ‘f Step 9
bal. test L Step 10
SQUARE ROOT ITERATION _3_ o Step 11
Sup. without © o g:ep }g
=== o Step
bal. test o Step 14
Step 8 O R.O. MQ
0 RO. GS1& 3
SHIFT (X 10) 5
Step 7 = Read units out of 2nd
Step 8 ot Read units into 5th
——————0 Read units into 6th
Step 16 o=t Read units into 5th
Oe————0 Read units into 4th
Step 17 S.. Read units out of 6th
S Oee—— 5 Recd units out of 5th
Sup. without 5
bal. test T Step 19
1
2
3
4
Sup. without
O T B O P G 0
bal. test 1 2 3 4 Step 18

Ficurg 7. CALCULATE SELECTOR WIRING

gﬂ“‘g O Step 2

6
[ fi O  Step 3
Sup. | 7: oS, |
without
bal. test
6
P o O Step 4
I—Zﬂﬂﬁ___l
Step 2 8
fo! Fo Wy O GS 1&3 (D)
OO GS 2 (E)
Step 3 8
O— Ot O OGS 4 (F)

O———————0 F§ 4 (©)

Step 4 8
O Oy -0 MQ (B)
OO FS 1 & 3 (H)

F1curg 8. CALCULATE SELECTOR WIRING
FOR TRANSFER TO A
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PILOT SELECTORS

COMPUTATION

T T .
et
T

4 (D)

6 (F)

5 (E)

.-I T 7 (G)

T

8 (H)

Ficure 9. Puncu SELECTOR Prckup WIRING

Punch Sel. 4 Punch Sel. 5
COUNTER E .
EXIT [t SN TC. jema! PUNCH
STORAGE STORAGE
ENTRY ENTRY
GS1&3 GS 2

Second Reum/

F1cure 10. READ-1N aAND Punca WIRING

Neg. Balance Sel.

h 2nd
Ra. brosh et Pilot  Sel. 1 XPU
‘ Pilot Sel. 1
Punch Sel. 1 PU
Punch Sel. 1
GS2RI  (E) /
|
GS 4RI (F) -
|
FS4RI  (G) %
|
FS1&3RIL(H) / Card Cycles

Ficure 11. TarrLe Look-up WIRING

DISCUSSION

My. Ferber: Did you at any time try to use the card
itself for memory by ganging and then suppress ganging ?
Mr. Nims: So-called dynamic storage ? We thought about
it, but the chief difficulty was that we were running out of

pilot selectors. We had no way of getting this stored in-
formation back into channel A conveniently.

Mr. Ferber: We do that by setting it up to read from
different places on the card, either from first reading or
second reading, but we also used a temporary memory.
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1 ENTRY
B EXIT
1 TRANSFER

CALCULATE
TIME

8 9

1BD4 12 N 0 1 2 3 4 5 6 7 8 9
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CALC SWITCH AND

STORAGE_ASSIGN
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SUPPRESS

PUNCH SUPP PU

EFFECTIVE

BLANK COL
SWITCHES COMMON

Ficurg 12. Typg 604 TiMiNc CHART

When we needed one more memory than we had, we would
punch it out and then read it back at the second reading as
an additional memory, although we used, of course, the
principle of reading it electronically, just as you do.

We also set up the possibility of doing A times B plus or
minus one of the electronic memories, using the calculate
selectors, which might still be open.

Dr. Herget: Have you considered using Cecil Hastings’
series for any of your functions? Would that be less eco-
nomical than what you do?

Myr. Nims: It might be, because you would need simple
instructions for each term in this series, which would also
use many cards. The real reason we were interested in table
look-up is that we have considerable empirical data that we
want to consult, and it could be represented by a table with
first or second differences, but it would be quite a chore to

get a series to cover the whole range, test data, and so on.

My. Feigenbaum: At Cornell Aeronautical Laboratory
we did a sort of backward operation. We used the CPC as
a 604 because we wanted printed results rather than
punched results. We found it was much quicker to feed
the numbers through the CPC and print them out right
away, rather than punch and then print them later.

Dyr. Brinkley: We have occasionally used the general-
purpose 604 control panel that goes with the general-pur-
pose CPC setup for pure 604 operations. If you want to do
one or two operations and then punch the result, this will
save time.

Mr. Lowe. I understand that at the Watson Laboratory
they have set up a 602-A in somewhat the manner that Mr.
Nims describes, to form a miniature CPC. This may be of
interest to our 602-A users.



General-Purpose Floating Point Control Panels for the
IBM Card-Programmed Electronic Calculator
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THE DESIGN of control panels® for the operation of
the IBM Card-Programmed Electronic Calculator on num-
bers expressed in floating point notation was undertaken
for two basic reasons: first, to expedite the solution of cer-
tain non-linear algebraic equations, notably those defining
gas-phase chemical equilibria; and second, to reduce the
programming time for short problems or for problems in
which scale factors are impossible or, at least, difficult to
predict. In the case of the calculation of chemical equilibria,
for example, a single routine may be used for almost the
entire range of possible parameters if the calculations are
performed in floating point notation. With fixed point com-
putation, however, approximately thirty-five different rou-
tines may be required for the carbon-hydrogen-oxygen-
nitrogen system.

There are many significant disadvantages of floating
point notation. These are principally the difficulty of inter-
pretation of a listing of the results, the virtual impossibility
of carrying out multiple precision operations, the false sense
of precision that may be created, and the increase in com-
puting time that appears to be unavoidable. These facts
were used as a basis for the initial requirements that the
arithmetic operations be as precise as logically possible, that
the notation be as natural as possible, that the operation of
the calculator be as flexible as possible, and that lost motion
be largely eliminated.

After a considerable period of evolution the computer
now has the following general facilities:

1. Basic arithmetic operations of add, divide, multiply,
reverse the sign of operand B, and suspend round-off
in the command “A operation B equals C.” Round-
off, when carried out, is almost always exactly correct.
Three complete independent program fields.

Four numerical fields with conditional or semi-condi-
tional entry from all fields.

aThese control panels were designed at the Lewis Flight Propulsion
Laboratory during the summer of 1950 and first placed in operation
in early September, 1950. Since then the control panels have been
gradually modified to provide increased flexibility and have oniy
recently achieved their present, and possibly final, forms.

#
(w’

®
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4. Automatic extraction of integral roots from second to
seventh. .

Eight kinds of conditional operations including trans-
fer of control among the three program fields which
may be based either on the sign of the number or on
the sign of its exponent symbols (negative exponents
correspond to a zero result).

Zero results are stored as zero, and all improper oper-
ations—such as an unintentional division by zero or
the formation of a result too large for proper storage
—cause a machine stop with an automatic list cycle.

5.

The extraction of integral roots, rather than other func-
tional operations, was chosen as the basic wired subse-
quence because of the interest in aerodynamics of second,
fifth, and seventh roots, the fact that it is not generally pos-
sible to predict the length of a routine for root extraction,
and partly because it could be done fairly easily.

GENERAL

The notation was chosen for ease of interpretation within
the limits of the storage capacity of the CPC. A number is
represented by eight numerical digits with the decimal point
to the left, and a pair of exponent digits whose value is 50
greater than the power of 10 by which the numerical digits
are to be multiplied. The exponent digits are stored to the
left of the numerical digits. Unity has the representation
(51; 1), and in general, a number is interpreted by moving
the decimal point to the right by a number of places equal to
the excess of the exponent digits above 50 or by prefixing
the numerical digits with a number of zeros equal to the
defect of the exponent digits below 50. Zero has the normal
notation 00;00000000. Any result for which the exponent
digits exceed 99 is treated as infinity, and the computation
is stopped.

The 604 control panel executes only the basic arithmetic
operations. The choice of the median exponent digit, a part
of the calculation of exponents for multiplication and divi-
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sion, and the sensing of the existence of a zero result are
partly controlled from the accounting machine control
panel.

All other features, including the management of limiting
cases, impossible problems, conditional operations, provi-
sion for the immediate use of results as factors in calcula-
tion, and root extraction are wired in the 402-417 control
panel.

Tur 604 CONTRQL PANEL

Operation Codes. The operation codes of the symbolic
operation “4 op B = C” are

Add 4 and B.

Divide 4 by B.

Multiply 4 by B.

Cancel normalization of result with initial zeros.
Reverse sign of operand B.

Cancel round-off (14 adjust).

For completeness:

List.

Summary punch.

Equivalent to 1 code.

Causes division and simultaneously multiplies the re-
sult by 10%. (‘The use of codes 6 and 7 is generally not
recommended.)

SRS ANE I
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 Factor Entry. The numerical portion of operand A4 enters

into factor storage 1 and 2. The numerical portion of operand
B enters into factor storage 3 and 4. The exponent portions
of 4 and B enter general storage 1 and 3 which are given
an 8-6 assignment but are not coupled on the 604 control
panel to any of the five-digit storage units. This wiring
causes read-in and subsequent use of the exponent digits as
their positive absolute value. For division, 52 is read into
the multiplier quotient and for multiplication, —50 is read
into the multiplier quotient. The 2 of the number 52 is ob-
tained from the code 2, and the minus of the number —50
is obtained from the code 3.

Amnalysis. The operation of the 604 is divided into two
parts: on the first 44 program steps the arithmetic opera-
tions are completed; the last 16 programs, which are active
on program repeat, are used to shift the result into its nor-
mal notation. One program repeat is always required. The
wiring of the 604 control panel is quite tight; there are 95
logically different operations which were condensed into 60
through the use of calculate selectors and the use of two
6H6 diode circuits. Details of analysis and wiring of this

' feature of the 604 control panel and all other control panels
are described in the Appendix.

The first two program steps reverse the sign of the
numerical digits of operand B if calculate selector 5 is trans-
ferred. This step is placed first, in order that subtraction
may be converted into an addition, which is symmetrical in
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its operands. Program steps 3 to 8 manipulate exponents so
that for the process of multiplication or division the trial
exponent of the result is computed, and for the process of
addition the larger of the two exponents is placed in general
storage 1 and the absolute value of their difference in gen-
era] storage 4. The final calculation of the trial exponent

digits for the addition process is deferred to program steps
21 to 23.

The equivalent of five program exits is obtained in pro-
gram step 6. One exit is expanded into two by the use of
diodes to drive both emit 1 and counter plus. Use is made
of the fact that the “read units into 6th” is inactive on
“counter read-out” in order to couple “in 6” to “general
storage 3 read-in.”

For addition, the decision as to whether to interchange
operands 4 and B prior to alignment of the decimal points
is made by a balance test for step suppression on program
step 4. If this interchange is required, it takes place on
program steps 9 to 11.

Decimal point alignment is done in three steps. If the
difference of the exponents is greater than four this differ-
ence is reduced by four, and operand B is shifted four places
to the right (program steps 12 to 19). The next part of the
alignment is done by multiplying B by an appropriate fac-
tor. Unity is successively subtracted from the amended
difference of the exponent digits, and unity is emitted into
the multiplier quotient in successive positions until a nega-
tive balance is obtained (program steps 24 to 36). Finally,
if a shift of more than eight places is required, a negative
balance does not occur, and operand B is set equal to zero
on program step 37. The addition is completed on program
steps 38 to 46, with program steps 41 and 43 inactive.

Multiplication and division are carried out by conven-
tional programs interspersed among the addition programs.
On program step 46 each of the possible results, as yet un-
rounded, is similarly placed, with the numerical digits in
the electronic counter and with the appropriate exponent
digits in general storage 4. The 11th counter position is the
overflow place for addition or division, or the 16th place
when a full 16-place product is formed in multiplication.
The two right-hand positions are the two possible round-off
positions. Round-off (%4 adjust) occurs only on the last
program repeat.

The overflow position is zero tested, and if the result of
the test is zero, the exponent digits are reduced by one and
the computed result shifted one place to the left. The expo-
nent digits are reduced, and a balance test for selector
pickup is ordered on program step 57. The previous process
is repeated until a non-zero is found, which suppresses
further program repeat pickup, or until transfer of the
negative balance selector, which is wired on the 402-417
control panel to transfer calculate selector 4. (Program re-

‘peat is initially picked up on program step 3 but further
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pickups occur on program step 49 which is wired through
the common to the normal points of calculate selector 4.)

When a non-zero digit is found (program step 55), re-
duction of the exponent digits (program steps 56 to 58) is
suppressed, and further pickup of program repeat is also
suppressed. On the final 60 program steps the result is
rounded, and a final zero test is performed to determine
whether round-off caused an overflow. If no overflow
occurs, the exponent digits are again reduced by unity. If
an overflow does occur, the exponent digits are not reduced.
This last is provided to take care of the special case in
which the unrounded result consists of eight 9s with a
ninth digit greater than or equal to 5. Program step 59 is
suppressed on non-zero, because if overflow occurs the cor-
rectly rounded result is in factor storage 3-4; otherwise, the
result is in factor storage 1-2.

The suppressions are described in detail in the Appendix.
The only unusual feature of the suppressions is the use of a
pair of diodes to provide for suppression either by group
suppressor 4 or by suppress on minus balance.

Twug 402-417 CoNTrOL PANEL

The 402-417 control panel used at the Lewis Flight Pro-
pulsion Laboratory of the NACA is wired to correspond to
the card diagram shown in Figure 1 and the table of codes
shown in Figure 2. Three independent ten-column program
fields, card columns 4-13, 54-63, and 64-73, are provided.
Four numerical fields (a, b, t and s) are provided in card
columns 14-23, 24-33, 34-43, and 44-53, respectively. Card

" COMPUTATION

columns 1-3 and 80 are used for card numbering. Card col-
umns 41-47 are wired from second brushes to counter
minus for the purpose of clearing the counters of the ac-
counting machine. Card column 48 is wired to the X hub of
storage clear. Card column 74 is used for carriage control
and card column 75-79 for listing of identification of results
with alphabetical or numerical designations on a 402, or
numerical codes on a 417 accounting machine.

The three program fields 4-13, 54-63, and 64-73 are iden-
tical in function. Their wiring, which involves co-selectors
5and 6,9 and 10, and 11 and 12, is shown in the Appendix.
Co-selectors 11 and 12 are required to permit subsequenc-
ing on special program for the calculation of integral roots.

The program field is subdivided as follows:

Channel A address, symbol 4
Operation code, symbol op
Channel B address, symbol B
Channel C address, symbol C

Card columns 4 and 5
Card column 6

Card columns 7 and 8
Card columns 9 and 10

Card column 11 Shift, symbol S

Card column 12 “Normal” column for special
codes, symbol N

Card column 13 “T'ransferred” column for
special codes, symbol T,

The regular channel A, B, and C codes perform in the
normal manner as do the operation codes and the shift code.
A shift of two has been taken as “normal.” The special code
columns 12 and 13 are read conditionally. Discussion of
their significance is deferred.
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Code Function
Channels 7n Read out counter group n
Aand B 8n Read out and reset counter group #
(columns 4-5 00 Read factor from card
or 7-8) Nn Read out storage unit », bank N
X
9 Re-read result of previous calculation
X
8n Re-read previous result and clear counter group »
Channel C n Read in counter group #» plus
(columns 9-10) 8n Read in counter group # minus
00 Read out and reset electronic counter but do not store
result
Nn Read in storage unit #, bank N
Operation 1 Add 4 and B
Codes 2 Divide 4 by B
(column 6 3 Multiply 4 by B
or 56 4 Suspend normalization of result
or 66) 5 Reverse the sign of element B
8 Suspend round-off
9 Summary punch
X List
Conditional *X (N) Ignore abnormal notation of factor A
Codes *X(T) Ignore abnormal notation of factor B
(column1Zor O Cause discrimination to be based on “zero-not zero”
13 or 62 or result
63 or 72 or 1 Start total program for Nth Rooting
73) 2 Substitute number in “s” field for result of previous cal-
culation retaining sign of result
3 Add number in table field to counter group 7
5 Read next line of instruction from program field 50
6 Read next line of instruction from program field 60
7 Store previous result with sign punched in “s” field
8 Stop
9 Summary punch

*Read unconditionally.

Ficurg 2. TABLE or CODES

Additional channel A and B codes have been synthesized
by the use of an X punch in card column 4 or 7. This X
punch causes the result C of a calculation with its sign to be
re-used as the corresponding 4 or B factor in the next calcu-
lation. For convenience in listing, an 8 or 9 is also punched
in order to list as Q or R. If the code Q is used and a
digit 1 to 7 is punched in the units digit of the channel A or
B code fields, the result of calculation may be re-used and

the counter group n(n = 1, ..., 7) is simultaneously .

cleared, subject to the usual prohibition against attempting
to read in and read out of a counter at the same time. The
counter complement 9’s are prevented from entering the ex-
ponent registers, general storage 1 or 3, by the wiring in
the lower half of pilot selectors 2 and 3. In addition to wir-
ing the factors through selectors it is necessary to wire the
signs of channel C to channel A or B as desired. To prevent

accidental setup of a false sign when an R or Q) code is used,
the channel C sign is wired through pilot selector 13 which
is transferred only on electronic all-cycles. The sign is also
wired through pilot selector 14 so that positive or negative
absolute values may be formed conditionally.

The wiring of the 604 control panel requires that the
electronic counter and electronic 4 and B be cleared of all
numbers left from the previous calculation. In order to sim-
plify card punching and to provide selective reading of con-
stants from card fields 4 or B, the electronic counter read-
out and reset and the storage units read-in and read-out
are wired from electronic all-cycles rather than from chan-
nels A, B, and C commons.

The correction required for the exponent digits is read
into the multiplier quotient unit by emitting a 5 into the
second position from the C emitter. The pickup of calculate
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selector 2 is wired to the units digit to provide 52 for divi-
sion, and the pickup of calculate selector 3 is wired to multi-
plier quotient minus to provide the —50 required for ex-
ponent correction during multiplication.

One of the major problems in floating point operation is
to provide for the correct management of commands or
computation that involve zero factors or zero results. The
desired treatment of commands with zero factors is as
follows:

Operation A B Results
Addition 0 =0 0
=0 0 0
0 0 =0
Multiplication 0 0 =0
=0 0 =0
0. 0 =0
Division 0 %0 =0
=0 0 Impossible; stop
0 0  Impossible; stop.

It is also desired to treat as zero any result for which the
exponent digits become negative, and it is necessary that
the division of a number in normal notation by a non-zero
factor in abnormal notation—that is, by a factor with one
or more of its initial numerical digits equal to zero—be
classed as an impossible operation. In practice these condi-
tions are realized by treating any number as zero whose
first numerical digit is zero. This action can be prevented by
suitable coding in the program columns N or T (card col-
umns 12 or 13, etc.).

The existence of a non-zero initial numerical digit is de-
tected by wiring these digit positions to comparing, and
picking up pilot selectors 4 and 5 (for 4 and B, respectively)
from the corresponding unequal impulse. Discrimination
against zero factors may be prevented by punching XN or
XT which causes pickup of pilot selectors 4 or 5, respec-
tively, from second reading. Pilot selector 4 is also picked
up on its digit pickup for the operation of root extraction on
special program in order to assure a “zero-not zero” dis-
crimination by which special program is terminated.

Pilot selector 6 is transferred on immediate pickup if
there is a 2 code (division), and pilot selector 7 is simi-
larly transferred if there is a 3 code (multiplication).

These four pilot selectors cause the following results:

a. If there is neither a 2 or a 3 code, a 1 (addition) code
is formed as a true 1 impulse.

b. For multiplication or division, if either or both factors
are zero—and, for addition, if both factors are zero—
calculate selector 4 is picked up by a 0 impulse which
lists as 0 on a 402 when wired to the alphamerical list
entry. In any of these cases pilot selector 9 is picked
up on its X pickup. Pilot selector 9 is coupled to co-
selectors 7 and 8 which actually cause the result to be
zero in case the “zero result command’ was generated

COMPUTATION

by the attempt to carry out computation with non-
zero factors in abnormal notation.

c. In division, if factor B is zero, a “half-after-11” im-

pulse picks up pilot selector 8 through its X pickup.
Pilot selector 8 is wired to cause a machine stop when
transferred. (This pilot selector is used for all of the
various kinds of machine stops which can occur dur-
ing calculator operation.)

The effective portion of the wiring of pilot selectors 4, 5,
6, 7, 8, 9, 13 required for each of these operations is indi-
cated in the successive parts of Figure 3, pages 53 and 54.

The five high-order positions of the electronic counter
and the three high-order positions of general storage 4 are
wired to comparing inlet to synthesize a product overflow.
The unequal impulse hubs are wired to the digit pickup of
pilot selector 8 to provide a stop. This feature terminates
computation if the exponent digits of a computed result ex-
ceed 99 or if digits other than zero are read out of any of
the positions so wired. To avoid split wiring, a condition-
ally programmed stop code (8 digit) is also wired to pilot
selector 8 by the use of a position of comparing.

The previous wiring prevents the use of a large number
of program repeats in the 604 to detect a zero result which
would occur with blank cards and also provides for the
transfer of calculate selector 4 when the occurrence of nega-
tive exponent digits causes negative balance selector 1 to
transfer. For this purpose it was necessary to synthesize an
impulse that was available only on idle cycles. This impulse
is available at the lower normal point of pilot selector 13
which transfers only on electronic all-cycles. The transfer
of the negative balance selector also causes co-selectors 7
and 8 to be transferred, thus storing a zero result.

Conditional O perations and Special Numerical Fields.
The special program fields N and T contain eight condi-
tional commands. One of the fields N or T is always read:
N for a positive sign, and T for a negative sign. Conditional
code 0, if read, causes the choice to be based on the sign of
the exponent digits which thus forms a “zero-not zero” dis-
crimination. If no O code is read, the choice is based on the
sign of the numerical digits of the result. This alternation is
effected by wiring 0 from a digit selector to the digit pickup
of pilot selector 15 by which the sign exit of the electronic
counter or of general storage 4 is wired to the coupling exit
of negative balance selector 2. Card column N is wired to
the normal point of this selector and card column T to the
transferred point. The common is wired to the common of
the previously-mentioned digit selector.

Code 1 is used to pick up special program in connection
with the Nth rooting subsequence.

Code 2 causes the value punched in the substitution field,
“s” (card columns 44-53), to be stored in place of the com-
puted result with the sign of the computed result, unless
code 7 (below) is also used, in which case the sign of the
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“s” field is stored. The reading of the “s” field is effected by
wiring a 2 from the digit selector to the digit pickup of pilot
selector 9 which in turn transfers co-selectors 7 and 8. It is
noted that the numbers punched in the “s” field will replace
any zero result. Therefore, care must be exercised in the
use of the “s” field. Miscellaneous examples of its use are
shown in the Appendix.

Code 3 causes entry of a factor punched in the “t” field
(card columns 34-43) into counter group 7. The 3 digit is
wired to the digit pickup of spread read-in and also to the
pickup of the field selector so that the sign X (card column
34) is read to counter group 7 minus. Since this is a condi-
tional operation, accidental read-in of digits to counter
group 7 is prevented as follows: the card field is wired to
counter exit, and counter exit suppression is wired through
position 4 of the field selector to an all-cycles impulse.
When the field selector is transferred to position 3, the all-
cycle impulse fails to reach the exit suppression hubs. Care
must be exercised ‘in the use of 3 codes so that no counter
storage is ordered on the card for any program field in
which a 3 might be read. As long as there is no 3 code on a
card, columns 34 to 40 may be used for any punching de-
sired. This field has been found useful for codes to identify
special cards.

Codes 5 and 6 are used to control reading of program
instructions from the alternate program fields. If a 5 is
read, the instructions on the next cycle will be read from
program fleld 50, so named because its card columns are 50
in excess of the basic field, card columns 4-13. If a 6 is read,
the next commands will be read from program field 60. It is
noted in passing that since the N and T fields are read at

second reading, the channel A and B codes are read from
the same program field, while the operation code, channel C
code and shift instruction are read from the transfer field.

Code 7 causes the sign of the “s” field to be substituted for
the sign of the computed result. This code permits the con-
ditional formation of positive or negative absolute values.

Code 8 causes a stop.

Code 9 causes summary punching.

As previously noted, each of these codes is conditionally
read, but may be made unconditionally read by punching
the code in both the N and T columns. Each program field
has separate N and T columns.

NtH Rooring

The process of root extraction was chosen as the basic
subroutine for several reasons:

a. In aerodynamics, second, fifth, and seventh roots

occur quite frequently.

b. The number of iterations required for the extraction
of a root is difficult to predict.

c. The calculation of the elementary transcendentals can
always be programmed in a sequence of fixed length
and if done on a subsequence would require five stor-
age addresses and roughly three times as many cycles
as the known fixed routines.

The programs for root extraction are emitted in part
from the C emitter through the field selector. The specifica-
tion of the root to be computed is controlled by modifying
the order of pickup of the field selector which is in turn
controlled by storing an appropriate code number in stor-
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age unit 28. T'o carry out this operation it is necessary to
store the number whose root is desired in storage unit 26
and to store an estimate of the root in storage unit 22, The
result appears in storage unit 22. The code number stored
in unit 28 serves as the divisor » in the iterative formula
below for \/a. Let X, denote the kth approximation to n\/?,
then

1
Xk+1=Xk+(3(_,ZT1"—Xk)';L‘.

55

The four low-order digits of the code number also serve to
control the field selector. Storage unit 28 is read out over
channel B, and the program is arranged so that an imme-
diate pickup R code is provided on every cycle except when
the content of 28 is used as a divisor. The low-order posi-
tions of channel B are wired to appropriate transfer posi-
tions of the field selector and hence through the transferred
points of co-selector 12 to the pickup of the field selector.
Co-selectors 11 and 12 are transferred on all total cycles.

Codes Emitted to Field Selector Order of Pickup of Field Selector
Field Selector Field Selector Root—» 2 3 4 5 6 7
Position A op B CcC S Pickup 1) 4 4 4 4 4 4
X 2) 6 6 6 6 6 6
0 22 2 2 2 5 3) 013 313
X X 4) 502132
1 26 3 28 2 *by 5) 7500 21
< 6) 8 75500
2 26 3 28 2 *bg Q 23;;;;
X X 9) 49988
3 22 3 28 2 *hy 10) 44909
X 11) 4 4
4 2 528 22 2 6
X
5 2 528 2 7
X
6 26 1 28 2 bs
X
7 22 2 2 2 8
8 X
8 22 5 2 2 9
X
9 22 5 2 2 4
*b; = ith numerical digit of factor B
-Equivalent Card Programming for Square Root
SFlielcl Root Code Number
clector 200000
POSitiOn A Op B C S Result g g} Zgoomooocl)
4 1 R 2 X 4 51:40000023
5 .
6 262R 2 o/X, S 3i00sn
1 7 51;70000123
0 22 5 R Xy — a/X,
1 a
2 28 2 E(X"— 3(_1)
7 225 R 2 Xuto(E-x
Q 2\ X, *
1
8 22 5 R 2 Xy — X
1
22 5 R 22 2 Xy— (Xy— Xpy1)
1 R 2 Xpia

F1curg 4. N1 RoorTING
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This is necessary to isolate channel A and B from the sec-
ond reading contact roll and also to permit forming a chan-
nel C address with a single 2 digit.

The wiring of the field selector for the extraction of a
root is diagrammed in the Appendix. The order of pickup of
the field selector and the equivalent card coding produced is
shown in Figure 4, page 55. The process is terminated by
the occurrence of a zero result order on field selector posi-
tion 9. To obtain the required zero result in all possible root
extractions, it is necessary to suspend round-off on step 8.

The general process of root extraction consists of

a. computing X721,

b. forming a/X7%~! and subtracting this quotient from
X,

c. dividing this difference by #, using the code number
(see Figure 4) as an approximation to #,

d. subtracting this difference from X to form Xj,q
(with round-off suspended),

e. forming X; — Xy41 for a “zero-not zero” test, and
finally,

f. recomputing X;,q by subtracting the above differ-
ence from X, and storing it at storage address 22 to
be used as the next estimate.

The card-programming necessary to begin the Nth root-

ing procedure is shown with the examples of programming
in the Appendix.

CALC.SEL~

GROUP SUP PU-
oTo o ofTo
11 I IAI I I I GI :
ONO O ONO
DROP OUT
oCo o oco
, ‘ I I I SI
Type K oT0 © OoToO
EXIT 2
ONO ©o ONoO
ocCco
/j oNo | TypeH
o oco Type J
oTo o oToO
4
oNo o ONo
oCco o ocCo
reTO O OTO
5
/No o OoNo Type A
.Go ocCo
NeT0 0 oToO
. 6
rNO o ONoOo Type G
«lo o oco
BAL TEST FOR SEL PU -
oo o026 o030 oto To o ©oTo
[———BAL TEST ZERO TEST. 7
o—o0—0—0 No o oNo Type D
SUP ON + SUP ON ZERO
o—0—o0—0 «Co o oco
SUP ON—  |SUP ON NON ZERO _—
o—0—0—0 oT0 ©0 OTO
FSUPPRESS WITHQUT BAL.TESTH 8
ONO O ONO
T L
i oCo o ocCo
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APPENDIX

The Appendix is devoted to the explanation of wiring
diagrams not fully covered in the text and to the presenta-
tion of a few examples of programming which serve to il-
lustrate the use of certain of the special functions.

Suppressions. The diagrams of the various types of sup-
pressions (Figure 5) are self-explanatory. Type 6H6 ther-
mionic duodiodes are used.

604 Amalysis. The following notes on the 604 analysis
give most of the information required to wire the control
panel. The details of the analysis and wiring are shown in
Figure 6.

1. All three-position storage units are given an 8-6 as-
signment. Read-in and read-out of factor storage 1-2 and
factor storage 3-4 are coupled, respectively.

2. Factor storage 1, 2, 3, and 4, general storage 1 and 3,
and the multiplier quotient read-in are coupled to electronic
all-cycles.

3. General storage 4 read-out and counter read-out and
reset are coupled to electronic all-cycles.

4. Ona 3 code, —50 is read into the low-order positions
of the multiplier quotient, and on a 2 code, 452 is read in.

5. One of the calculate selectors 1, 2, or 3 must be trans-
ferred on every calculate cycle. Calculate selector 6 is
coupled to calculate selector 1, and calculate selector 7 is
coupled to calculate selector 2.

CALC.SEL~
oTo o oTo

GROUP SUP PU:

RSN
1117111
155008

6H6 Diodes

.I '
ONO O ONO

oCo o ocCo

®

oTo © oToO

I ONO O ONO
8 h

Type F

Type M

Type E

Type C

BAL TEST FOR SEL PU.
o 1 0 o 2 o 3 o 4
——BAL TEST ZERQ TEST—

o—0—0—0 Type I
SUP ON + SUP ON ZERO [rm———
O—0—0—0
SUP ON NON ZERO|
0—0—0—0
~SUPPRESS WITHOUT BAL.TEST— 8

SUP ON —

Frcurg 5. SuppreEssioN WIRING
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6. One of the program exits of program step 6 is made Wiring of Numerical Input and Clearing (Figure 7).
equivalent to two exits by the use of 6H6 diodes. The diode  Co-selectors 1 and 2 control the input of a factor from
wiring is as follows: _ : storage or a card, or the re-use of the previous result to

channel A. Co-selectors 3 and 4 perform the same function

Counter plus for channel B. Co-selectors 7 and 8 permit the uncondi-

T tional substitution of a number in the “s” field of a card for

Calculate a zero result, or the conditional substitution of a number in

CI:I Selector 3 the “s” field for a non-zero result. Counter group 7 of the

c accounting machine is used for the entry of a factor from

o—o Program step 6. the table field by use of spread read-in. Pilot selector 1 con-

Emit 1 trols detail printing of the 402, and pilot selector 8 controls

“machine stop” and causes a list cycle for each stop.

The early field selector controls entry of the table field
sign. The sign impulse for the number in the “s” field is syn-
thesized by combining a “hot 10” with the coupling exit
impulse of pilot selector 10 which transfers when “s” is nega-
tive (that is, there is an X in column 53). This sign is
wired to the transferred points of pilot selector 14 which

7. The use of diodes in suppressions type C, E, F, and I
is shown in the suppression diagram (Figure 5).

8. General storage 3 read-in is coupled to “read units
into 6th.” On program step 6, with calculate selector 3 nor-
mal, counter read-out and reset prevents “in 6th” from
being effective, and the read-in to general storage 3 is not

affected. transfers on a conditional 7 code.
9. “Drop-out of group suppressor 4” is coupled to “read Operation Control (Figure 8). Co-selectors 5, 6, 9, 10,
units out of 6th.” : 11, and 12 control which of the three independent program

402 Diagrams. To simplify wiring and discussion of the  fields is to be read. Negative balance selector 2 controls
402 control panels, the wiring has been illustrated in three ~ which of the conditional code columns will be read. When
parts (Figures 7-9). this selector is normal, the N column is read; when trans-
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ferred, the 'I' column is read. The pickup of this negative
balance selector is controlled by pilot selector 15. When this
pilot selector is normal the pickup impulse comes from the
counter sign; hence, the discrimination is “negative-posi-
tive.” Pilot selector 15 is transferred by a conditional O
code. When this occurs the general storage 4 sign provides
the pickup impulse, and the discrimination becomes “zero-
not zero.”

Nth Rooting Routine (Figure 9). The transferred posi-
tions of the field selector accept the emitted programming
which controls the Nth rooting routine. At a specific field
selector position the channel A and B addresses for the fol-
lowing calculate cycle are read as well as the R codes for the
channel C address, and the shift code for the previous calcu-
late cycle.

The order of pickup of the field selector is ordered by the
code word by wiring the last four positions of channel B to
the pickup control.

Special program is begun by a 1 code read conditionally
or unconditionally.

Also shown on this diagram is the method used to obtain
the correct factor in the multiplier quotient for exponent
adjustment. Calculate selector pickup 2 is wired to the units

position of the multiplier quotient, an emitted 5 is wired to
the ten’s position, and calculate selector pickup 3 is wired to
the sign position.

List Wiring. The list wiring appears in all three dia-
grams. The operation codes list from the calculate selector
pickup hubs. Pilot selectors 11 and 12 are wired so that a 5
or 6 will list to indicate when one of the transferred pro-
gram fields has been read.

Examples of Programming. The programming shown on
the CPC program code sheet (Figure 10) is that re-
quired for the calculation of the nth root of @ when no initial
estimate is available. The functions of the card coding are
as follows:

Card
Number Function
001 Read a into storage unit 26.

002 Read code number into storage unit 28.
003 Cause one card cycle delay before storage 26 may
be read out.

004 Form the “sgn of a.” (If @ is negative, sgn of
e = —1; if a is positive, sgn of ¢ = +1; if

= 0, sgn of ¢ = 0.) The 0,2 punch in column

4 and the 6 in column 5 cause storage unit 26 to
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Card
Number Function (continued)

be read out with the sign punched in column 23.
That is, we obtain — |a| over channel A. This is
divided by —a, giving the sgn of . The X’s in
columns 12 and 13 prevent a machine stop in
case ¢ = 0, and the division 0/0 gives a zero
result.

005 Form |a| to use in calculating the initial estimate.
The channel B address code causes a to be read
out over channel B with the sign punched in
column 33 The O shift code brings the factor in
with the first exponent digit placed as the
first numerical digit and numerical digits 7 and 8
dropped.

006 Add 07;00000010 to the result of card 005. When
this is done all the numerical digits of a are
dropped, and a number Ol;lejes is obtained,
where ¢; and e, are the first and second exponent
digits of a, respectively. The X in column N in-
structs the calculator to treat 07;00000010 as a
number in normal notation. The 8 in column T
is required only when even roots are being ex-
tracted. If the sgn of @, calculated on card 004,
is negative, column T will be read on card 006,
causing a machine stop.

007 A number m is added to the exponent digits. The
number m has been calculated to give a good first
estimate of the desired roots and has the follow-
ing values for the different roots:

Root m

—00;4854

00,0260

00,5340

01;1045

01;1556

01,2067
The presence of an initial numerical digit of zero
in m for the cube root requires.an X in column
12 when this estimation is used.

008 Divide the sum from the previous card by #, the
order of the root (that is, 51;2 for square root),
and shift the result 4 places to the left. This puts
the exponent digits of the estimate in their cor-
rect position.

009 Multiply the estimate by the sgn of a. This is
necessary to obtain a negative estimate of the
odd root of a negative number.

010 The 1 codes in column 12 and 13 start the nth
rooting procedure unconditionally.

011 List the nth root.

Some of the steps described above, obviously, are not

always necessary. If an estimate of the root is known, it is

(X'in column 12)

N
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only necessary to read it out over channel A or B on the
card (009) preceding the 1 code which starts special pro-
gram. If the number @ is known to be positive, formation of
the sgn of @ is unnecessary.

Use of Auxiliary Program Fields and Conditional Codes.
Examples of the use of the auxiliary program fields and
some of the conditional codes are shown in Figure 11. The
first six cards illustrate a transfer of control to program
field 50 under the control of the sign of a result. In the fol-
lowing example it was desired to approximate the operation
ar+1 = ay €%? by the use of only a few terms of the Taylor
series for e%/¢ It is known that the Taylor series for e”
converges more rapidly for positive & than for negative x;
therefore, for positive da/a, the operation is approximated

by d 1 (da\?
a
s =a[ 145 +3(5) ]

and for negative da/a, by
Qy

Qg1 = 5.
0
a a

The machine operation forms the absolute value of da/a,
and computes the first three terms of the series for el@/dl,
A transfer of control is used to “remember” the sign of
da/a and thus carry out a multiplication if de/a is positive,
or a division if da/a is negative.

This program illustrates the timing of conditional codes
relative to the command whose result controls the condi-
tional. operation. Conditional codes are read from second
reading and are effective on the cycle following their read-
ing. Therefore, it follows that the quality of the result of
the command on card # controls the reading of conditional
codes on card n+2 which in turn modifies the results of the
command ordered on card n+41.

Card by card the programming for this example is as
follows:

Card
Number Function

001 Simulate the calculation of da/a by reading it
from a card. The 7 codes in columns 12 and 13
on card 002 cause the result da/a to be stored
unconditionally as its absolute value.

2
) . The R codes for the channel A and

002 Form

B addresses, and the 3 operation code causes
re-use of this factor.

2l a

a transfer to program field 50 if the result of
card 001, da/a, was negative. The same calcula-
tion occurs on either program field.

2
003 Form 1 d_a, . The 5 code in the T column causes
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COMPUTATION

Card

Program Fleld

Factor Field A Factor Field B

Table Field

Substitution Field I Program Field 50 Program Field 60

no,
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025 E
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1

F1curg 11. Usg o¥ AUXILIARY ProGRAM F1ELDS AND CoNDITIONAI, CODES

Card
Number Function (continued)
2
004 Form da + %‘%‘1' by adding the content of
counter group 2 to the previous result. Reset
counter group 2. If program field 50 is being
read, the same operation is performed, and the
5 codes in the N and T'5 columns cause the con-
tinued reading of program field 50.
da| | 1|daf? .
005 Form 1 + i + 2] by adding 1 to the pre-
vious result.
2
006 Form the product ak(l + %ﬂ %%' ), or the
2
quotient ay / (1 + %‘- + %Elaﬁ ) , and store in

storage unit 11, The first instruction comes from
the basic program field which is read if da/a is
positive. The second instruction comes from pro-
gram field 50 which is read if da/a is negative.
(Normally, a; would have been a computed
quantity, but for purposes of illustration it has
been entered from a card.)

Cards 07-09 are blank. The programming in cards 010 to
025 illustrates the use of a “zero-not zero” discrimination,
and the use of an involuntary reference to the ““s” field to
store the sign of a “computer zero.” The timing of condi-
tional codes is again illustrated; the reading of codes 3N
and 2T on cards 012 and 015 depends on the quality of the
results commanded on cards 010 and 013, respectively. The
control is made to depend on the “zero-not zero” condition
of the results by ON and OT punches on cards 011 and 014.

Card by card the programming for this example is:

Card
Number Function

010 Form A — B (which in this case is an exact
zero) and store the result in storage unit 11,

011 Re-read the result of card 010. If it is non-zero,
store it in storage unit 12. If it is zero, store the
number punched in the “s” field on the next card
in storage unit 12.

012 Read the “s” field conditionally (see card 011) and

also read the conditional codes in the T and N
columns. Because the result of card 010 is zero,
the T code 2 is read, and the N code 3 is ignored.
(No operation code is used on this card.)
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Card
Number Function (continued)
013-015 Repeat the preceding operation for a non-zero
result,
016-020 Cause read-out of the stored results to illustrate

the effectiveness of the controls.

Cards 021 to 024 illustrate involuntary reference to the
“s” field.

021 Muitiply A times B. The numbers chosen in card
fields a and b produce a negative result which
is treated as zero because its exponent digits are
negative. The stored result is a 1 in the low order
position of channel C. This 1 is read from the
“s” field of card 022 and is stored with the sign
of the zero result.

Mark time to allow the result of card 021 to be
stored in storage unit 15.

022-023

024 Form sgn of the content of storage unit 15. This
is done by punching X-23 which causes 4 to be
— | content of storage unit 15|, and by perform-
ing a negative division with the 2 and 5 codes.
The XN and X'T punches suspend the automatic
formation of a zero result, and the machine stop
that would ordinarily result from division with
both factors in abnormal notation.

DISCUSSION

Mr. R. W. Smith: Why did you use a calculate selector
rather than zero test in order to stop indefinite program
repeating ?

Mr. Patton: A non-zero result of a zero test is used to
suppress program repeat when the high-order digit is non-
zero. In the case of an identically zero result, left shifting
and program repeating would occur indefinitely so that the
negative balance selector of the 402 is used to pick up a
calculate selector to suspend 604 calculation in such cases.

Dr. Yowell: These floating decimal control panels are
very fine, but I am a basic unbeliever! I think the floating
decimal drives problems underground in many instances,
and Mr. Patton’s first remarks as to the disadvantages of
the floating decimal must be taken very seriousty. There
are times when one runs into trouble with a fixed decimal
control panel, and when a floating decimal panel is useful—
in cases where one has decimal troubles. If one is trying to
solve a system of equations and obtains wide fluctuations
over the numbers, it generally means there is a near zero
determinant and one is “getting back” accuracy out of the
solution, no matter what is done. It is the problem of analy-
sis of results of a floating decimal panel that causes a great
deal of trouble. One can get out of a floating decimal pro-

63

cedure eight digits which look very good and may mean
absolutely nothing.

So the fact that it is convenient to use floating decimal
panels at times does not avoid the basic difficulty of sitting
down and thinking about results from the very beginning.
I would like to stress at this time that the convenience of
the floating decimal panel does not, in most cases, really
help out in critical numerical cases of small determinants in
matrices where the scale factors fluctuate widely. One has
to think about them sooner or later; the floating decimal
panel just glosses over this point and is deceptive to some-
one who is uninitiated in computing procedures.

Mr. Patton: However, if we have a problem in which
great accuracy is required, the floating point panel turns
out to be wonderful for finding the magnitudes of the num-
ber that will occur in the subsequent fixed-point operation
which will give the accuracy desired. We do not use the
floating point panel indiscriminately.

Dr. Arnold: Very briefly, the 604 control panel that we
have has only addition, multiplication, and division, with the
change of sign of one of the factors. Previous results are
read back into the 604 through the use of the selectors on
the 417. One feature of our panel is the manner of shifting
before addition, which we do essentially through repeated
division by two. The difference in the exponents is divided
three times by two to give one additional shift in another
way.

Addition is handled entirely without program repeat—
addition with or without carry-over or addition with loss
of digits. The zero prints nothing. We have two operations
on the 417 panel to convert an exponent to a number or a
number to an exponent.

Dr. Thomas: As to Dr. Yowell’s remarks on the use of
floating decimal techniques, I think there {s really quite
general agreement as to what they will accomplish. If there
are as many significant digits in the floating decimal num-
bers as in the fixed decimal numbers, nothing is ever lost
by using the floating decimal. But, of course, one may get
results which have no sense! However, any result obtained
using a fixed decimal can be obtained using the floating
decimal with the same number of digits; and a floating deci-
mal system would eliminate the headache of deciding exactly
where overflow would occur and where to program shifts.

Of course, it is necessary to store the index; so there are
fewer digits in a floating decimal than in a fixed decimal.
Hence, the decision of which is preferable, in any case, de-
pends upon the accuracy desired in the particular problem.

The only danger in using the floating decimal, in general,
is that one may attach significance to results which have no
accuracy left. The disadvantage is not having spent time
working out exactly where overflow will occur.

I think that when we have stored-program machines in
which arbitrary changes of program can be made, one will
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normally work nine-tenths of the time with fixed decimals.
But they will be placed within a longer computation where
floating decimal will be used. '

Dy. Hamming : 1 have been using floating decimal on ma-
chines at Bell Telephone Laboratories for about five years,
and my response to Dr. Yowell is this: To use floating deci-
mal is like playing with fire! On the other hand, that is no
argument at all against fire, which is a very useful device
to humanity.

My, Madden: To overcome the annoyance of intermittent
machine errors, we at RAND have developed a general-
purpose setup, which uses the familiar principle of casting
out nines. However, we cast out 99’s and carry a count of
the number along beside the number itself on the channel

COMPUTATION

and in the storage. We have to sacrifice an operation in
order to accomplish this. We have addition, subtraction,
multiplication, and division.

Dr. Hurd: There are eight-digit numbers?

Mr. Madden: Eight-digit numbers, two-digit counter,
We divide by 99. All the numbers coming into the 604 are
checked against their counters to make sure there hasn’t
been a failure in the reading. All of the operations taking
place in the 604 are also checked by this casting-out-99’s
principle.

Further, we carry the count plus one; if there is complete
failure to read so that there are zeros in the number and
zeros in the count, this error is detected.



Carapult Takeoff Analysis
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DURING World War II, the load-carrying ability of
naval carrier aircraft was exploited to the fullest. Obvi-
ously, any increase in bombs, ammunition or fuel capacity
was an increase in striking power for an airplane capable
of becoming airborne. In fact design overload conditions on
combat aircraft were exceeded continuously; the only re-
quirement on the resulting combination flying arsenal and
tanker was that it take off from a carrier deck.

These increases in airplane gross weight required in-
creased takeoff distances. Eventually it became necessary
to assist heavy airplanes to attain flying speed, and the car-
rier catapult, as it is known today, came into being.

With the advent of jet propulsion, shipboard catapults
became even more important. Jets, with their slow accelera-
tions and necessarily high fuel capacity, required catapult-
ing from their inception. At the present time, nearly all
carrier based aircraft are catapulted from the carrier deck;
pilots no longer are required to “lift off.”

A carrier catapult derives its force from air, under pres-
sure, stored in an air-oil accumulator. The air acts on a
column of oil and forces it into a hydraulic cylinder. The
force and motion of the hydraulic ram are transmitted
through a cable system to a shuttle in a slot on the carrier
deck. Another cable—or bridle as it is called in this case—
connects the shuttle to the airplane.

The firing operation of a catapult consists of opening a
valve which allows oil, backed up by air pressure, to enter
the hydraulic cylinder. The hydraulic ram moves the shut-
tle which, in turn, pulls the airplane along the deck for the
length of the catapult power stroke. At the end of the power
stroke, the ram and shuttle are braked, allowing the air-
plane to drop the bridle and pass on over the edge of the
deck.

Prior to each catapulting the airplane must be “tensioned”
in order to remove all slack in the bridle and cable system.
In the “tensioning” operation a small force is applied to the
shuttle which, through the bridle, pulls the airplane for-
ward and tensions a restraining link which connects the
airplane to the carrier deck. When full catapult power is
applied, this restraining link—or “holdback unit” as it is
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called—breaks, and the airplane starts its accelerated take-
off run.

Catapult end speed is not the only requirement for flight.
Lift is proportional to the aerodynamic angle of attack;
hence, there is the additional requirement that the airplane
rotate to the correct angle of attack in the vicinity of the
end of the power stroke. Since the airplane is pulled only
by the catapult shuttle, provisions for rotation to the
nose-up angle necessary for flight must be accomplished in
the design stage of the airplane.

There is one more serious problem concerned in the cata-
pulting phase of aircraft takeoff. The problem is that of ex-
cessive “porpoising” or oscillating of the airplane both ver-
tically and rotationally during the catapult power stroke.
Oscillations of this sort are objected to strongly by pilots
and in addition are usually damaging to the airplane.

The purpose of the catapult analysis is to determine, dur-
ing the design stage of the airplane: (1) proper location of
the airplane’s catapulting accessories, (2) loads imposed
during the catapult operation, and (3) the effect of the
many variables (gross weight, center of gravity [c.g.], loca-
tion, wind over carrier deck, etc.) on the flight path of the
airplane.

Basic Equations

The flight path of the airplane can be described by two
simultaneous second-order ordinary non-linear differential
equations.

The basic equations of motion are shown in Figure 1.

The catapult operation may be considered in two phases.
The first phase covers the period from the end of tensioning
to holdback release. It is assumed that 0.15 seconds are
necessary for the horizontal component of the load in the
holdback unit to increase lineally from the value obtained
statically with full thrust and 1500 pounds tensioning force
to the load required to break the holdback unit. This period
is represented by negative time, —.15 sec. to O sec. The sec-
ond phase deals with the period from holdback release to the
end of the catapult power stroke. This period is represented
by positive time.



SIGN CONVENTION (ORIGIN AT CENTER OF GRAVITY, CG)

SFx - positive to the right
SFy - positive up

%M.g - positive nose-up
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Frourg 1. Cararurt TAKEOFF FOrRCE AND MoMENT ARM DIAGRAM

Definition of Symbols for Basic Equations of Motion in Figure 1

m= Airplane mass

X = Horizontal acceleration of airplane at center of gravity (c.g.)

f = Main gear wheel drag coefficient

D = Aerodynamic drag

T = Engine thrust

@ = Angle of pitch of fuselage reference line
/ 3 = Angle of engine thrust vector with fuselage reference line (f.r.l.)
H B = Catapult holdback unit force

¢ = Angle of catapult holdback unit with deck

b = Engine thrust moment arm about c.g.
¢ = Nose gear ground reaction moment arm about c.g.
d = Catapult bridle force moment arm about c.g.

M = Aerodynamic moment

! = Tail bumper ground reaction moment arm about c.g.

@ = Main gear ground reaction moment arm about c.g.
¢ = Main gear drag force moment arm about c.g.

i = Catapult holdback unit force moment arm about c.g.

I = Airplane moment of inertia in pitch

Fz = Catapult bridle force @ = Angular acceleration of airplane about c.g.
6 = Angle of catapult bridle with deck R, = Main gear ground reaction
I, = Aerodynamic lift R; = Nose gear ground reaction

W == Weight of airplane R == Tail bumper ground reaction

V = Vertical acceleration of airplane at c.g.

X of equation 1 is assumed to be a known function, and equations 2 and 3 remain as our two differential equations to be solved.

Y — Kos+ Krcosa — Kgsina + Kyasin (244 o) S 5 I8 —FPcos(L4+a) P 2[¥Y — Kos+ Krcosa — Kgsina + Kyasin (£4+a)][8 — ¥ cos (£44 a)]
+K50=K51Y_Y - (4)

sin (L4 4 a) sin (/44 a) sin? (/44 @)
Fo- Ka+ Ks (Ki) — Kz cos (a+ £3) + HBcos ¢ + Ky [Ks + Kot]? 5
= cos @
§ _ Ko+ Kis + Kus [(Ks + Kot)® (a4 £1) = Koo (Ks + Kot) ()] + Kysin (a+ £3) = Kzo — Fasin0 — HBsing ®
17
Koo+ [V cos 6 — sinf (Kizcos 8 + Ky sina + Ky cosa)][Fp]l — |:K7 sin @ - Kjg cos @ — Y sin (e + £5) +cot 7 f;4+ c:):l [K15]
@ = K”
— [Kysina + Kgcosa — Kyacos (L4 + a) — Koy sin (L4 4 a) 4+ Kegcos (£4 4+ a+ T)] [KL] — [V — (Kos — 8)1[Ks] [K5) + [HB][A]
. K22
= Koy [(Ks 4 Kot)® (@ ~ £2) = Ko (Ks + Kot) (Y)] ~ Kus (Ks + Kot) (8) %)
22
0 = sin—1 [ ¥ = Kn co;{a + Ko sin a:l I K =Ky (1 Kag) { WHEN ?n < 1?.-1 K 1S POSITIVE f=a— (KY(-}-K;? >
® WHEN Y, > Vi1 K3y IS NEGATIVE _ 8 ?
. [Y — Kyssina — Koy cos « =} = ) Y - Ko
é = sin—? o ] Kis = Kus (1 % Kan) { WHEN ;.. < é,._l K 36 1S POSITIVE sinT = Ko
WHEN ¥, > Y1 Kag IS NEGATIVE an(A)?
%_K-,cosoz—Klgsina-i-Y = = a,,+1=a,,+6:,,At+”—2—
= cos (£5 + @) Kis = Koo (Ksg — ¥) + Ke1 WHEN ¥ < Ks2
Ony1 = G + an AF
= Kygsina+ Kqcosa+ Y . . ¥ 2
V=T s (264 @) h = Kaosin (¢ — o) = Kzrcos (¢ — o) Yn+1=Y,,+Y,.M+Z”(;—t)
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Frcurk 2. DETAILED EQUAaTIONS FOR CATAPULT TAKEOFF ANALYSIS
Q
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Definition of Symbols for Detailed Equations in Figure 2

UNIT
. . c . 1bs.
K, = Aerodynamic drag coefficient (polynomial in 8)..... e D PN e/ sec)®
Ko = Engine thrtst . oottt ittt et e e e et et e e 1bs.
Ky = Main gear drag coefficient (== 0 for £<C0) .. ... ittt i i it 1bs./1b.
K, = Horizontal inertia force (= 0for £<C0) .\ o\ v\t ii ittt it e e eiiea e eiaareeannes Ibs.
Ks = Main gear ground reaction (polynomial in ¥ ) ...... ... cvuiuiiii i, 1bs.
K, = Distance along fuselage reference line (f.r.l.) from c.g. to intersection of main gear strut..... in.
K; = Perpendicular distance fromc.g. tofrl. ... in.
Ks = VeloCity Of Carmier. .. ...oeiute et ittt ettt ettt et iieeeetenaaenannaarenans ft./ sec..
K, = Horizontal airplane acceleration (three different linear functions of £) ..................... ft./sec.?
K1, = Distance parallel to f.r.l. from c.g. to catapult hooks...........coiiiiiii i, in.
K. = Distance perpendicular to f.r.l. from c.g. to catapult hooks...... e e in.
K= Catapult bridle length. ... ... .o i i i i it it in, b
L . S.
Kz = Aerodynamic 1ift coefficient. .. .. ..o ittt it i i s Sz (Fo/5e)
K1, = Perpendicular distance from main gear strut center line to offset............... ... ... .. in.
K15 = Tail bumper ground reaction (normally, polynomial in Y)........cooiviiiiiiiiinn.. lbs.
Kis= Gross weight of airplane. ...ttt ittt it iiin e, Ibs.
_ . 1bs. sec.?
Kir=Mass of alrplane. . .....vuuuit ettt iaen it teeiiaee et ennanneennne e, o
K15 = Distance along f.r.l. from c.g. to intersection of nose gear strut............ccocveeuenerennn. in.
K3, == Distance along f.r.l. from c.g. to intersection of tail bumper strut.......................... in.
Ko = Engine thrust moment about C.g. . . ..o .ottt i e in. Ibs.
Ko = Distance from f.r.l. to main gear strut offset in line of action of main gear strut............. in.
Kz = Moment of inertia in pitCh. ... .o uui it i i i it et et et e Ibs. in. sec.”
K2 = Aerodynamic moment coefficient. . ... ... . i e e e ﬂ———
deg. (ft./sec.)®
Koy Tail bumper tire radits. . .o v ittt ittt ittt et et iaiiao e e et oo enonaeeeananns in,
Koz = Main gear tire radits. ... ou it oet ittt ittt ittt ta e enaeeernaneanrnanaeaennaenns in.
K = Distance parallel to f.r.l. from c.g. to holdback pivot point.............. ..ol in.
Ko = Distance perpendicular to f.r.l. from c.g. to holdback pivot point.................ooooiin.. in.
Kzs = Length of holdback unit.......... ... i in.
Ky = First termin equation for HB COS @ .o vvvvviiininivnieenneennn. ettt Ibs. "
in. Ibs.
K4 = Coefficient of aerodynamic moment due to @.................. PP ( ) (rad
sec. sec
K3 = Radius of main gear arc as strut extends. . ........ ittt ittt i
K3 = Second term in equation for HB cos ¢..ovvnvn.n.. e, et e lbs./ sec.
Kas = Main gear strut friction. . ... ..o it i i i i it it e e et e 1bs./1b.
Ko = Tail bumper strut friction. .. ...... it ini ittt ittt ieeae s eineeaanneaanns 1bs./1b.
50 — K221 —_— gz ......................................................................... in.’
K 51 = 2K T T T T T T S T mn
K35 = ¥ for tail bumper bottomed. . .. ... i e e i i et in.
Ka = Spring rate of fuselage in vertical bending............oviiii it 1bs./in.
Ko = Bottoming tail bumper ground reaction. . ..........veuuiiiintertiiierrreneeroianeeeanan lbs.
/1 = Horizontal intercept of CL VETSUS @ CUIVE. ...t vttt st ieseestenrteneerrneeennneeennnns deg.
/2 = Horizontal intercept of Cir VEISUS @& CUIVE. . ..t v vuie e et iene s iraeenennneneenineeenns deg.
/3 = Angle of engine thrust vector with fr.l.. .. .. i it it iiiieeiriiieees deg.
/4 = Angle between perpendicular with f.r.l. and main gear strut........coviiiiiiiiiiiiiennn. deg.
/.5 = Angle between perpendicular with f.r.l. and tail bumper strut.......... ... .. o iiiei.... deg.
/ 6 = Angle between perpendicular with f.r.l. and nose gear strut.........cooiviiiiiii ., deg.
AT == THINE INCTEIMIENE & . oottt ittt ittt et e et s it tea et e s enseesesneaseeeneneenennnneeens sec.
Y = Distance from fr.1. to ground in line of action of main gear strut..................... ce...in,
Y = Distance from f.r.l. to ground in line of action of nose gear strut.......................... in.
Y = Distance from f.r.l. to ground in line of action of tail bumper strut.............cooovuen.... in.
a = Angle of pitch of f.r. .. oo i i i i i i it it i i it et e deg.
Y == Vertical distance from c.g. to deck. . . ... .o i i i e e e in.
¢ = Angle of catapult holdback unit withdeck.................. e e e deg.
0 = Angle of catapult bridle with deck. .. ... ... . i i e deg.
8 = Main gear tire deflection (rational function of V) ... ... ... ... in.
Fp = Catapult bridle fOrce. . .. ..ottt ittt ettt et i 1bs.
HB = Catapult holdback unit force (= 0for t20).... ...ttt Ibs.
Y = Vertical acceleration of airplane at Cog... ...ttt ittt it i i e, in./sec.?
YV = Vertical velocity of airplane at C.g... ..o oii ittt ettt et e e iie e an in./sec.
& = Angular velocity of airplane about C.g.. ... .. ittt i i e e e, rad./sec.
% = Angular acceleration of airplane about C.g....... ...t rad./sec.’
T = Angle between perpendicular to main gear strut through off set and main gear radius of extension. deg.
h = Catapult holdback unit force moment arm about C.g.......cvtrtriiiine s in.
B=Angle of attack....... ... i e deg.
F IR E v T PP sec.
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Method of Static Balancing to Establish
Boundary Conditions

It is desirable that the airplane be in its static attitude
for the first point of the analysis; that is the 3F and 3M
should equal zero when the airplane is at rest. One may see
from the equations that it would be very difficult to express
¥ and « explicitly so that they may be determined such that
Y and @ would equal zero. For this reason, a trial-and-error
method of static balancing the airplane is used. This
method is accomplished by successive changes of ¥ and «

until the values of both ¥ and & are of such magnitude that
they may be neglected. The values of ¥ and a so deter-
mined then become the boundary conditions.

Determination of Time Increment

As in any step-by-step integration problem, the choice of
time increment is very important. After a preliminary in-
vestigation of the effect of varying the time increment, it
was decided that a .01 second increment was necessary to
maintain the desired accuracy. This time increment was de-
termined by computing approximately one-third of -a case
at various time increments. When two different time incre-
ments produced approximately the same results, the larger
of the two was selected as the time increment to be used in
the final analysis.

The problem is afflicted with several discontinuities such
as change in sign of coefficient of friction as the main gear
changes from extending to compressing. The most severe
of these discontinuities is occasioned by the bottoming of
the tail bumper. When this happens, a change from the
spring rate of the air pressure in the tail bumper to the
relatively enormous spring rate of the fuselage itself is
occasioned.

To minimize the effect of tail bumper bottoming, the
time increment is reduced to one-tenth of its normal value
during this critical time in this manner:

(a) Extrapolate for ¥ and a. Compute —}_;n+1-
(b) Check sign of (Vu—Ks3) (Tnrs—Ks2).
(¢) If positive, proceed with calculation.

(d) If negative, extrapolate again, using .1A¢ and con-
tinue from that point.

COMPUTATION

Determination of ¥

From Figure 1, it may be seen that the main gear extends
by rotating on an arm offset from the strut centerline. Be-
cause of this condition, it is possible to express ¥ as shown
in equation 4. Because of the complexity of the expression,
Newton’s method of iteration was used to determine ¥
rather than to attempt to express ¥ explicitly in terms of
Y and a. ¥, _; is used as a first approximation to ¥,

Approximations of Empirical Functions

Four of the quantities involved in the equations are
known only as empirical functions of other quantities which
can be computed directly. They are given graphically.
These functions are approximated by Gram-T'schebycheff
polynomials of degree five or less. Computing the coeffi-
cients of one such polynomial requires about two minutes
on the IBM Card-Programmed Electronic Calculator. -

Some of these functions exhibit large change of slope.
A device to make them easier to fit is to transform the inde-

" pendent variable, , as follows:

_x+a
z_bx-{—c’

where a, b and ¢ are chosen so as to make the function as

nearly as possible linear in 2.

No attempt was made to find optimum approximations
as it was felt that time so expended would delay the job out
of all proportion to the possible saving in CPC time.

Printing Form

The following results are printed in the arrangement as
shown in Table I.

Sequence of C omputati(;n

The sequence of computation used in the solution of the
problem is as follows:

1. Evaluate differential equation.

2. Print.

3. Extrapolate.

TasLg I
= = [(Y)
Vy (V) L=«
DD
t—sec.  o—rad. Y—in. Y—in. sind HB
o—deg. a—rad./sec. V—in./sec. ? —in. sin¢ Fp
4—rad./sec.? V—in./sec2 Y—in. K
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~—— PREDICTED
CURVE
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10 i.2 1.4 1.6

———  RUN TIME - SEC. ——~  RUN 3

———— RUN 33 — RUN 36

— - RUN 34 _ RUN 37

F1curg 3. F3D-1 Cararurr Takrorr ANALysis PATuxent TEst REsurts
Typical Results O1HER PROBLEMS

The curve on Figure 3 shows typical test results obtained
on the Douglas Model F3D-1 airplane and the predicted
results obtained by the method outlined herein.

Computation

It required about two weeks to accumulate the detailed
information necessary to write the equations and evaluate
the constants. Several hours were spent in finding approxi-
mations to the empirical functions. Next, a sequence of
computation was planned, storage units assigned, and the
number of decimals to be carried in the various quantities
established. This planning took about a day. Then the ac-
tual coding and checking required about two days. Several
errors were passed, so a check against the hand calculation
took most of another day. Finally, it was determined that
three iterations were required for ¥, the time interval was
established and computation started. The final program deck
contains 311 cards and requires about seven hours to run.

It is perhaps of interest to note that tabulating plays sev-
eral roles in this problem which are not obvious. The mass,
center of gravity and moments of inertia are derived from
weight control card records. The aerodynamic characteris-
tics come from wind tunnel tests, the results of which are
recorded directly on cards and reduced to final form by
punched card computing.

1. Complex Eigenvalues of fourth-order matrices of com-
plex elements. Since our machine is equipped with two
storage units, we can store all the elements of such a
matrix directly. The characteristic equation is then
formed by expanding the determinant. The first two
roots, usually those of smallest modulus, are then found
by Newton’s method, and the residual quadratic solved
by formula. Usually these matrices are flutter matrices,
and in this case velocity, damping and frequency are cal-
culated from the roots. Presently, this process requires
about fifteen minutes per matrix; however, we are work-
ing on a new scheme involving the direct solution of the
fourth degree equation which should cut this time to five
minutes. Also being coded is a scheme for the direct
solution of fifth-order complex matrices.

2. Trajectories of various kinds. Some of these are:

a. Two-dimensional trajectories of long-range guided
missiles, taking into account variation of atmos-
pheric pressure and speed of sound with altitude,
variation of lift and drag coefficients with Mach
number and angle of attack, and turning rate as a
function of any one of several variables.

b. Tactical trajectories, where the flight characteristics
of the missile, a programmed course of evasive ac-
tion by the target, and the characteristics of a com-
puter are simulated.
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c. Beam rider trajectories, in which the missile carries
a control unit, guiding it always toward the center of
a radar beam.

d. Short range trajectories, in which the effects of such
random disturbing factors as thrust misalignment
and winds are studied.

e. Trajectories of an escape capsule exploded from an
airplane traveling at high speed. This study is to
insure that the aerodynamics of the capsule are such
that it will not fall into the empennage of the air-
plane or gyrate so wildly as to injure the pilot.

3. A study of an air conditioning system for a small, high-
speed airplane. This involved the solution of three si-
multaneous algebraic non-linear equations, with several
hundred different sets of coefficients. The unknowns in
these equations occurred with eleven different fractional
exponents. These equations were solved by successive
substitution, which required about fifteen minutes per
case.

4. A study of the initiation of an airplane turn. This in-
volved the solution of eleven simultaneous, non-linear
differential equations. This problem was solved while
only one storage unit was available—and required some
juggling to keep within the storage limitations.

5. Differential equations describing the action of a hy-
draulic servomechanism, with valve overlap and friction
taken into account. These were especially interesting be-
cause about fifty determinations of alternative courses of
computation were made at each point.

6. Polynomial equations with complex coefficients of the
eighth and lower degree are solved by Newton’s method.
Polynomials with real coefficients of the twelfth and
lower degree are solved by a combination of Lin’s and
Bairstowe’s methods. In this work it is often necessary
to do some computing with the roots, or to determine
the coefficients.

7. Other differential equations:
a. Maneuvering tail loads.
b. Landing gear spin-up.
c. Supercharger vane design.
d. Aircraft stability analysis.

8. Miscellaneous:
a. Calculation of transfer functions of dynamic systems.

b. Optical properties of radomes of one, two or three
sandwiches.

Aircraft and engine performance calculations.
Wind tunnel data reduction.
Calculation of loft lines.

-t

Studies of the propagation of sound.

COMPUTATION

g. Heat transfer equations.

h. Radar data reduction.

i. Flight test data analysis.

j. Studies of the aeroelastic properties of airfoils.

MEgrHODS

In my opinion it is seldom profitable to wire a CPC con-
trol panel for a particular problem. Almost all of our work
is done with a few general-purpose panels. We usually find
that if the CPC is not an economical machine to use for a
particular problem with these simple control panels, then
the problem is most likely a good application for the IBM
Type 604 Electronic Calculating Punch or the IBM Type
602-A Calculating Punch. Of course, some of our thinking
has been conditioned by the fact that we have had only one
CPC and have, therefore, used it only for problems where
it shows an enormous advantage over standard equipment.

Our 604 CPC control panels are very simple. The one
we use most handles -all numbers as four whole numbers
and six decimals, and provides addition, subtraction, mulii-
plication, division and square root.

To enable the CPC to use alternative procedures, we
have two complete sets of instruction codes in the program
card form. Field 1 is normally read, but on a special code
the machine tests the sign of the result for that card,
and if it is negative starts reading its instructions from
field 2. A following test command will cause the machine
to shift back to field 1, if negative, or stay in field 2 if posi-
tive. Another special code transfers control to field 1 un-
conditionally. We have found this device extremely useful.

Printing from any one of eight sets of type bars directly
from channel C through the field selector is under the con-
trol of a special code field and can take place at any time.

Certain other special codes are used, such as absolute
value and spread read-in. We have found that a second
storage unit makes the machine much more useful than one
storage unit. On the other hand, we have seldom felt the
need for three storage units, and have not encountered
problems absolutely requiring a third unit, excepting those
of large matrices.

We use a 604 panel which checks CPC program decks
for errors such as:

1. Calling a number from 941 storage sooner than two

cards after it was sent to storage.

2. Calling a number from a 417 counter on the card after

a number was sent to the counter.

3. Sending numbers to the same 941 storage unit on two

successive cards.

4. Cards out of sequence.

This panel has proved to be valuable in reducing the time
required to check out new programs.
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DISCUSSION

Mr. Maginniss: Did you consider a differential analyzer
such as those at MIT, the University of Pennsylvania, or
General Electric for this problem ? I would roughly estimate
that fifteen or twenty minutes per parameter would be
required.

Mr. Lowe: We tried several approaches to the problem:
a graphical solution, building a model with rubber bands
for the catapult, and two different differential analyzers.
Being pressed for time, we solved the problem on our own
CPC in seven hours. Perhaps we should also investigate the
MIT machine.

Mr. Bell: When you change your time scale, does the
machine or the operator make the change?

Myr. Lowe: The machine.

Mp. Bell: You mentioned checking coding. Mr. Lowe has
developed a very clever setup for checking a program before
it gets near the CPC.

Mpy. Lowe: There is really not too much to say about it.
I don’t have a copy of the programming with me, but would
be very happy to send a copy to anyone who is interested.

Mr. Thompson: We have a panel for the 402 that has
approximately the same functions, and we would also be
happy to supply information to anyone who is interested.

Mpy. Patton: To make sure the operator has the cards in
order, we do the following: We have several large decks in
which only the loading cards are changed and onto which
information from a master code deck is directly reproduced.
Then, when the cards are collated and passed through the
CPC, the serial number of both cards # and n+41 appears.
We use the comparing brushes of the 402 to ensure that the
cards are in sequence, comparing from third reading on
card # and from second reading on card n+1. Then, if any
cards are missing or out of order we can automatically stop
the machine.

Myr. Lowe: We do the same thing. It is a very good point.
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Mr. Lesser: We, too, do this, but that still brings up a
problem where multiple decks are involved. Depending
upon the type of problem, these decks are exposed in a par-
ticular order. In general, in order to keep them straight, one
will want to start the sequence order each time with the
multiple deck, because it is never known which one of the
others is also included. Hence, there is still a problem, even
with a sequence control, of making sure that the problem
the machine is working is still the particular problem.

Mr. Lowe: Not that it is any panacea, but we also in-
corporate the deck number as well as the card number in
our sequence control. This immediately raises the question:
What happens when you interchange the sequence of decks?
Usually we simply change the n+1 deck number in the last
card of the deck.

Dr. Evans: When there are groups of instruction decks,
we program the accounting machine in order to avoid oper-
ator trouble. The general idea is to digit-emit the operations
from the digit-emitter and run them through the field se-
lector so that the field selector acts as the various programs
for the accounting machine. We usually run with instruc-
tion decks of four cards, and thereby can use a major pro-
gram level on the accounting machine and cut out these
instruction decks altogether. Lately we have done such
things as pick up a special program device and sometimes
have instruction decks of up to six cards replaced by digit-
emission by picking up the special program control on cer-
tain cards to bring in the extra programs.

Dr. Grosch: One might think of setting up restricted sub-
programs (this, by the way, is someone else’s idea) where,
instead of having access to a large number of storage units
and counters, one would restrict oneself to just three or four
of them and very few operations. In this way, the total size
of the code required on a card could be decreased from per-
haps eleven to five columns; then two instructions could be
obtained from one level of the field selector. This would
effect a 22-card sequence on a Model I.



Computation of Loan Amortization Schedules
on the IBM Card-Programmed Electronic Calculator

CHARLES H.

GUSHEE

Financial Publishing Company

IN THIS PAPER I am not cohcerned with any com-
plicated problem of analysis, but with the contrasting prob-
lem of mass production of relatively simple results. In
approaching such problems I bring to you the experience
of twenty-five years as director of what I call a “number
factory” as distinguished from the “computing laboratory”
with which you are all familiar. In other words, I have been
concerned with the production of a very large volume of
mathematical results of a low order of difficuity (but a high
order of accuracy). In this effort I have used just about all
the commercially available computing equipment, up to
and including the IBM Card-Programmed Electronic Cal-
culator.

My subject is the problem of schedules for the amortiza-
tion of loans. The equal payment necessary to amortize a
loan of 1 is represented by

1

1-— 1 -

(140)"
where i is the interest rate per period and » is the number
of periods. Tables of the function have long been published.
However, in the decades of the 1930’s and 1940’s this
method of payment was widely popularized for home loans
by the Federal Housing Administration and by the Vet-
erans Administration. This resulted in a widespread de-
mand for complete schedules showing the allocation of each
payment, and the unpaid balance at the end of each period.

The payment can alternatively be expressed as

. i
"t aEyr =1

where ¢ is the interest on 1 or the amount of the loan, and
the second item is the first term of a geometric progression
in the ratio (1--¢) whose sum is unity. This fact was taken
advantage of by the FHA whose amortization schedules
showed the successive payments of principal computed as a
geometric progression.

However, in my own approach I felt it important to
duplicate the procedure of the typical lending institution.
Interest is calculated on the amount of the loan. This inter-

kot
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est is subtracted from the payment. The difference is the
amortization, to be subtracted from the old balance of loan
to produce the new balance. This sequence of simple opera-
tions is repeated until the loan is fully paid.

Perhaps an historical review of our methods will be of
interest. In the early 1930’s such a schedule would have
been prepared by two computers working together, one
with a rotary calculator and the other with a two-cross-
footer adding machine. One computer read the interest
from the rotary calculator and the other subtracted to ob-
tain amortization and new balance. The results were then
typewritten. A great advance occurred in 1939 when we
received our first multi-register bookkeeping machine with
motor repeat lugs. Thereafter a single computer obtained
the amortization (as payment minus interest) on a rotary
calculator and entered it in both the bookkeeping machine
and the calculator. The bookkeeping machine completed the
line automatically, and the rotary calculator contained the
amortization figure for the next line. The speed of this
operation is remarkable, the mechanical operation requiring
only five seconds per line, plus the time for entering the
amortization on the keyboard. We still operate six units of
this equipment, primarily for loans with frequent changes
of payment or interest rate or other irregularities where the
control panel wiring time would be excessive for the unique
problem.

In fact, in some problems we now have a single computer
operating two rotary calculators with the left hand and
entering results in a bookkeeping machine with the right
hand. In textile mills the vernacular would call this the
“stretch-out,” and it is admittedly not a happy condition
for the human computer.

We first came to punched card computing with the IBM
Type 602 Calculating Punch. This gave us the advantage of
punched-card computing and minimized the human ele-
ment, but the cost was not significantly lower than previous
methods, the 602 requiring four or five seconds per line,
with later tabulation on an IBM Type 405 Accounting Ma-
chine. Our 602 has been supplanted by an IBM Type 602-A
Calculating Punch which still is turning out schedules, but
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especially for large loans, up to balances of 99 millions or
10 digits, multiplied by an interest rate to 12 digits.

The next advance was the IBM Type 604 Electronic
Calculating Punch. This produced 100 lines per minute, as
compared with 12 or 15 by previous methods, but our card
cost was large. With a theoretical capacity of 48,000 cards
in an eight-hour day, and with each card only used twice,
we were using perhaps six or seven million cards a year at
a cost of around $7,000 to feed this one machine alone.

Finally the CPC arrived, and immediately took over the
job virtually without the use of cards. In the simplest ap-
plication, a speed of 150 lines per minute is obtained. (By
this time you may have noticed my preoccupation with
speed, the typical outlook of the factory manager.) All the
data are retained in electronic storage in the 604 and read
out, not via channels, but by direct outlet wires to the type
bars. The IBM Type 941 Auxiliary Storage Unit is used
only for storage of identifying data, such as rate, term, etc.,
for use in printing page headings. Incidentally, on this form
we were able to print two schedules side by side within the
89 type bar limit, thus obtaining two original copies instead
of one original and one carbon copy. Clarity is improved
and form cost reduced.

The versatility of the CPC on the problem is illustrated
by one of those trivial conditions which stimulate ingenuity.
Our standard amortization schedule (an example is shown
in Figure 1) contained two sets of columns on a single
page, 60 lines for each column. In other words, line 61 ap-
peared on the same line as and to the right of line number 1.
It is the solution to this peculiar, and perhaps trivial, prob-
lem which I will give in greater detail as illustrating the
versatility of the CPC.

A single card is key punched with the data for the loan,
including the amount (& digits), payment (6 digits), inter-
est factor (8 digits); and for use in printing headings only,
the years, months and annual interest rate.

To explain the “interest factor,” in our early control
panels: for a 4% loan with monthly payments we multiplied
by the annual rate of .04 and divided by 12 (via digit emis-
sion). Quarterly loans were handled by setup change.
However, the method broke down for loans with weekly
payments, fortnightly, bimonthly, etc.; and especially for
loans with odd decimal rates. Therefore, we now key punch
the interest on “1” for the period at which payments are to
be made. That is, for 4% and monthly payments we key
punch .0033333334. (Note the final digit to assure up-
rounding of critical half-cents of interest.)

Our detailed procedure is as follows: The first card resets
all the counters in the IBM Type 417 Accounting Machine.
The second card loads by spread entry. The next five
cards transfer the five elements on the loading card to the
941 for subsequent use. The next is a cycle card necessarily
preceding the next four cards which print the heading in-
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formation for the 941 on channel B. Printing is facilitated
by wiring channel B exits to the common of the field se-
lector, thus avoiding much split wiring.

Since our special problem is to print line 1 and line 61 on
the same line, our next card throws us into program repeat
on the 604, stopped by negative item count against a “59,”
set up by our loading card in the seventh and eighth posi-
tions of factor storage 1 and 2 containing the payment. In
about seven seconds the 604 completes 60 steps and con-
tains the 60th balance. It is now prepared both to compute
line 1 and line 61 and so proceed alternately left and right
down the page.

This is accomplished by retaining the earlier balance in
general storage 1 and 2 and the later balance in general
storage 3 and 4, from which we read out alternately by split
wire to channel C shift entry.

Lacking electronic storage capacity we read the interest
factor on every line from the 941 into factor storage 3 and 4
by channel A controlled by the special program. However,
on the program repeat operation, we could not do this and
maintain electronic speed. Therefore, on program repeat
we do not alternate but use general storage 3 and 4 only,
transferring the interest factor back and forth from factor
storage 3 and 4 to general storage 1 and 2.

Thus, we produce a full page of an amortization schedule
at a speed of 150 periods per minute, or 75 double lines per
minute, on special program using only one card key-
punched with data and 16 control cards.

The end of the page is signalled by a negative balance
condition in counter group 1 of the 417. At spread entry
a “119” has been entered and “1” subtracted on each spe-
cial program step.

The control cards for the second and subsequent pages
are essentially the same as for page one, but omitting
spread entry of new data, and inserting a special 604 pro-
gram to rearrange data in the 604 (e.g., balance 60 being
no longer needed, and balance 120 being shifted to balance
60 position).

The ending of the schedule, upon completion of the num-
ber of payments necessary to pay the loan in full, is the
most intricate problem. Observe that the schedule may end
at the bottom of the left-hand column, or at the bottom of
the right-hand column, or at some intermediate point in
either. If the schedule ends in the middle of the left-hand
column we must not print the right side; but if it ends in
the middle of the right-hand column, then the left-hand
column must continue to be printed for the entire page.

We can readily determine whether the schedule ends in
the left-hand column. If the negative balance selector is
picked up during the program repeat operation, the sched-
ule must end in the left-hand column. By using the negative
balance selector to pick up a pilot selector which is held
transferred, we have a continuing means of control.
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BALANCE
OF LOAN

PERIODS

MONTHS
PRINCIPAL

PAYMENT ON
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TERM: YEARS
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PAYMENT
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LOAN $
825000
BALANCE

PAYMENT $
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PAYMENT ON

RATE %

400.00
Prepared by Financial Publishing Company, Boston
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Sum of
Principal Payments

Interest

L22244 8250.00
Sum of
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Sum of

36673561
Balances

payment, and is shown either starred on the last line, or on the following line.

The final payment is usually somewhat different from the regular
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If the schedule ends on the left, we suppress both control
impulses and output on program levels 1 and 3 which are
used for the right-hand side, and thus suppress all printing
on the right.

If the schedule ends on the bottom line of the left, it stops
automatically by negative item count. Otherwise it stops
from the negative balance selector picked up on special pro-
gram impulsed to minor program stop.

If the schedule ends on the right on the bottom line, no
special wiring is necessary, as we shall have a full page like
any other. If it ends earlier, the negative balance selector
will pick up and suppress program levels 1 and 3, thus pre-
venting printing on the right side but not stopping the left-
hand side until the bottom line has been completed.

One important step is a proof for accuracy. The interest,
amortization and balances are all accumulated in counters
of the 417, and final totals are printed manually at comple-
tion of each schedule. Obviously, the total of the amortiza-
tion column must equal the original amount of the loan.
Since each item of the interest column is the interest on a
single balance, the total of the interest column is the inter-
est on the total of the balance column, with a minor varia-
tion which is due to possible random rounding up or down
of fractions of a cent in each interest item. The proof at
present is done on a rotary calculator by an inspector.

We use continuous forms, with a tape-controlled carriage
for heading, first body line, advance to proof line at the end
of each schedule or advance to subsequent page. The hopper
will hold sufficient cards for continuous automatic operation
for about forty-five minutes. Thus, the CPC constitutes an
automatic production unit running continuously all day
with no human intervention other than loading new instruc-
tion cards about every half-hour.

I believe the details of this unique commercial applica-
tion of the CPC indicate the applicability of this type of
equipment to the problem of mass computation of large vol-
umes of relatively simple work. The CPC every day turns
out several hundred amortization schedules at a lower unit
cost than ever before achieved.

Perhaps a few general remarks on commercial table-
making would be useful. We like to use progressive calcu-
lations where each element is computed from its predeces-
sor. If the final result is correct, it is an excellent proof of
the intermediate results. Where multiple solutions of a
function are needed, as in table-making, it is often possible
to develop methods for progressive calculation well adapted

to punched card computing.
In commercial work there is usually no demand for an

optimum interval table. The desired interval is the com-
mercial unit involved. Thus, if the unit of price for trading
bonds on the New York Stock Exchange is 1§ point, the
trader wishes a table showing the price argument in 14
point, regardless of the number of orders of differences in
various parts of such a table.
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However, the “critical” table is growing in acceptance.
In many cascs for limited applications a critical table can
be made in a small fraction of the bulk of the usual table.

The critical table also can be used on a large scale in-
stead of methods of iteration or subtabulation. As an ex-
ample, we are now making a critical table of mortgage yields
at 502 rates from 2.495% to 7.505% at intervals of .01%
from which a table of yields to the nearest .01% can be read
directly by inspection. The actual 604 time may be two or
three days, which is very much less than by using more re-
fined methods perhaps less suited to machine calculation.

Iteration with us is still a neglected field. Prior to elec-
tronic computation we could always get results cheaper
some other way. In table-making there is frequently part
of the area where convergence diminishes, and a uniform
procedure may not be appropriate.

In the old days, we would even prefer, where possible, to
form the inverse table and use Lagrangian interpolation
itself iteratively to approach a result. Iteration is on our
program for future study.

Subtabulation likewise is a field not exactly neglected
but still not fully exploited. In the simpler table it works
well. For tables with higher order of differences, involving
“throwbacks” or similar devices, we have not operated effi-
ciently with bookkeeping machines, but we have not tried
the CPC.

To summarize, I have reported to you the manner in
which the CPC is used to compute a large volume of rela-
tively simple work. I expect that the CPC will alter greatly -
our approach to the computation of financial tables, as well
as make the production of many new tables commercially
possible.

DISCUSSION

My. Ferber: On the first line of your loan amortization
schedule, do you know in advance that the period is going
to be equal to 847 You must look that up.

Mr. Gushee: We usually compute this in advance as a
check on the machine. In spite of this completely automatic
operation, we find it desirable to have a human inspector
look at things. One of the tests of error would be the failure
to come out in a predetermined term, and so we usually
predetermine the term and include that in our data; our
inspector will make sure that the term will be that which
is given. This will help catch egregious errors, such as the
wrong interest rate punched in the master card.

Myr. Ferber: To be sure that you obtained the even penny,
do you adjust the interest rate in advance? Can you carry
more places, for example, than the nearest cent in your
calculation ?

Mr. Gushee: Oh, yes; the interest factor is punched in
the card to ten decimals; in this case, it is .0033333334. We
adjust by rounding up or down in all critical offsets, round-
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ing up in accordance with interest practice. Our interest is
always perfect to the nearest cent.

My. Ferber: Suppose your interest rate were divided by
12 and were an even amount. Would you adjust that at all
when you start multiplying ? I notice you put a 4 at the end
of the 3333 ...7s.

Myr. Gushee: That is to ensure that the interest will be
rounded by a 5 when the interest is an exact half-cent;
commercial practice is to round half-cents up. Banks will
usually round up any half-cent that is even.

Dr. Brown: Do you not round off at each stage of the
game in these computations?

My. Gushee: Yes, we do.

Dr. Brown: Then I would merely like to point out as a
matter of interest from a strictly mathematical point of
view your table may be in error all the way down the line.

Myr. Gushee: That is right. It would be much more desir-
able to compute some other element to a great number of
decimal places and round off. Admittedly this is a commer-
cial application. The original FHA method was theoreti-
cally far superior to ours.

Dr. Herget: If you just multiply the monthly payment by
the number of payments and subtract from the totals at the
bottom, there is a difference of $.24.

Dr. Hurd: He has to calculate this and have it pay on
the basis of a month. So he has no opportunity to avoid the
bias which Dr. Brown mentioned.

COMPUTATION

My, Gushee: This $112.77 is necessarily an inaccurate
figure. It is rounded up in all cases, so as to be sufficient.
The theoretical figure might be $112.76629,

Dr. Herget: But is it not what the customer pays?

Mr. Gushee: No. The final payment is different from
the others and is tabulated separately at the end.

Dy. Herget: But the sum of all the interest and the sum
of the principal should equal the sum of the payments that
were made.

Mry. Gushee: Yes, and they do, because instead of multi-
plying the payment by &4, it should be multiplied by 83 and
the odd final payment of $112.53 added to it.

Mpr. Bell: 1 would like to ask a question. The question is
whether you have considered internal programming on the
417 with only 16 program levels. I do not think there would
be much difficulty in eliminating the insertion of cards.

Mr. Gushee: We have not considered it.

Dr. Petrie: 1 have one suggestion 1 might offer for con-
sideration: Instead of punching the rate in decimal form,
punch it in fractional form and have the machine actually
make the change. As the cards are processed, the interest
rate is calculated, the amount deducted from the payment,
the deduction from the principal, and the new balance of
the loan punched on the card. In this way, it can always be
kept current.



Techniques for Handling Graphical Data
on the IBM Card-Programmed Electronic Calculator

WILLIAM D.
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Telecomputing Corporation

MANY IMPORTANT forms of engineering compu-
tations utilize data in the form of graphs. Often this data is
empirical in nature and not amenable to analytic represen-
tation. Such calculations have usually been considered im-
practical for punched card computing techniques.

The field of aviation presents many excellent examples
of problems of this type. Particular examples are jet engine
performance and aerodynamic performance for power avail-
able and power required. Jet engine analysis methods for
a single data point—that is, a given altitude, velocity, and
power setting—require relating the data from six to fifteen
graphs and involve one-half to one hour per point for
manual solution. We have evolved techniques for the IBM
Card-Programmed Electronic Calculator which efficiently
cope with this type of problem, and require two to three
minutes in which to complete a solution.

Setting up such problems on the Card-Programmed Cal-
culator involves representing the graph by a mesh of points.
Since typical graphs are either two- or three-dimensional,
the associated mesh of points may also be two- or three-
dimensional. These data must be placed upon cards which
are introduced into the program deck. The calculator should
then be capable of locating the closest point in the mesh
and calculating the corresponding value of the function by
interpolation.

Experience gained over a period of time using a number
of different procedures and methods has indicated that
necessary conditions for a useful method of setting up and
handling graphical data should include the following re-
quirements:

1. It should not be necessary to compute a fictitious ar-
gument for the purpose of table look-up. It is possible
to transform the arguments to a new set of variables
consisting of a series of sequential integers, n, n 4 1,
n + 2,...,m. The comparing unit of the IBM Type
417 Accounting Machine can then locate a desired
mesh point. The disadvantages of the method include
the additional computing time and, more important,
the restriction placed on the location of the mesh
points when reading the initial graphical data.

X
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The interval chosen for the argument should not be
restricted; in particular, a constant interval in the ar-
gument should not be necessary.

The general procedure should be set up for three-
dimensional graphs, treating two-dimensional data as
a simplified case. The interpolation procedure should
be the same regardless of the number of variables and
sensibly independent of the size of the numbers in
the various arguments and functions.

There should be no necessity of an artificial phasing
so that arguments in one card pertain to data in fol-
lowing cards. Such methods can simplify the machine
setup but complicate setting up the data.

A minimum number of points for a required accuracy
should be used to establish a mesh. Since these data
are included in the program deck and must go through
the CPC once for each data point, an excess number
of data points can greatly lengthen the time required
for calculation.

The CPC method described below meets the above re-
quirements. It has three logical parts—reading the graphi-
cal data to establish mesh points, preliminary calculations to
set up interpolation data, and the basic CPC operation. Only
one restriction is inherent in the method, and that is a re-
quirement that all arguments be positive. No actual limita-
tion is involved, since a negative argument can always be
translated by adding a simple constant.

Setting Up Graph Data

Two-dimensional graphs are usually presented as
2z = f(x). More complicated three-dimensional relation-
ships, 2 = f(x, y), are plotted as families of curves on a
two-dimensional graph. The interpolation process utilizes a
second degree equation for the variation in x (the abscissa
on the graph) and a linear interpolation for the y variation
(the family variation). Since the intervals in the argument
are not constant, divided differences are necessary for the
interpolation formula. The usual forward interpolation
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process requires knowledge of the #n 4 1 point as well as
the nth. By using a backward interpolation formula, the
machine can identify a point as it goes by and then inter-
polate back into the correct region. To fix these ideas and
clarify the mathematics, the formulas involved are shown
below.

Considering the general case of z = f(x,y) for a constant
value of y, we can define divided differences as:

Yo Vi %o
[#0 #1]
PR A [x0 x1 2], (1)
[#1 #2]
X2 Vi &2
where
gy — 2
[0 1] = x:))— ;1 , : (2)
28— 2
[x, xz] = xi T x22 y (3)
xo %1 — [#1 #x »
[x0 21 x:] = EZ ;1_}521 2l (4)
Similarly, for constant x,
Xi Yo Zo
[yo ], (5)
X M & '
where
Bo — &1
=== 6
[yo 1] o — 7 (6)

Combining 2, 3, 4 and 6 in the form of Newton’s back-
ward interpolation formula, we have

2(x,y) = 224 [7142] (x — #2) (7)
+ [Fox1x2] (& — 22) (2 — 71) + [y192] (y — 32),
with
x1<x§x2
Nn<yI=y: -

When reading the graph data, it is necessary to select
points for intervals over which the interpolation formula 7
will produce adequate accuracy. It is also necessary to hold
one variable constant for reading data at varying intervals
of the second argument. Both the arguments and function
are written so that the numbers will be as close to the region
of 1 to 10 as possible with an associated power of 10. By
this means, the size of the divided difference is also fairly
well controlled.

Some experience is necessary in learning to evaluate the
intervals over which interpolation will hold. The principles
are simple, and with a little practice the necessary points
can be quickly read and listed. Typical two-dimensional
graphs are represented by 10 to 15 points or even as few as
two for linear functions. For three-dimensional graphs, 50
or 60 points may be required. ‘

For small jobs, we read and record the points manually.
For larger jobs which may involve a large number of
points, we utilize a Telereader-Telecorder of our own man-

COMPUTATION

ufacture to read and record data points rapidly and directly
into IBM cards. This machine is a projection reader utiliz-
ing an electronic counter which makes possible a high de-
gree of accuracy at a considerable saving in time and effort.

Preliminary Calculations for Interpolation Data

One IBM card is required for each data point. These are
either key punched from the manual list or prepared auto-
matically by the Telecorder. Each graph is assigned a dif-
ferent identification number. By sorting the cards to the
proper sequence, it is possible to compute the first and sec-
ond divided differences in . Then the cards are rearranged,
and the first divided difference in y is computed. The IBM
Type 604 Electronic Calculating Punch is used for these
operations. Each final card has seven necessary pieces of
information, which are:

X1

X2

Y2

22

[#0 #1]

[ro x1 2]
[yo 1] .

Card-Programmed Calculator Operations

The program card deck used in the CPC consists of the
necessary intermediate computing steps with the graphical
data interspersed through the file. It would appear obvious,
knowing a value of x and y, to recognize one data card from
a group of cards representing a particular graph, and by
control of the spread read-in hub on the 417 control panel,
cause the desired interpolation data to add into the mechani-
cal counters. However, the circuit of the spread read-in
function unfortunately precludes this method of operation.
If the spread read-in impulse is absent but the sign X of a
field is present, the associated 417 counter group will be
cancelled to zero. This circuit deficiency could be corrected
by elementary changes within the CPC and make possible
much simpler three-panel control wiring than is now re-
quired for the system described here.

The 604 control panel contains these operations:

Codel........... Add

Code2........... Subtract
Code3........... Multiply
Code4........... Divide

Code5........ ...Store x and y arguments
Code6........... Table look-up
Code8........... Square root

Codes 5 and 6 require explanation. When a value of »
and y have been computed, and are to be entered into a table
look-up operation, they are routed over channel A and B,
and operational code 5 transfers them to two eight-place
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general storage units for storage. A code 6 table look-up
operation is then called out on all of the data cards, repre-
senting the mesh points which define the graphical data.
Values of x; and y, from each mesh point are read from the
second reading brushes on the 417 on channel A and B into
the electronic computer. Differences are calculated between
the stored x and the stored yand the data point (x2,y2). For
a particular table look-up, the first card for which the two
comparisons indicate that the table data are greater than or
equal to the arguments, a test energizes the negative test
relay, which, in conjunction with 417 wiring, makes all
counters of the 417 operative on the following card cycle.
Thus, as the same card reaches the third reading brushes, if
it is the desired point, all interpolation data are set up
within the machine. Only the first table card which satisfies
the test conditions is permitted to add into the counters,
since, obviously, all following cards will also satisfy the
conditions.

Four program cycles are then necessary to complete the
interpolation calculation, using the formula of equation 7.
As particular arguments are computed, they are set up with
the power of 10 required by the table data. The decimal
position of the interpolation formula is, therefore, constant
for every look-up operation.

The method which has been described here for handling
graphical data for engineering calculations has proved sim-
ple to apply and has had important results in application.

DISCUSSION

Myr. Maginniss: 1 should like to ask two questions: First,
about how many cards do you need for an average table?
Second, can you always arrange your variables in such a
way that linear interpolation is good in one direction, while
quadratic interpolation is needed in the other direction?

Mr. Bell: Answering the second question, when linear
interpolation does not hold, more points are read to get the
grid closer together.

As to the number of points required, we have very rarely
ever had to use more than 60 or 70 points for three-dimen-
sional cases.

Mr. Koch: We handle graphical data on the 604 by writ-
ing equations for all the data and using sums of products of
polynomials of second order. We find that we can get about
one per cent accuracy on the graphs, which is certainly good
enough, because, as Mr. Bell pointed out, the graphs them-
selves are only accurate to about five per cent.

At times, particularly at the points where a graph starts
out with a sharp curvature and ends up a straight line, we
have arbitrarily to break the graph in two parts and write

an equation for each part, controlling our setup to pick out.

the correct set of equations. It required approximately 100
hours to write the equations for about 30 graphs. We are
now programming the setup for the CPC and hope that we
can write equations for three-dimensional graphs of this
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nature in one to two minutes on the CPC. If this can be
done, it will mean an hour on the CPC as compared to 100
hours on the 604.

Dr. Herget: Considering the number of cards which
must be put in the table and the number of operations
needed for the interpolation, what is the possibility that you
could write a quadratic expansion in two dimensions, have
fewer cards in the table and still get the same accuracy? In
other words, a Taylor series expansion of about six points
would cover what you cover with sixty points.

Mr. Bell: If you try to do it analytically, you may run
into trouble. There will be special problems where it will
be better to use other means.

I agree with Mr. Koch that you should use a 604 for
small programs, but the CPC will be faster for 100 cases
because of control panel wiring for machine setup.

My, Porter: If you have a problem where data curves
initially are not going to change, which is very rarely, then
the analytical approach offers advantages, unless you have
to discriminate at too many breaks. Here your card deck
would run up to quite an excessive amount per point on
any kind of large-scale problem.

Mr. Lesser: Most of the problems that we have tackled
in aerodynamics for the machine have been those for which
it was fairly easy to find analytical approximations. In
other words, you could look at the curve and practically
tell whether or not it will fit your backlog of analytical
approximations. However, in the case of jet-engine power
data where most of the curves have a bad hook down at the
left-hand corner, it is very difficult to approximate this part
of the curve analytically; and it is this area of the curve
that is the most important to us.

Mr. Horner: We have done a good many of the problems
that have been described, and the best approach to me seems
to mix the detail cards in with the table points and calculate
the result on the CPC.

Where iteration is to be run over and over again, analyti-
cal representation is useful, because the number of detail
cards would be decreased.

Mp. Bell: These methods can be combined to give one
that is sometimes quite superior. Suppose that one has set
up his program to do problems of the order of 100 pieces of
data. Then he is given 1400 to do. He can set up the 1400
data points and expand them by the number of table look-
ups, He would then sort this deck of cards into his table
look-up cards and gang punch the data; this is done as an
independent operation. When these cards are put into the
program and are run, the card volume will have been de-
creased to where it is now fractions of a minute instead of
two or three minutes. This employs the same procedure, the
same methods.

Dr. Brinkley: The thermodynamic properties of a work-
ing fluid are conventionally represented by a Mollier chart,
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in which the enthalpy, H, is plotted as a function of the
entropy, .S, for specified values of the temperature, 7', and
pressure, p. )

o ps 1?3 P2 P

S

The punched card analogue consists of a table containing
H(p, T), S(p, T) as well as certain other functions of the
state variables.

COMPUTATION

Power cycles are analyzed by a routine consisting of suc-
cessive inverse interpolations in the table for given values
of H and p or of S and p. The tables are in such form that
linear orthographic interpolations are unavailable.

At our laboratory, we routinely use a standard card-pro-
gram, consisting of about 50 cards, with general-purpose
panels to compute Lagrangian five-point interpolation co-
efficients. This deck is followed by a standard program to
carry out the interpolation of each of the functions tabu-
lated on the card, six in number, to the required value of
the specified variables. This program also contains about
50 cards. The proper table cards for a given interpolation
are independently selected by a standard collator routine.

This procedure has proved to be more efficient than
methods based on special control panels for the problem at
hand.

We believe strongly in the general utility of interpolative
formulas of Lagrangian form as opposed to formulas involv-
ing differences. Such formulas are generally most economi-
cal as regards program length and storage requirements.



Calculation of the Flow Properties in an
Arbitrary Two-Dimensional Cascade
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THE GENERAL PROBLEM of cascade flow may
be stated as follows: Given the initial conditions of flow en-
tering a cascade and the cascade geometry, determine the
properties (velocity, pressure and density) of the flow
field at every point. From this information, the circulation
around a given blade and the blade lift may be calculated.
The possibility of flow separation from the boundary layer
may also be detected by comparison of the results with
parameters derived from experimental data.

The inverse cascade problem determines the blade geom-
etry when the entrance conditions are given and the varia-
tion of some property of the flow field (velocity, pressure,
or density) over the blade surface is postulated. This prob-
lem may be solved in much the same way as the direct
problém. The two calculations enable the designer to (1)
derive families of blade shapes based on established param-
eters and (2) find the useful operating range of blades
within those families.

DevELoPMENT OF Frow EQUATIONS

Consider an arbitrary blade cascade as shown in Figure 1
where the flow pattern has already been constructed. The
lines parallel to the blade surfaces represent streamlines;
those normal to the streamlines are velocity potential lines.
The streamline spacing is determined by satisfying con-
tinuity of flow across a potential line and then dividing the
total flow into a number of equal portions which pass be-
tween the streamlines. The spacing between the velocity
potential lines may also be arbitrarily selected. Certain re-
strictions should be imposed here, however, as will be shown
later. The present method of calculation determines the lo-
cation of mesh points, using the selected mesh spacing, and
finds the velocity at every point of the mesh. From this
information, as was previously mentioned, the blade circu-
lation, lift and other physical properties may be immediately
calculated.

To facilitate the study, several assumptions are made re-
garding the behavior of the fluid throughout the selected
region. It is assumed that at some point sufficiently far re-

ot
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moved from the entrance to the cascade, the flow is moving
with constant velocity in a given direction with respect to
the cascade and that the fluid obeys the adiabatic law for a
perfect gas. These conditions are sufficient to ensure the
existence of a velocity potential function® which may be
defined by:

3
ds 4
9% _
on 0.

Steady state flow conditions are also assumed, or
oV
W -— 0 .

In addition, a laminar boundary layer is assumed to cover
the entire surface of the blade so that flow separation does
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not occur. The nomenclature used in the following study is
defined in Table I.

The flow equations are developed in terms of the flow
field coordinates s, #. Consider a fluid element moving be-
tween two streamlines as shown in Figure 2. Since a veloc-
ity potential exists, the circulation around this fluid element

must be zero, or
r=‘¢§Vda=O. (1)

This equation may be applied whenever o is any path in a
simply-connected region of the flow field. Summing con-
tributions to the circulation around the fluid element alone,

14 d(As) A
(V—I——(;;An)(As—}- o An) VFas=0
or, upon dropping second order terms,

oV .1 4(aAs)
on As on

=4VC, (2)

where C is the curvature of the streamline. Equation 2 may
be integrated immediately to yield

(2
V2=V1exp/Cdn. (3)
ny

TABLE I

NOMENCLATURE

.. .Cascade coordinates, inches

.. .Flow coordinates, inches

. .Velocity, feet per second

. .Temperature, °R.

. .Density, pounds per cubic foot

. .Pressure, pounds per square foot

.. .Weight flow, pounds per unit length per second

. .Curvature, inches—1

.. .Ratio of specific heats

. .Velocity potential, feet? per second

. .Ratio of total temperature to standard tempera-
ture, Tstan = 9518.4°R.

. .Ratio of total pressure to standard pressure,
Pgtan = 21159 psf.

T....Circulation, feet-inches per second ,
¢....Subscript indicating stagnation temperature

Cp- - - -Specific heat of air at constant pressure, BTU

per pound per °R.

R....Gas constant, feet per °R.

J....Conversion factor, 778.16 foot-pounds = 1 BTU
g....Gravitational constant, feet? per second?

o R
S e
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COMPUTATIO‘N
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Ficurg 2. Frow ELEMENT

Equation 3 relates the velocities to the mesh geometry at
all points along a velocity potential line. Physically it means
that fluid elements may not cross the streamlines. The fluid
element moving between the streamlines may be accelerated
in the s direction only by a difference in pressure acting on
the two ends of the element. Equating the differences in
pressure forces, to the product of the mass and accelera-
tion, the equation of motion for the fluid element is obtained.
This is

Sr=—tt. (4)

pL=_9% (5)

For adiabatic expansion or compression, the pressure and
density are related as follows:

() ®

Substituting from equation 6 into 5 and integrating along a
streamline, Bernouilli’s equation is obtained which may be

written as
1
ATEN PRGN (o
(Pt> B (1 ngcth) 7)
in which the equation of state
P _rr (8
P

is used. The weight of the fluid per unit blade length per
unit of time passing across a velocity potential line is given
by

aW = pVdn . 9
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Introducing now a new variable, ¥//V/6, the weight flow
across a velocity potential line becomes
-V / v 0] an

W\/o san
AL
=ff(V/\/‘é, T:) dn .

All other equations may now be redefined in terms of
V' /\/8, merely by substitution of this quantity in place of V.

The calculating procedure can now be readily under-
stood. In order to obtain the cascade geometry, a large scale
plot must be drawn showing two or three blades in a cas-
cade. Sketch velocity potential lines and streamlines upon
this plot. Choose a line of zero velocity potential far enough
in front of the cascade that the velocity remains constant
across every part of this line. Then integrate along each
potential line using equations 3 and 10 and iterating until
W\/8/8 agrees with the given value. After this is complete,
interpolate, shifting coordinates to get equal weight flow
between each pair of streamlines. Then, integrate along the
streamlines from the zero velocity potential line to get a
value of ¢ for each potential line where

o [ G

Another interpolation is now performed, where the coordi-
nates are shifted to get lines of equal velocity potential. The
entire procedure is repeated until the mesh points cease to
shift. The third trial ought to yield values sufficiently close
for engineering purposes.

The procedure outlined above determines the flow mesh,
assuming fixed gas boundaries entering and leaving the
cascade. This procedure must be modified in order to locate
the front and rear stagnation points on the blade and to find
the actual outflow pattern of the gas. One method of relax-
ing the boundaries is to carry out the weight flow integra-
tion along the velocity potential line across two spaces at
the cascade entrance and exit, adjusting the upper and
lower boundary to correspond with the middle. This is the
method used in the present procedure. In carrying this out,
it is convenient to determine the velocity potential spacing
in the following manner. First find the velocity potential
from the zero potential line to the leading edge of the middle
blade in the cascade. Then divide this value of the velocity
potential by the number of assumed spaces used in finding
it. This is the value used to obtain the velocity potential
spacing, and it ensures that the mesh pattern is the same at
the leading edge of all three blades when the final mesh is
determined.

(V/Vo)? )
ngfp stan

(10)

(11)
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Mobp1ricATION OF EQUATIONS FOR
MacuINE CALCULATIONS

The actual calculation uses cascade coordinates x, y in-
stead of the flow coordinates. In carrying out the integra-
tion for ¢, the curvature C and the absolute value of the
secant of «, the angle between the x axis and a tangent to
the streamline, are obtained. These equations-are:

d2

dz?
dy
(@)
seca:\/l—i—i—j—gr
=/—\—/%seca dx .

The equations for the weight flow integration along a ve-
locity potential line become

(12)

(13)

(14)

Yo
V/V8)e2= (V/VO) exp/CSeca dy , (15)
M
—W—s‘ﬁ= ff(V/\/_e, T,) seca dy . (16)

The indicated differentiations and integrations were pro-
grammed by using the Lagrangian interpolation formula for
a three-point interpolation.

Letting:

wuo==w0m)fx'”“(”‘””

xo—x1) (Xo—x2)

(x—x0) (x—2x2)

) G ()
(x—x0) (x—21)
+‘I’(x2) (xr_)—xoo) (xz""xl) ’ (17)
then:
a¥(x) (x—21)+(x—22)
Tdr ¥ (o) (wo—x1) (x0—x2)
(#—x0)+(#—x2)
() (#1—x0) (41— 22)
(#—%0)+ (x—2x1)
+‘I,(x2) (xg—.:’o) (.172—.1’1) ’ (18)
¥ (x) 2% (%) 2% (xy1)
dr (xo—x1) (xo—x2) ' (x1—20) (#1—%2)
2\1’(,1’2)

(19)
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Carrying out the indicated integrations for two spaces,

X

L‘:(x) dr = (2*6‘_4’9) l:‘l’(xo) (2 _ %-_%)

+ ¥ (1) (2 + ’;2“"’1 n xl—xo)

1— %o X2— X1

T (xs) (2 - —%:-%)] .

FEquations 12, 13 and 14 are programmed in one deck con-
taining 43 cards for each point. The integration is taken
over two spaces at a time; thus, two values of the integral
are rotated in storage as the integration proceeds. A pre-
liminary calculate deck into which the values of the first
three points are entered precedes this calculation. After
this calculation is completed, an interpolation for equal
values of ¢ is carried out in two parts, the first part getting
interpolated values for x, y and V/\/6, the second part
getting interpolated values for C and sec a.

Equations 15 and 16 are programmed in a second deck
containing 41 cards together with an 18-card table. The in-
tegration is carried out in the same manner as the previous
one, with f(V/\/6,T;) being found by a table look-up. Sec-
ond degree interpolation is used, with 7' being held con-

stant for a particular problem and given by the entrance -

conditions. This calculation is followed by a final deck
which computes a better value of 7//8 for the first stream-
line to enter in the next iteration. When this calculation is
complete, an interpolation for equal weight flow between
the streamlines is carried out, interpolated values being ob-
tained for x, y and V' /V/4.

(20)

COMPUTATION

By choosing 320 points, the entire calculation may be
carried out in 18 hours, assuming an average of three itera-
tions for the weight-flow integration and assuming that
three runs are necessary for convergence. The flow sheets
for the calculation and the calculate instructions are given
in the Appendix.

NoTES ON THE
IBM Carp-ProcraMMED ELECTRONIC CALCULATOR SETUP

The ability of the IBM Card-Programmed Electronic
Calculator to handle the problem outlined cannot be com-
pletely understood without a description of the manner in
which the machine is programmed for the problem. Basic
setup 2 is used. For this setup the 604 Electronic Calculator
is scheduled as follows:

Operation Code Notes

Add 1

Subtract 2

Multiply 3 Round-off.Drop 5 digits.

Divide 4 Round-off. Add 5 digits
to dividend in dividing.

Square Root 5 :

e® ' 6 —6.70000 < » < 6.70000

logex 7 .01000 < 2 < 1.99000

et 6-8 —6.70000 < x < 6.70000

logix 7-8 .01000 < » < 1.99000

The IBM Type 402 Accounting Machine is instructed to
perform the special operations as shown in Table II.

Machine stop— Negative balance 5
Machine stop — T'wo successive

negative balances 6
Select one of two factors 7
Decimal shift for loger 8

O

Absolute value
Table look-up 9

TasrLg I1
Operation Code Column Notes
Counters clear 1 12 ‘
Auxiliary storage clear 2 12
Spread read-in 3 12
Arctangent shift 4 12 Divides tan x into 1 and adds =

13

into counter if tan x < 1.00000.
12

12
12 Compares two factors, selecting
larger or smaller as desired.
12 Shifts & one unit to right and adds
~ loge 10 for +>1.99000.
12
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CARDNo.| CH.A | OP. | CH. B | CH.C | SH. | SP.IN. CHAN, A CHAN. B | \

ENTRY | ENTRY COUNTER GROUPS

[+4

8 INTO INTO

f| CHAN. A | CHAN. B 1 2 3 4

0 0
13

1

B

< SHIFT

5 6 7
00000000000000000000000,000000000000C00/0000D000 000000‘!000000001?0000000

141516 171819 20 21)22 23 24 25 26 27 28 28]30 31 32 33 34 35 36/37 38 39 40 41 42 4344 45 46 47 48 49 50 51 52 53 54 55 56 5758 59 60 61 62 63 64 65 66 6768 69 70 71 7273 74 75 76 77 78 19 80

R R R R R R I R R R R R R IR R R R R R R R R R R R R IR R RRE

2222222222222)22222222(22222222(222222212222222{12222222{2222222{222222222222222{222222122
ALLISON
333333133133)3133133333333(33333333/33333333333333|13333333{3333333(3333333(33333333/33333333
CPC
4444444444444144444444)444 444440444 44444444444)4444444)444444414444444144444444/44444441
INSTRUCTION
955/555/5555555555555555555555555555555555555/5555555/55655555/5555555(55555555(55555555
CARD
66666666666666666666666666666666656666666666/6666666(5666666/6666666(66666666666666686

TTHTNIPNI R I I IIIII1 I rn 11t I i1 11111111 111111111111 111111 11111111 3411111111
8868888808808188(888088888(338888888808888/3886888/8883888880888888838888888888888888888888
99/199/9/99/99999999(99999999|99999999989999/9999999/9999999(9999999{9999998999933999
789 39 80

101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 6263 64 6566 6768 69 70 71 7273747576 7778 19

C
— @ © OPER.
- - © CHAN,
— o D

-
-—

Ficurg 3

All factors are entered originally into the standard card with Calculate Deck 1, merging the first three cards
form shown in Figure 3 and, in summary punching, are into the preliminary deck.
punched ordinarily from a given counter field into the cor- 2. Calculate C, sec @, and ¢, punching values as shown in
responding counter read-in field. Read-in and other in- Figure 4. Emit and punch 3 in column 12 (spread
structions are emitted during punching. read-in instruction).
3. Sort summary punched cards in descending order of ¢.

, Gang punch ¢,.4; on ¢, cards. Merge with ¢ Interpo-
CALCULATE INSTRUCTIONS late Deck A

APPENDIX

1. Sort initial data cards in ascending order of ¢ and 4. Calculate 7, ¥ and 7 /v/6 and punch these together
then in ascending order of IW,V/8/8 using identity with Ident and 3 in column 12. Omit punching in
numbers in counter 7. Merge cards of same W,\/0/8 counters 5 and 7.

CountEr1l 2 3 4 5 6 7

Initial data x y V/Vé Ident
WaV6/s ¢

P xXx

Summary punch from Deck 1 x y V/VE C seca ¢* Ident

Interpolate Deck ¢ Ident

Summary punch from Interpolate
Deck (two runs)

(Initial data for Deck 2)+ x ¥ V/\e C seca Ident
Summary punch from Deck 2 . x y V/Vé Wa\0/8 Tdent
Interpolate Deck Wa\/8/s Tdent
Summary punch from Interpolate o .
Deck (initial data for Deck 1) ¥ ¥y V/Vé Ident

*Omit punching of ¢ for first calculation. TOmit this interpolation for first calculation.

Ficurt 4. FLow SHEET
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5. Merge first summary punched cards with ¢ Interpo-
late Deck B.

6. Calculate C and $ec @ and punch these together with
Tdent.

7. Gang punch C and §€c@ on first group of interpolated
cards containing ¥, ¥ and V' //6.

8. Sort cards in ascending order of #,1/6/8 and then in
ascending order of ¢, using identity numbers in counter
7. Merge cards of same ¢ with Calculate Deck 2,
merging the first three cards into the preliminary deck.

9. Calculate ¥/\/6 and W,V /8. Follow last calculate
deck by final deck to get a better approximation for
(V' /). Repeat calculation using new value and con-
tinue until convergence occurs. Emit and punch 3 in
column 12 when punching.

10. Sort summary punched cards in descending order of
W,V/6/8. Gang punch (WaV0/8)ns10n (WaV6/8)n
cards. Merge with 1#,1/6/8 Interpolate Deck.

11. Calculate %, ¥ and ¥/1/6 and punch these together
with Ident and 3 in column 13.

For first run, omit steps 3, 4, 5, 6 and 7 from the cal-
culating procedure.

NOTE : The instructions to handle the relaxation of the en-
tering and exit boundaries are omitted here. The
above instructions, however, are used for the general
calculating procedure.

REFERENCE

1. Horacg Lams, Hydrodynamics, 6th Edition (Dover Publications,
Inc., 1945), Chapter II.

COMPUTATION

DISCUSSION

Dr. Hurd: Here is an example of a mathematical model
at which Mr. Horner has arrived on the basis of certain
assumptions followed by a calculating procedure to get
specific results. Have you confronted this procedure with
some experimental results to gain a notion as to what is the
accuracy, the adequacy of the model, etc.? Is this possible?

Mr. Horner: It is possible to check this by experimenta-
tion. In fact, the object of this calculation originally was to
remove many of the experimental procedures that were
necessary. We spend much time and money checking our
design of the blade for an engine to see whether it is satis-
factory. We can design blades that are between 80 and 90
per cent efficient. We think that using the difference made
by the compressibility of the fluid will enable us to design
more efficient blades. Most blades are designed now from
profiles derived from flow in an incompressible fluid.

Mpyr. Patton: At the Lewis Flight Propulsion Laboratory
we run into similar problems, but we use a completely dif-
ferent method of attack. We set up the non-linear elliptic
difference equation that defines the flow and develop a set
of simultaneous equations from the difference coffiecients.
So far, we have solved three problems of that type. One in-
volved 385 simultaneous eqtiations; another, 379; and the
latest one, 191. We used a three-point formula for the first
two and a five-point Lagrangian formula for the third. We
put all our non-linearities on the right-hand side and start
out with the incompressible case; from that, we develop the
compressible cases.

Dr. Hurd: Is this a factorization process?

My, Patton: Yes, it is.



Automatic Calculation of the Roots of
Complex Polynomial Equations Using the IBM Card-

Programmed Electronic Calculator

JOHN GALLISHAW, [JR.
Chance Vought Aircraft

COMPLEX polynomial equations, up to the seventh
degree, are currently being solved entirely automatically on
an IBM Card-Programmed Electronic Calculator which
has the special program device, and a total of twelve co-
selectors, two digit selectors, and sixteen pilot selectors.
The method normally requires no card handling from the
time the coefficients are loaded into the machine until all the
roots have been found.

The solution process is the well-known iterative scheme
involving synthetic division and Newton’s method. For
each root the machine performs only enough iterations to
produce the root to the desired accuracy and then proceeds
automatically to the calculation of the next root. If any, or
all of the roots are approximately known in advance, these
values can be introduced as first trials; otherwise, standard
trial values are used. Using standard trial values, the CPC
takes from twenty to twenty-five minutes to obtain all the
roots of a complex seventh degree equation. Equations. of
lower degree require correspondingly smaller amounts of
time.

The process uses eight-digit arithmetic throughout. With
proper size adjustment of the coefficients of the original
equation the calculations seldom run out of field. The size
adjustment is also done on the CPC with a separate set of
control panels. No data are required except the unadjusted
coefficients, and the process is entirely automatic, taking
about thirty seconds for each seventh degree equation.

THEORY

If a polynomial f(z) is divided by a trial linear factor
(z—2,) and the quotient ¢, (2) is again divided by (2—2z,)
the successive remainders are f(z,) and f'(2,). We give
below the identities involved and at the same time intro-
duce our notation. Note that the degree of f(2) is N — 1.

z2=ux+1y . (1)

N
f(2) = (ap41by) 2P —1. (2)
N
f(z) = <z~zn>2<cp+fdp>zp~2 F(atid).  (3)
N
g (2) = (cptidy) 2. 4)
N
4:(2) E<z—zn>z<ep+if,,)zp—3 b (etil) . (5)
f(s) = 1 + idy . (6)
f(2n) = e2+ifs . (7)

If 2, is a trial root, then the “improved” trial root 2,41
given by Newton’s method is

f(2n)

Bpt+1 = 8n — f’(zn) = Zp + Az, . (8)

Using the notation of (1), (6), and (7), the real and imag-
inary parts of (8) are

_ . (escs + fody)
L= I T+ ()2

_ (die2 — c1f2) _ .
I (ea)? F (fay2 = T A0

= &, + Ax, (9

Y1 = (10)
Synthetic division is used when the two divisions by

(2—2,) are carried out with a desk calculating machine.

The computation form is as shown in Table I, page 88.



TaBLE I

(ax+1iby) (ay—1-+iby—-1)...(az+1b2) (a141b1) |20 + 1Yn

(CN+'idN) (CN—-l'f‘idN—l) e (62+id2) (Cl-l—'ldl)L—-

(ex+tify ) (ew—14ifw—1)...(ea+if2),

where (cp+idp) = (ap+iby) + (cp41+idpt1) (ntiyn),
{P—-"'—N,N"‘l,...,z,l; €N+1=dN+1=0},

and  (ept+ify) = (6p+idy) + (epr1+ifp1) (Xatiyn),

(=N N—1,...,2 exs1=fyss =0} .

The calculations performed by the CPC to obtain (¢;+id;) and (es+if2) are:
(ex+idy) = (ay+iby) + 0 (xnFiyn)
(eny1tifvi1) = 0 + 0 “(Xntiyn)
(exy—1+idy_1) = (ay—1+iby—1) + (cy+idy) *(Zutiyn)

(ex+ifw) (ex+idy) + (ewt1+ifw+1) - (Fatiyn)

(cy—atidy—2) = (ay—_2+iby—2) + (cy—1+idy—_1) (xu+iys)
(ey—1+ify—1) = (ey—1tidy—1) + (ex+ifw) “(#atiyn)

(c2t-ids) = (as+1b2) + (e3+ids) *(#ntiyn)
(es+ifs) = (c3+ids) + (eat-ifs) *(Zatiyn)
(c141dy) = (a1+41b1) + (c241d2) * (#nt-iyn)
(ea+if2) = (c2+1ida) + (es+ifs) *(#at1Yn).

It will be noted that the machine goes through a small number of “zero” calculations.

TasLE II
(A) ,
Field CPC Codes
Selector Special —~—Channel—
Cycle  Level Operation 402 Control A B C Operation
1 9 Total 2 +4
2 8 Total 6> -2
3 7 (cp1%n) — (dpt1Yn) L(p) o e 2
c
4 6 a ’ 73 72 76
5 5 (dp+14n) + (Cpt1Yn) d 2(p) 1
6 4 b, ’ 74 75 773
7 3 (ep+22n) — (fos29n) 82 2
ep+1
8 2 Cp+1 85 84 72 3
9 1 (forexa) + (€p+29n) ‘ 83 1
1
10 0 dpys a 75 3

88
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TasrE I11
(B) _
Field CPC Codes
Selector Special —Channel—,
Cycle  Level Operation 402 Control A B C Operation
1 9 Total 2—» 44
2 8 Total 6> -2
{Total 7- +3} 74 74
3 7 (e2)? 75 75 5
4 6 (f2)*? 74 72 76 5
5 5 - (6201) 75 73 6
6 4 —(fads) 76 6
(e2c1-+f2d1)
7 M S AR TS 84 83 7
ST ey ()
8 2 —(diez) 8 82 6
_ (d1€2—61f2) _
10 0 Yn (62)2+(f2)2 = Yn41 75 8

MAcHINE PROCEDURE

First, the coefficients are loaded into the auxiliary storage
by means of precoded loading cards. A “first guess” card is
now read to supply x, + iy.. Next, an iteration card is read
to cause a series of special program cycles, and to supply
the first value for p, i.e., p = N. Instruction codes are
emitted from the field selector and p is emitted from a
counter of the IBM Type 402 Accounting Machine.

The two basic series of cycles are shown in Tables II
and IIL

Cycle series (A) is repeated once for each complex co-
efficient of the equation, reducing the value of p by one in
each series. When p = 1, the following series is of type
(B). This performs Newton’s correction, zero tests Ax,
and Ay,, and replaces x, with 2,1 and y, with y,4;. This
completes one iteration.

Another iteration card is read, and the whole process is
repeated until Ax and Ay are zero to the desired degree of
accuracy. The unused iteration cards are passed through
the machine, and the root is divided out by synthetic divi-
sion with precoded cards which load the coefficients of the
depressed equation in place of the old equation. The root is
summary punched, and the whole process repeated until all
the roots are found.

CobING

For a complete solution of one equation, coefficient load-
ing cards and a prepunched master deck are required. The

loading cards, of course, are different for each equation.
The master deck differs only with the degree of the equa-
tion.

Fach root of an equation requires three types of pre-
coded cards—a first guess card, iteration cards, and a set
of depressed equation cards.

It should be noted that the channel A and B instructions
must be punched in the card preceding the one on which
they are to take effect. This is because the wiring is from
the lower brushes instead of the upper brushes.

ADDITIONAL CODES

As well as the usual CPC codes, the following additional

codes are required:

1. A code to set up the field selector for emitted instruc-
tions and start special programming. This is a 9
punch in a column not used for anything else.

2. A code to allow the machine to go into special pro-
gram. This is a 9 punch in a column not used for any-
thing else.

3. A code to identify the initial value of p. This is a digit
in a column not used for anything else.

4. A code to identify “first guess” cards. This is an X
punch.

5. A code to clear storage, counters and the 604 at the
beginning of each equation. This is an X punch.

6. A code to cause the results to list. This is an X punch.
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Ficurg 1. T'ypg 604 ProcrAM CHART

Figure 1 shows the programming used in this solution process. The following notations and abbreviations are used:

» m Cawy»

is the entry from channel A into FS 1, 2. means quantity C was not entered on the read cycle, but

is the entry from channel A into F'S 3, 4. was there previously. ]
is the counter with exit into channel C. GS I'and2 means GS 1 and 2 are given an 8-6 assignment.
[term] means it is a natural result of a calculation; without

is the real part of the trial root in GS 1, 2 with exit into the bracket it means the unit must be wired to read in.
402 type bar for printing purposes. RS means reset.
is the imaginary part of the trial root in GS 3, 4 with exit into means multiply + when calculate selector 1 is trans-
the 402 type bar for printing purposes. Mult +1 ferred. .
—3+4a —2 | means multiply — when calculate selector 2 is trans-
- = ferred.
where @ = xxx.00000, BT, means balance test to pick up negative balance selector 1.
a = 000.xxxxx. NZ means non-zero.
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Ficurg 2. DeTAILS OF SELECTOR WirinG ¥or TypE 402

Figure 2 is a wiring diagram of some unusual portions of the 402 control panel. In this diagram the notations and abbreviations are as follows :
means field selector level 9, column 2.
means digit 4 is emitted from the digit emitter.

F92
“4”
P9N1
PI9N2
CoC1

P1-1

means pilot selector 9, normal of upper point.
means pilot selector 9, normal of lower point.

means co-selector 9, common of point 1, numbered from

left to right. -

means the immediate pickup of pilot selector 1.
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NB2T1
NBI1P
CDCY

LB

X

means negative balance selector 2, transfer of point 1.
means negative balance selector 1, pickup.
means card cycles.

means to_wire additional code 1 (see previous section on
Additional Codes) from lower brushes.

means half after X time.
means program step 58.

(1)
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DISCUSSION

Mr. C. V. L. Smith: How do you determine the first
approximation ?

Mr. Gallishaw: Actually, we do not even try to deter-
mine it. Because of the transformation which we performed
originally on the coefficients, we know that the product of
the roots is going to be somewhere in the vicinity of 1; so
we choose a trial root. Actually, we choose the trial root,
.8 + ¢(.6), which has a modulus identical to the 1 which is
usually attached to one of the middle roots.

We have been equally successful in trying to attack the
smallest root by studying an initial trial root of zero.

Dr. Brown: You mentioned that after the first root is cal-
culated, the machine goes on to the second root. Do you
get the second root by using the same equation, or do you
reduce it to a sixth-degree polynomial from a seventh, etc.?

My. Gallishaw: We reduce it to a sixth from a seventh,
and replace the coefficient to the seventh with the coefficient
to the sixth as we go along.

Dr. Welmers: Recently 1 was attempting to teach a class
in matrix theory that the roots of a polynomial equation
could be obtained as characteristic roots of a matrix. I was
wondering if this particular scheme has found any very
widespread calculational use, or how it compares with the
more direct method indicated here.

Dr. Gross: 1 once had a problem on the CPC involving
many cubics with complex coefficients. When I tried to
iterate the roots by putting the equation in a matrix form,
it sometimes worked out fairly well. In one example, we
had to iterate 200 times to get the roots to separate, even
though the ratio was distinctly different from 1. Only if you

COMPUTATION

knew the absolute values of the roots beforehand, could you
calculate approximately how many iterations would be
needed.

Mr. Lowe: We use quite the inverse process. We derive
by setting up the characteristic function of the matrix and
then get the roots of the matrix.

My. Carter: Do you find it better to start with the smaller
root ? When you divide out the smaller root to get the poly-
nomial of degree one less, it seems to me your coefficients
are going to be more accurate. Consequently, do you not
find it better to start with zero?

Myr. Gallishaw: Generally speaking, we have found that
to be true. Not only does it help in achieving greater accu-
racy in the roots but it also tends to make the coefficients of
the depressed equation slightly more workable in size.

Mr. Lesser: In connection with programming from
counters, I would like to point out that it is probably easier
on a Model II CPC, because top counter read-out elimi-
nates the trouble of getting too many digit impulses out of
the counters for instruction. One can obtain many more
instructions on the field selector than he can when he has to
separate the digit impulses.

Dr. Evans: When digit impulsing as instructions from
the counter, do you get all of the half-after impulses from
the column split control?

Mr. Gallishaw: In this particular case I did not take it
from the column split control, but rather from the emitter
into the comparing unit, comparing it against nothing.

One last comment is that this control panel is also very
useful in evaluating an equation of constant coefficients for
a very large number of values of the unknown, say 1,000.



A Recursion Relation for Computing

Least Square Polynomials over Moving-Arcs

GEORGE R.

TRIMBLE,

JR.

Aberdeen Proving Ground

A METHOD of computing least square polynomials
over moving-arcs is here presented; it requires the retention
of a relatively small number of variable factors in the com-
putations over moving-arcs when advancing from one value
of the independent variable to the next. The method is
based upon a recursion relation which is derived herein.
One consequence of this method is the reduction of the
number of storage registers required.

LEAsT SQUARE PorL,yNOMIALS OVER MOVING-ARCS

Given the finite set of real points (X, Y;) in a plane,
7 =0,1,2,..., N, with equally-spaced arguments X, it is
required to fit an rth degree polynomial,
Yi=y(Xi) = dpo+ 4p1 Xs
+ Ape X2+ ...+ 4, X7, (1)
to the subset of 2n 4- 1 points (X, Vi), 1 = p — #,
p—n+1,...,p—Lpp+1,...,p+n—1p4mn,
by the least square procedure and to evaluate this poly-
nomial at X, the midpoint of the interval (X,_,, Xp4x) all
abscissae of which are on the polynomial given by equation 1.
The arcs of equation 1 thus defined depend upon p and will
be referred to as moving-arcs. Each interval (X,_y, Xp14),
p=nn-+1..., N — n determines a polynomial; the
first subscript in the coefficients 4,4, ¢ = 0,1,2, ..., 7,
indicates the polynomial associated with the interval con-
sidered (Xp—n, Xp4n). A series of such polynomials

Yp=Apo+ Ap1 Xp+ Apo X2+ ... + Apr X},
p=nn+1...,N—n)
is obtained. The N 4 1 — 2x polynomials of equation 2 are
the minimizing polynomials over moving-arcs of equation 1
in the least square sense.
Since the X’s are equally spaced, they can be written as
X; = X+ jh, (7=0,1,2,...,N)
where % is a constant. Then,
X;—Xp=Xo+ jh — Xo— ph
or

(2)

Xy=Xpo+ (G —1)h. (3)

o
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In the interval (X,_n, Xp4n), consider the variable,
Xpi = P — P, (4)
G=p—np—n+1,...,p+n—1,p+n).

By means of equation 4 we can rewrite equation 3 as

Xiz Xp—l—'xp,q:h. (5)

Substituting the expression for X; as given by equation 5
into equation 1, the polynomial becomes
Vi = Gp,0 + p1 Xpi + Qp2 A5t o+ pp 25,0,(6)
G=p—np—n+1,....p4+n—-1p+n)

where, as above, the interval over which this polynomial is
being considered is (Xp.—n, Xpin). In terms of the new
variable x,; this interval becomes, (#pp—n, ¥ppin). The
value of x,,; at the midpoint of the interval (¥ y—n, 1pp1n)
is

1
x,,,,,:E(X,,—X,,) =0;

consequently, the polynomial in equation 6 when evaluated
at x, p becomes

Yo = @p0 - (7)
From this it is seen that only @, ¢ needs to be computed for
the moving-arc procedure.

The least square procedure requires that

2+n
F=)(yn—Y)?
i=p—n
2+n
= Y (po+ A1 ¥pi+oxii+ ...+ QGprah— V)2
i=p—n

be minimized. The well-known necessary condition for F to
be a minimum is

OF _ 9F _ OF _

aapy() - 6(1,,,1 - a(lp,z -

oF

T

=0.

(8)
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Taking partial derivatives, it is found that

p+n

oF .
da - = 22(%.0 + 8p1 Xpi+ Gp2 K5
a,,,o
f=p—n
+...+ap,rx1r),i_ Y’l) (9)
ap p+n
Pl 22p,i(ap,0 + @p1 ¥pi + Gp2 X34
Qp,1
=p N
e T o Y:)
BF p+n
3 = 3 2xp.4(@p0 + Ap1 Fpi + Ap2 X5
Ap,r
+ ...t aprrp— V).
Define .S}, as
p+n p+n n
S = 2.76’,','3 = Z(i—p)”‘ = Zim s
t=p—n i=p—n =1
(m=12...,2r).
It is seen that
st+1=0, (S=O,1,2,...,f—l), (10)
n
528=22i28, (s =1,2,3,...,7),
i=1

where S is defined as
S 0= 2n + 1.
Simplifying equation 9 by means of equation 10 and
applying condition 8 we obtain the normal equations,

ptn
Sopo+0-ap1 + ...+ Sra‘p,r=zyi (11)
i=p—n
240
0- ap0 + S p1 + ...+ Sr+Iap,r = ) Xpi Y,
j=p—n
p+n
S,- p,0 + S,«.H ap,1 + N + Szr Qpr = x,’” Y1 .
' i=p—n
In matrix notation, equation 11 becomes
MA, = K,, (12)

COMPUTATION

-

where

Sy

Se O Sa
( ...Sr+1

0o S O

\Sr Sr+1 Sr+2 -~-S2r 4

Pin

\ x,’,,i Yi

f=p—n

Similarly, equation 7 may be written
Yo = Bd,, (13)

where '
B=(1 0 0...0).

Denote the determinant of M by A(M) and the adjoint

of M by F(M). It follows that

L, _F(OD)
A(M) -
Solving for A4, in equation 12, we obtain
F(M) \
= M-1K. — .
Ay =M K"_A(M) K,. (14)

Substituting into equation 13 the expression for 4, given
by equation 14, we have

F(M) |

y,,=B'A(M) K,. (15)
Examination of F (M) shows that it has the form,
foo O foz ... for
O f1,1 0 e f])r
F(M) = )

fr,O ,;c-r.l ];r,z . . f”.’” ’

that is, fr; = O when & + [ is odd. Also, F(M) is sym-
metric (fy,; = fix). Evaluating the matrices in equation 15,
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00 ... for\ / 2ED
ffo00 ---for\ (%

0 f1_1...f1,,~ t=p—n
p+n
xpiyi
i=p—n
Y A(M)(l 0 0...0) .
p+n

frofra o frr pi L
AW

or
p+n
v )
{=p—n
p+n
Xp,i Y;
1 pin
Vp = m(fo,o 0 fo,2 fo,r) i=p
ptn
254 Y
\i=9—ﬂ /)
or
p+n f p+n
_ !o,o 0,2 2
= ity 0,7 w0y 2
t=p--n f=p—n
f p+n
0,r r
+ 30 Qi Ve (16)
i=p—n

This result given by equation 16 will be utilized later in
the derivation of a useful recursion relation. For use in
hand computations it will be convenient to express equation
16 as

p4n
Yo = Hi pY;,

{=p—n

(17)

where

Hi_, = foo + fo.2 22 4.+ for oy

A(M) T a(M) T A(M)
= 24y * 5 (0" (i G
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Two cases must be considered: (a) r = 2¢, (b) r =
2t 4 1. If r = 2t, the coefficients H;_, become

o =)+ R )

If r = 2t 4- 1, the coefficients H;_, become

oo it b,
since fo2¢+1 = 0. This means that the coefficients H;._, are
exactly the same for a (2¢+1)th degree polynomial as they
are for a (2t)th degree polynomial.

The form of equation 17 is convenient for hand comput-
ing in that when the observed values ¥ are listed in one
column and the coefficients H;_, are listed in the column
next to it, the computing consists of multiplying each term
in one column by its corresponding term in the other col-
umn and summing the 2n + 1 products obtained to deter-
mine the fitted value y,.

Hi_, =

Hi_, =

TuE RECURSION RELATION

The recursion relation provides a method by means of
which results obtained at one value of the independent vari-
able are utilized in the computations for the immediately
following value.

Equation 16 is rewritten as

foo fos
% = 01y Do+ 50y Pre

f( Dy, (18)
where D, ; is defined as

p+n

Dy = (i—p)*Y; (k=1,2,...,2t),
i=p—n
p+n

Dyo = zyi (k= 0),
i=p—n

“and where » = 2f or r = 2t 4+ 1 as previously observed.

At the point X, 4, equations 18 become

Yp41 = Z%%Dpﬂ,o + A{%)*le,z +.
N (1 _foz2e
A(M) p+1,2t ’
with D, 41 being defined as
p+1\+n
Dyi1 = (1—p—=1)*Y;, (k=1,2,...,2¢),
=p+1—n
p+i+n
Dp-l-].,O = zyi, (k = O)

i=p+1~—n



96

But,
ptn
Dypy10 = Zyi = Ypont+ Yptita
i=p—n
=Dpo— Yp_n+ Ypi14n. :
Expanding [ (1—p) — 1]% by the binomial theorem, we have
ptn : ‘
-Dp—{-l,k: (1*?—1)"; Y@—“ (—n—l)k Yp_n
i=p—n

+ nk Yp+1+n

P+n
[EM) (i—p)*- fy:l

= (=n=1)FYp n+ 1" Vpi1in

- S () Serron)]

= (=n=1)*Yp n+#* Ypy14n.

Thus, one finds a useful recursion relation

B

— (==Y +n*Ypr14n,

where £ = 0, 1, 2, .. ., 2. From this equation it is seen
that D, 1% can be expressed as a function of D, ,, where
r=20,1,2,...,k with the binomial coefficients and the
two observed values ¥,_, and V14, By use of this rela-
tion, each D, 1 s with & = 0,1,2, ..., 2¢ can be computed,
using the values D, ;, k = 0, 1,2, ..., 2t, computed for the
previous value of the independerit variable, and the ob-
served values ¥V, and Yy 11 10

To see the merits of the method based on equation 19, a
comparison of the two computing methods must be made.
The method employing the expression for y,, as given in
equation 17, requires that each value of Vi,7 = p — n 1,
p—n -+ 2,...,p -+ n be remembered explicitly when
progressing from X, to X, 1. The only new value needed
to compute y,41 15 ¥Ypi144. If an automatic computing ma-
chine is used to perform the computations, 2» storage regis-
ters are required to store the 2un values of V;, = p —n + 1,
p—un-+2,...,p + n, which must be remembered.

The method employing the recursion relation requires
that Dy, & = 0,1, 2, . .., 2¢, be remembered when pro-
gressing from X, to X, 1, where » = 2¢ 4 1. In this case,
two observed values V,_, and YV, , must be introduced
to compute y,.q. At most, » + 1 storage registers are re-
quired to remember the values Dy, £ = 0,1, 2, ..., 2¢

If it is assumed that the various constants needed for the
two methods can be generated by the machine and present
no problem, a comparison of the number of storage registers

(19)

COMPUTATION

required by the two methods shows that the recursion
method is best by this criterion, as long as 7 4 1 is smaller
than 2n. Since 7 is the degree of the polynomial and 2»n 4 1
is the number of points over which the polynomial is being
fitted, » is always less than 2n + 1. The values of 7 for
which the recursion method is not the best method are

2n—-1=r<2n+1. (20)
Because in practice the number of points used in determin-
ing a best-fit polynomial is usually much larger than the
degree of the polynomial, the cases indicated in condition 20
will occur infrequently.

Thus, the recursion method makes it possible to perform
on automatic computing machines computations involving
large numbers of points on moving-arcs which could not be
carried out so effectively using manual methods.

APPENDIX

[llustrative Example of Use of Recursion Method

Forr = 2 (or r = 3), and » = 12, the constants are
foo = 467, foo = —5,and A(M) = 5175. From Table I,
the following are obtained:

TaBLE 1 25
»i Yz D13,0 = zyi
1 121121 i=1
2 121232 = 3067.840
3 121279 25
4 121341 | Dyg, = z(i—ls)yi
5 121402 =
6 12148 = 218428
7 121575 o5
8 1273 | poo N o13)2y,
9 121.845 e
10 121997 = 159,774.308
11 122163
2ol = stz (467D1s0 ~ 5Dis2)
14 122692 = 122.475
15 122884 Diso = Dizo— Y1+ Y
16 123.001 — 3072.198
17 123206
18 123412 Dis1 = Dis1 — Diso + 13Y1 4 12V 5
19 123.655 = 230.909
20 123.891 Diss = Dizs — 2D131 + Diso
21 124115 — 1697, -+ 14475
2 124352 .
23 124.608 = 160,004.819
24 124.883 1
25 125132 Yi¢ = 5775 (467D1s0 = SDis2)
26 125479 = 122,646
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DISCUSSION

Dr. Berkowitz: Do you actually compute the coefficients
of the least square polynomial ?

Mr. Trimble: No, the coefficients of the polynomial are
in no way determined directly.

Dr. Herget: This is essentially a smoothing process, is it
not?

Mr. Trimble: Yes.

Dr. Herget: 1 don’t quite see where we got from 25 to 3.
Do you mean a polynomial of the third order is supposed to
go through 25 points?

My, Trimble: That is correct.

Dr. Aroian: What do you do if you want to go to higher
degrees—say 4, 5, or 6? Do you change your degrees or do
you just decide on 3 and stick with it?

Myr. Trimble: We decided on 3, for our particular case,
from experimental data.
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Dr. Aroian: The point is that you might use orthogonal
polynomials which permit you to go to higher degrees with-
out recomputing equations. There are two types of tables
prepared for these: either the R. A. Fisher or Gram-
Charlier tables.

Mr. Trimble: We have used orthogonal polynomials for
this process. But even then you must remember each of the
25 values observed separately to get the coefficients for the
polynomials.

Mr. Waddell: We have set up this orthogonal polynomial
problem and use it continually. By means of Fisher’s tables,
we use from 21 to 67 points in remembering all the values
inside the machine. It works very fast and very neatly on a
Model 1I CPC.

Dr. Hurd: You mean you have one programmed deck
which applies to either 21 or anything up to 67 points?

My. Waddell: Yes, that is correct.



Numerical Solution of Second-Order Non-Linear
Simultancous Differential Equations

HENRY 8S.

STABILITY problems in aircraft design often involve
solution of non-linear simultaneous differential equations.
For example, the evaluation of the longitudinal stability
characteristics for a towed airplane involve the solution of
equations of motion which are of the type mentioned above.
Basically, the system can be represented as a compound
pendulum. with two degrees of freedom, i.e., a rigid body
connected by a cable to a fixed horizontal axis. The rigid
body has acting upon it not only the force of gravity W, but
also the aerodynamic forces of lift L, and drag D, a thrust
force T and an aerodynamic moment M. The rigid body is
so suspended that it is free to rotate about a fixed horizontal
axis through point O and about a horizontal axis through
point H and normal to the X — Z plane as shown in Fig-
ure 1. The assumption is made that some tension always
exists in the cable OH; if any slack is allowed in the cable,
then the aerodynamic characteristics of the rigid body will

WOLANSKI

Consolidated Vultee Aircraft Corporation, Fort Worth Division

*

be identical to those in free flight, and the equations derived
for the system will have no physical significance. The pur-
pose of this paper is to present two numerical methods by
which a solution can be attained. A further aim of this
paper is to compare the methods used and to show the effect
of an interval At on the results obtained.

Drrivartion oF THE Eguations oF MorioN

In deriving the longitudinal equations of motion for the
system, the Lagrange equation 1 of force,
d [T T oW,
di| 85 | s T os
where, s = generalized coordinate
T = kinetic energy of the system
W, = virtual work of the system

t = time

(1)

Horizontal
Reference

Ficure 1. Ricip Bopy CoNNECTED BY A CABLE To A Fixep Horizonrar, Axis

98
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expressed in terms of energy was used, because it was more
convenient to deal with the energy of the system. From
Figure 1 it can be seen that the coordinates of the center
of gravity ¢ of the rigid body are:

x = —lcos¢p — bcosd (2)

2= lsing 4 bsinb. (3)
The velocity of the center of gravity c¢ is then obtained by
taking the time derivative of these coordinates, i.e.,

#= —lcos¢ + I sin ¢ + bé cos 8 (4)
2= lsing + lpcosd+ bfcoso. (5)
Then
V2= x? 4 32 (6)
V2 = I2g2 + 1262 + 2 + 2ib¢f cos (6—¢)
— 2ib6 sin (—¢) . 7)

Now, cable length is defined in terms of constant reel-in
velocity » and time ¢ as follows:

=—/wdt=—wt+l0 (8)

Il=—o
so that the velocity of the center of gravity ¢ can be written
as

or

V2 = 122 + 0262 + o + 2bwf sin (60— ¢)
+ 21b¢b cos (6—¢) . (9)

The kinetic energy of the system is equal to

= %I:mV‘? + Iyyé2:]

= %{m [1%2 + 5262 4 2 + 2bob sin (6—¢)

+ 2ib36 cos (a—¢):| + Iwé2} . (10)

By use of the assumption of small virtual displacements,
the expression for virtual work can be written as

3We= —Lcosy (82) — Lsiny (8x) — D cosy (8x)
+ Dsiny (82) + W (82) + T cos 6 (8x)
— T'sin 6 (82) + M (86) , (11)

where

8x = lsin ¢ (8¢) + b sin 6 (89)
32 =1lcos¢ (8¢) + bcos b (36).

Simplifying equation 11 gives the following expression for
virtual work:

MW= [—Llcos (y—¢) + Disin (y—¢) °
—Tlsin (6—¢) + Wlcos ¢] 8¢
+ [—Lbcos (y—8) + Db sin (y—9)
+ Wbcosb+ M) 86. (12)
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Combining the kinetic energy equation 10 and virtual work
equation 12 in the Lagrange equation 1 will give the final
equations of motion.

For the degree of freedom in. ¢, e.g., s = &,

— %g = mubf cos (6—¢) — mibpfsin (6—¢)  (13)
and

‘% = mi2p + mlbf cos (6—¢) , (14)
from which
d (oT\ _ _ . oy S rp w
Ef(b?) = —2mol¢ + ml2¢ — mlb6sin (6—¢) (0—9)

+ mlbl cos (0—) — mwbbcos (0—¢)  (15)
so that the equation of motion becomes

mlp = — m[—20¢ — b62sin (6—¢) + bb cos (6—¢)]
+ Wcos¢p — Lcos (y—¢)+ Dsin (y—¢)
—Tsin (6—¢). (16)

Similarly, the equation of motion for the degree of freedom
in 6, e.g., s = 6, can be found to be

(I, + mb2]6 = —m[Ibg? sin (0—¢) + Ib cos (6—¢)
— 2bo¢ cos (0—¢)] + Wbcosb
— Dbsin (§—y) — Lbcos (0—y) + M. (17)
The induced angle y is defined as

—2

Y=m, (18)

whereby, using equations 4 and 5, we arrive at the ex-
pression

_ wsin ¢ — Ip cos ¢ — b cos 8
Vo~ wcos ¢ + I¢ sin ¢ + b6 sin 6 '

Y (19)

The values of lift L, drag D and pitching moment M used
in the preceding equations are defined as

L = (Cp,a Cry + Cy 8)gs (20)
D= (Cpaoz + Cpy)as ' (21)
M = (CMa‘z+CM0+ CM(? O)qs (22)
where
_dCL ..
C Ly = 5y = lift curve slope

Cr, = lift coefficient at zero angle of attack

aCr,

Cr; = — = rate of change of lift coefficient with
pitching velocity
aCp . .
C Dy = g = rate of change of drag coefficient with

angle of attack
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Cp, = drag coefficient at zero angle of attack

Cu. = "% = static longitudinal stability

Cu, = pitching moment coefficient at zero angle of attack

égéli = damping in pitch

Cus =
PY:

q= %pV2 = dynamic pressure

§ = wing area

It can be seen that the equations of motion (16 and 17)
are second-order non-linear differential equations which
have to be solved simultaneously in order to obtain a time-
history plot of the motion. To express a solution in elemen-
tary analytical form would be very difficult, if not impossi-
ble. It then becomes necessary to use a series or some other
approximate method to obtain a particular solution.

MEgrHODS FOR NUMERICAL SOLUTION

The two methods used in obtaining a numerical solution
are based on those outlined in detail in reference 1. Basi-
cally, both methods are step-by-step solutions where the
values of the dependent variables are calculated one after
another for a sequence of equally-spaced values of the inde-
pendent variable ¢. It is assumed that the functions f; and f;
satisfy all requirements necessary to insure the existence of
unique, continuous, differentiable solutions of the form
6 = f1(t) and ¢ = f2(t) throughout the interval consid-
ered.

The problem consists of a pair of simultaneous differen-
tial equations of the second order

'0' = fl(ar ‘#) é’ ¢': ‘q'b’ t) (23)

b=1F(0,664 6t (232)
in which the dots denote differentiation with respect to the
independent variable ¢ The iterative and more accurate
method of the two consists essentially of predicting the
values of the first derivatives using the “prediction” equa-
tions which are numerical integration formulas for a fourth-
degree polynomial:

Ongr = Ons+ % At (26, — Op_y + 26,_2) (24)

frir = oo+ T A2~ Ba 2 (240)

Next, the dependent variables are computed by numerical
integration using the expressions

Opit1 = Opy + % At(Bpy1 + 460 + 601) (25)

COMPUTATION

' 1 . . N
$nt1 = a1t 3 At($nt+1+ 4n + fu—1) (25a)

which are based on Simpson’s rule. It is noted that the solu-
tions for the values of 0,41, ¢ni1, én+1 and ¢,41 are ob-
tained independently for each of the differential equations
23 and 23a just as though it were a single equation. But
now in computing the second derivatives of 6,1 and ¢n+1
from the differential equations, the solutions are carried out
simultaneously. Having found the values of 6,1 and $p41,
the first derivatives are again computed, this time using the
expressions for numerical integration given by Simpson’s
Rule

buir = Bums bz A Brgs + 4 + ) (26)

b1 = ¢n—1+§At(¢n+l + 4¢n + bn—1) - (26a)

These formulas are known as the “correction” equations.
The values of 6,,; and ¢,41 obtained by the “prediction”
equations are subtracted, respectively, from the ones ob-
tained by the “correction” equations. If the difference is
significant within the desired accuracy, the above process is
repeated using equations 25, 26 and 23 with the exception
of computing new “predicted” values of 9n+1 and ¢y 11, be-
cause the previous values obtained from the “correction”
equations are used as the new “predicted” ones. This itera-
tive process continues until two successive values of the
first derivatives are the same, that is, until convergence is
attained. This completes the necessary computations to ob-
tain the values of the dependent variables at one value of
the independent variable ¢. '

To apply this method to the system represented by Fig-
ure 1, it is necessary to have a set of initial values of 6, ¢,
0, é, 6 and ¢ at some time #¢ and also at the times ¢_q, f_»
and ¢_3. These initial conditions are arrived at as follows:
the rigid body is displaced from its equilibrium position to
some arbitrary position where § and ¢ will have the same
value and all the derivatives of these functions are then con-
sidered to be zero.

The instant at which the body is released from the arbi-
trary position is considered to be the initial time £y. There-
fore, the initial conditions and those previous to the time £,
are known. For example, in the case under consideration,
the specified conditions are:

atn =0,t, =0,

0,, = 0,,_.] = 0,,_2 = 0n_3 = 1 radian
¢n = Pn—1 = Pn—2z = Pp_3 = .2 radian
én = én-—-l = d;n = (}f‘n——] =0

bn = én—-l =b’$n - ‘.j’n—l =0.
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Since this is an iterative process, the assumption of éo and
¢o equal to zero is valid, and convergence to the correct
values will be attained. The step-by-step computations are
carried out until a sufficient range of the independent vari-
able ¢ is obtained to show the time-history plot of the de-
pendent variables 6 and ¢.

The second method is a much simpler, approximate one
which is based on the numerical integration equations

Opi1 = Oy_1 + 24186, (27)
bu+1 = Pu—1+ 28t s (27a)
Bpss = On_y + 221 6, (28)
br+1 = bn_1+ 24t ¢y (28a)

The computing procedure is self-evident, once the initial
conditions have been established. The initial conditions at
the time £, are identical to those given for the first method,
with the exception that the second derivatives of 4 and ¢
cannot be considered as zero. Using the differential equa-
tions 16 and 17, these second derivatives are computed
at the time ¢y, and then the values for the functions and the
first derivatives at #,,; are computed using equations 27
and 28. Thus, at each value for the independent variable,
the dependent variables and their derivatives are computed
without involving any iterative process. As in the first
method the step-by-step calculations are carried out until
the desired range of ¢ is obtained.

Control Panels

The solution of these differential equations involves a
small card volume and many mathematical operations so
that the use of an IBM Type 604 Electronic Calculating
Punch is inadvisable for this problem. The nature of the
problem is such that it can be readily planned and solved
using the IBM Card-Programmed Electronic Calculator.
The mathematical operations necessary are the simple
arithmetic operations of addition, subtraction, multiplica-
tion and division, including the trigonometric functions of
sine and cosine. A standard CPC-function panel perform-
ing these operations using eight-digit factors was available
so that it was not necessary to wire special control panels.
Thus, setup time for this problem involved only planning
the equations and method of solution for card programming.
The design of the CPC-function panel is based on an IBM
diagram with a modification in computing the sin /6 and
cos 0 series. The IBM diagram predetermines the number
of terms to be computed for each series, while this panel is
wired to compute as many terms as necessary until the nth
term is zero. The decimal positioning is such that six deci-
mals are obtained in handling eight-digit factors; therefore,
the sin 6/0 and cos @ functions are accurate to the sixth
decimal.
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Discussion of Results

For the particular condition investigated when the values
for force of gravity, aerodynamic forces of lift, drag and
pitching moment were introduced, the equations of motion
(16 and 17) become

1¢ = 20¢ + 18.76 62 sin (6—¢) — 18.76 6 cos (6—¢)
+ 322 cos ¢ — 175.5 a cos (¢—v)
— 219 cos (¢—y)— 15.5 a sin (¢—7v)

+ 3225 sin (¢—y) — 1.862sin (8—¢) (29)

6 = —.04851¢% sin (6—¢) — .0485 I cos (6—¢)
—+ .097 o¢ cos (§—¢)—+ 1.563 cos § — .752.a sin a
-+ 01567 sin &« — 8.5 @ cos « — .1061 cos a
— 3la+4 .0531 — .0536 4, (292)

where the term (Cp, gs) 6 from the lift expression was
omitted from both equations of motion since Cr; ~0. From
Figure 1, « is defined as being equal to § — v; it has also
been introduced in the above expressions. The constant
reel-in velocity o was considered to be zero so that the
equation for y was simplified to the form

_ —lg — 18766
Y= 383 (30)

with o being zero; the cable length remained a constant.

To obtain the best possible accuracy, the iterative method
was tried first. In planning the instruction cards, enough
iterations were used so that convergence would be attained.
This amounted to an instruction deck of 625 cards for which
one data load card for the initial condition was necessary.

At each t, all the values of 6, ¢, 6, ¢, 6, and ¢ for n, n—1,
n—2 and n—3 were listed so that the computing could be
stopped at any point for any reason and started again by
merely reloading the listed values.

Computations were carried out for intervals of .1 and .01
seconds for the independent variable ¢. These results in the
form of time-history plots of the motion are shown in Fig-
ures 2 and 3, respectively. From Figure 2 it is apparent
that because of too large an interval in the independent
variable £, the numerical integration of the first and second
derivatives of § and ¢ is inaccurate. This is especially true
when the derivatives approach maximum or minimum val-
ues, since three-point integration does not approximate the
curve well enough. Improvement in the results was ob-
tained by decreasing the interval to .01 seconds. These re-
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sults are shown in Figure 3. Although the curves in Figure
3 show no scatter, some inaccuracy does exist but is of such
a small magnitude that it is not detected on the scale to
which this plot is made. Increasing the accuracy of the re-
sults by decreasing the interval is done at the expense of
increasing the amount of computing tenfold since ten times
the number of points have to be calculated to cover a given
range in the independent variable f. At times this may be
necessary in order to obtain accurate enough results from
which a period of oscillation and other stability character-
istics of the motion can be determined.
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COMPUTATION

An alternate approach to increase the accuracy in the
final results is to use more accurate formulas for integration
rather than decreasing the interval. Five-term integration
formulas exist; these are exact if the polynomial is of the
seventh degree. This approach was not tried because the
method using the three-point integration equations made
use of all the storage capacity available in the CPC. Any
other higher order integration equations would have needed
more storage capacity than is available,

Another method which can be used to improve accuracy
and eliminate any excessive scatter is to apply an averaging
process to the results. This can be accomplished by one of
two means. One approach is to stop the calculating and plot
the results in the region of the scatter, and then “fair out”
the inaccuracies. This has to be done for the functions and
their derivatives. The faired values are then used as new
initial values, and the computations are continued until
excessive scatter appears again. The other approach is es-
sentially the same with the difference that the “fairing out”
is incorporated in the instruction cards as part of the com-
puting procedure. The method of least squares can be used
as the means for “fairing out” scatter. The former method
was used because it was felt that changing the instruction
cards was not warranted.

Since the first method for the solution of the second-order
non-linear simultaneous differential equations used a large
number of instruction cards, an investigation was made to
see if a much simpler method could be used which would
give the desired accuracy and decrease the computing time.
Computations for the second method were carried out for
the same two intervals as for the first method. These results
are shown in Figures 4, 5 and 5A. Although decreasing the

3 e e METHOD II
L au
" éA [ L}
N PR
o &
e o, o, : oo o
"a ° ® oo oy a B o & °
3 "pnd’n ®30% 0" 0 . 0 g 0,
%4 250" a0 Wt e
" @ LI ° e,
lm P’y e
o a 0,
2 a0t o
E Y
%) N TIME ¢
g T 2 3 4 5 6 7 8 9 10 11 12 I3 Nsc
B
g - os
=
-1
a
2 A
N INTERVAL At = 01 sEC.
-3

Ficure 4



SEMINAR

3 PN METHOD IT
a
a ‘ﬁ\
a 2 h
- 5 a R
v a
a - o a N
P o a ys a a TIME ¢
zZ T 2 354 5 6 8 9 a 11 12a 13 msec
2 4 > :
% 4 ) - 2
-3 a
-1 a :
a a
N a
a AA
a a
-2 Y
INTERVAL At = .0l SEC.
-3
FIcure 5
3 METHOD 11
2
8 9 o o ¢
°°°°°“°°unnnnnuououuﬂn
1
@
A
“
E 8 »
E 0 s s . TIME ¢
o s & 35 4 IN SEC.
s fT L, '
a
E. a a s a I3
DY s R a s R N
-.1 -
a
a
a a
~2
INTERVAL At = .01 SEc.
-3

Ficure SA

interval improved the final results, the simple integration
equations were still inadequate to give accuracy throughout
the whole range of the independent variable ¢. The error is
inherent in the integration formula used, so that attainment
of any great accuracy is impossible. Then, too, this being a
non-iterative process, any error accumulates until the re-
sults become of no significance. The second method was
card programmed in an instruction deck of 110 cards. As in
the first method, only one data load card for the initial
condition was necessary.
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SUMMARY

Two methods for the solution of second-order non-linear
simultaneous equations are presented. They are, basically,
step-by-step solutions where values of the dependent vari-
ables are computed at equally spaced values of the inde-
pendent variable. One of the methods is an iterative process
of predicting and correcting the dependent variables and
their derivatives at a chosen value of the independent vari-
able until convergence is attained. The other is a much
simpler method which involves no iterative process, but
whose accuracy wholly depends on the interval chosen.

A derivation for the equations of motion for the case of
a towed airplane is presented to show how the physical
system can be interpreted mathematically. Reasons are also
given for using a particular CPC-function panel and IBM
computer.

The final results showing the effects of the interval
chosen and the methods used are presented as time-history
plots of the dependent variables  and ¢. From these plots
it can be surmised that in order to obtain the desired accu-
racy it is necessary to use the iterative method which em-
ploys at least three-point integration formulas. But then,
too, it may be necessary to choose a smaller interval for the
independent variable or use an averaging process to “fair
out” the scatter of results. Greater accuracy can be attained
if higher order integration equations are used.

REFERENCE
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DISCUSSION

My. Sheldon: 1 would like to make a remark about sta-
bility. I know of three types of instability which can occur
when you solve a differential equation step by step.

One is that the original differential equation may have
solutions which ‘tend to infinity in the direction in which
you are integrating, when you want a solution which tends
to zero. Thus, any small error you make will increase ex-
ponentially, and eventually obscure the solution.

Another type of instability is that which is obtained when
you replace the differential system by a difference system of
higher order than the differential system. In this case, the
difference system may have solutions which have nothing
whatever to do with the differential system, and these may
increase exponentially.

The third type of instability is the type you sometimes
get in partial differential equations, when you have hyper-
bolic and parabolic systems.

You have to be very careful to make sure that the in-
stability you find as a result of your solution is not just due
to your numerical technique. It may not really be inherent
in the physical problem.
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Mr. Carter: 1 would like to add to Mr. Sheldon’s remarks
that the stability may depend upon different difference
equations that you might choose.

My. Von Holdt: At Los Alamos we solve quite a few
differential equations and simultaneous systems. We usu-
ally start them off with the Runge-Kutta method of smaller
intervals, which involves four iterations to get fourth-order
accuracy. Then we switch to the Milne method. We also
have a little trick; we know that each of the predicted and
corrected values has a certain value, which is a particular
coefficient times the fourth derivative. If the interval is
assumed small enough so that these fourth derivatives, at
two intermediate points somewhere, are approximately the
same point or the same value is obtained, then the error of
the corrected term is 1/29th in the fourth derivative. This
error is the difference between the predicted and corrected
term and can be added to the corrected term to get a still
more accurate one. If the estimate of the error gets too
large, we cut down to a smaller interval, and usually have a
Runge-Kutta deck right at nand to do this. When the in-
terval has been cut, we start off again with about four
points by the Runge-Kutta method and switch into the
Milne method in a smaller interval. To double the interval
is much simpler, of course.

Dr. Herget: Taking a look at the number of oscillations
that there were in the solution, I am quite confident that
200 points are sufficient to do a good job. The intuition
with which I approach these things is concerned with the
radian measure of an interval of time, and what is needed

COMPUTATION

is something of the order of magnitude of between a tenth
and a hundredth of a radian for one of these oscillations; so
I am confident that 2,000 points were not needed, as against
200.

I am always irritated by mathematicians who teach their
students Simpson’s rule and point out how tremendously
accurate it is, because it is accurate to 1/90th of the fifth
difference. What should be pointed out is that there always
exist completely general formulas, which were known to
Gauss and to which all those who highly respect Gauss in
every other field never pay any attention !

Aside from those remarks, I would like to make another:
In astronomy it is generally a theorem that the best way to
solve problems is in rectangular coordinates, the reason
being that »# = 7 cos § and y = r sin 6 and it is not neces-
sary to look into any trigonometric functions if you deal
with x and y.

Mr. Madden: We had a problem a good deal like this
which gave rise to equations like these, and we had consid-
erable trouble working at them blindly. We found that one
of our angles was oscillating from minus 50,000 radians to
plus 50,000 radians in a space of five hundredths of a sec-
ond. Because of the nature of the problem, we were unable
to cut down the interval; we had to keep our interval at this
.05, and in the light of Dr. Herget’s remarks we found that
when we converted to rectangular coordinates, this oscilla-
tion dropped out immediately, and apparently a solution
was quickly obtained.
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CURRENT computational literature is replete with
many descriptions of methods for matrix inversion (see Ref-
erences). Gutshall® points out the necessity for further sta-
tistical study of types of matrices which may be subjected
to numerical inversion and suggests, also, a comparative
study of known methods of inversion. Dantzig? demon-
strates in his simplex method a recurring need for obtain-
ing the inverse of certain matrices to compute optimum pro-
grams. In fact it is his request for a simple, fast procedure
for inversion of large order Leontief-type matrices that led
to the technique presented in this paper. The procedure,
while using the standard elimination method,3#4:11,12.15 3]
lows for simple and continuous processing of cards through
a reproducer, the IBM Type 604 Electronic Calculating
Punch, an accounting machine (for checking), and a second
reproducer. This cycle is repeated N times to invert an Nth
order matrix. The size of the matrix is not limited, and the
four machines are operated continuously without change of
control panels.

Consider the matrix equation, 4X = I, as describing a
system of simultaneous linear equations in the #’s. By sim-
ple operations (multiplying equations by appropriate con-
stants and combining with other equations) it is possible,
provided A is non-singular, to reduce the system to one in
which the coefficient of X is /. In this case, the right-hand
member of the matrix equation is reduced to the inverse of
A. Thus, in the elimination method one starts with an aug-
mented matrix composed of the original matrix, 4, and the
unit matrix, /. As the original matrix is reduced to the unit
matrix, the original unit matrix is simultaneously reduced
to the inverse of the original given matrix. This reduction
may be carried out one column at a time. After & — 1 col-
umns have been reduced, the procedure involves dividing
the kth row by ax (to obtain 1 in the kth column) and then
subtracting the product of this result with the appropriate
constant, a;;, from the ith row so as to obtain zero in the

o
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kth column of the ith row. This latter subtraction is carried
out for all ¢ %4 k. Columns of the unit matrix numbered
greater than k are unaffected. The kth column is, in general,
completely changed. Thus, N2 elements enter the computa-
tion at any one cycle. In the present procedure the kth col-
umn (or vector) of the left-hand part of the reduced matrix
is not written, because its value is known automatically. In-
stead, it is replaced by the kth column (or vector) of the
right-hand part of the augmented matrix after this step in
the reduction. By selecting the appropriate formula to use
(aslisted in step 3 of the next section ), the 604 actually brings
in vectors from the unit matrix as needed. The same ma-
chine is used to allow the matrix elements to be reordered
after each step in the elimination so that the new pivotal
row is on top and the new pivotal column is at the left.
Thus, intermediate row and column sorting is entirely
eliminated. It is through the elimination of all collating and
this type of sorting that the present more rapid machine
procedure becomes possible.

The accounting machine is used for checking purposes.
The checking operation must be looked upon as occupying
one step in the continuous flow of cards through the four
machines. Processing would not be appreciably accelerated
if this check were omitted, because all machines are running
simultaneously. It is important to point out, however, that
the checking procedure augments the original N? cards to
N? + N cards.

MAcCHINE PROCEDURE

The original Nth order matrix a;; is punched on N2 cards,
one element together with the identifying i and j to a card.
An additional row of check sums is appended to the origi-
nal matrix. These values are defined by

$; = I—Eaﬁ .

4
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A ten-digit fixed decimal system is used (two integers and
eight decimals). Data are punched as follows:

Columns Data
1-3 Number of row (7)
4-6 Number of column (5)
10-19 Value of element (a;;)
20-29 Value of element (a;;)—First card only.

In all cases minus signs are carried as X-punches over the
right-hand digit. In addition, elements of the first row are
identified with X and Y punches in column 1 (denoted
XY1) to indicate the pivotal row; elements of the first col-
umn have XY7 punches to indicate the pivotal column.
Elements of the row of s; are identified by XY 13 punches.
The 521 punch unit is used to supply subsequent X and Y
punches as needed.

After the cards are prepared and sorted to row within
column, the first column is gang punched as listed in step 6
below. After this preliminary step, the following six steps
are repeated N times to obtain the inverse:

1. Reproduce the values of ¢ (columns 1-3) and a;; (col-
umns 10-19) from the leading N+1 cards (with identify-
ing XY7) into each N+1 of the remaining N2—1 cards.

Read (XY7) Punch (NXY7)

Digits of 1-3 1-3
Digits of 10-19 20-29

This means that an element in the ith row of the leading
column will now appear on the same card with-all other
elements of the ith row of the matrix. As a variation, the
value of a;; to be reproduced may be read from either col-
umns 10-19 of XY7 cards or from columns 20-29 of NXY7
(no XY7) cards which have already passed through the
punch side of the reproducer for this step. Thus, in practice,
the operator starts with the N1 cards bearing the desig-
nator XY7 in the read feed and all others either in the
punch feed or immediately available thereto. After repro-
ducing the values from the N+41 cards, both stackers are
“emptied. The 2(N-+1) cards are placed together in the read
feed and 4(N+1) cards are next obtained from the two
stackers. As soon as a sizable group of cards is generated,
one may take the cards from the read stacker to the next
operation process at the 521-604 while continuing to repro-
duce values from the cards which came from the punch
stacker of the reproducer.

In both cases a comparison check is carried on all repro-
ductions. In addition, the reproduced value of i (columns
1-3) is checked for double punches. The reason for the
reproduction of ¢ is apparent at step 3 following.

2. Place a blank card having a different distinguishing
color and XY1 punches after the last card processed in
step 1.

COMPUTATION

3. Calculate values of by; and ¢; according to the follow-
ing formulas. For complete generality assume that k—1
steps in the inversion process have been completed, and
that the matrix is in order of row within column as given in
the following array:

Ay, % oo Oy o.. QpN Qg1 Age,i—1
Q% wee Q4j

ay,x

Sk T Sp—1
ay,%

Ar—1,% Ag—1,k—1

Valuesof b;and ¢ = 1 — Zbﬁ are computed by:
7

bre = -l— pivotal element XY1, XY7
e, %

big = — — i, fori#k pivotal column NXY1,XY7
.k

by s = A, j . . v7

ki = + P forj#k pivotal row XY1, NX

k%

bij = iy — %i G, forifhi#k NXY1, NXY7

.k

R

2 check, pivotal column NXY1, XY7
.k

tj=s5—2l. g,  forigk check other NXY1, NXY7.

Ok, %
One observes that the computation for #; is identical with
that for b;; where ¢ 5« k. The values computed are punched
directly into columns 30-39 on all NXY1 cards. For XY1
cards, however, the values are stored and punched on the
following XY1 card. This results in the array of values.
shown in Table 1.

Notice that no b is punched on the first card. The addi-
tional card of step 2 was added to obtain the last value. In
addition to the above calculations, the following operations
are performed simultaneously on the 521:

a. offset gang punch digits of columns 4-6 into 7-9,

b. . offset gang punch XY1 into XY4,

c. gang punch XY7 into XY7 on the XY1 card follow-

ing an XY7 card,
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TaBLg I
bk,k .. bk,j——l bk.N—l bk,N bk,k—2 bk,k—l
bk+1,k bk+1,k+l bk+1,,’l bk+1,N bk—l—l,l bk-}-l,k—l
bk ‘ big b, v bi1 bip—1
byx
2 Y tp—1
b,k
br—1k  br—1k41 br—1,5 bi—1,¥ br—1a o br—k—
d. emit XY10 into cards fOllOWiI‘lg the XY1 which fol- bk+1,k+1 bk+1,N bk+1'1 bk+1,k
lows an XY7; stop the XY 10 emission after the next . .
XY1 card.
It will be observed that these operations result in a column by rs1
identification of the last card (the card added at step 2). As bt con Iy 4 R 8
yet there is no row identification, but this will be supplied bik+1
by step 1 of the following cycle. If needed for a visual check,
it is easy to remember that the unidentified row is one . . . .
greater than the column number which is already on the br,x+1 ver buy b cer brg

card. It would also be possible to prepunch the row identi-
fication before step 2. This would involve a simple consecu-
tive-number deck.

4. Tabulate and list N lines with the following data:

k (read from first card of column)

S

[

t
¢ +zbw
i

This tabulation is used to check the accuracy of the previous
steps. The last value should differ from —1 by no more
than an acceptable rounding error. One has a choice here of
checking each column separately or else the entire matrix
as a whole,

5. Remove the first card, for which no further use is
made. Take the next N+41 cards and place them at the end
of the deck. This leaves the cards in the following array:

6. Reproduce into a new set of cards (or tumbled cards
already half utilized).

Punch Read
Digits of 1-3 1-3
Digits of 7-9 4-6
30-39 10-19 on all cards and also into
' 20-29 from XY4, XY10
XY4 XY1
XY10 XY7
XY16 XY13

At the same time, gang punch from columns 10-19 of
XY1, XY7 card into columns 20-29 on all NXY1, XY7
cards.

The new set of cards will be in such order that the
pivotal row is on top, the pivotal column is to the left, and
elements of both are marked with proper identifying X and
Y punches. Thus, these cards are ready to process through
step 1 of the following cycle. After N cycles the values ob-
tained at step 5 give the required inverse.

SoLUTION OF EQUATIONS

To solve a set of linear simultaneous algebraic equations,
the procedure outlined above is only slightly modified. The
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same control panels are used without any changes or addi-
tional wiring. The original matrix of coefficients is aug-
mented by the vector of constants and row of negative sums
of column elements for checking. Thus, one starts with a
matrix of (N41)2 elements. After step 1 on each cycle, the
first N+1 cards (XY7) are discarded. Therefore, the
cards, which pass through the 604, number N(N+41),
(N=-1)(N+41), (N=2)(N+41),...,1(N+1). At step 4
the check value is approximately —1, —2, ..., —N on the
successive steps and should differ from these negative in-
tegers by no more than an acceptable rounding error. At
step 5 the first card is removed. No other rearranging oc-
curs. Finally, one obtains the solution of the simultaneous
equations as a vector accompanied by a check sum. This
procedure should take approximately half as long as the
inversion procedure.

SUMMARY

The inversion procedure outlined above is believed to he
faster and easier to perform than other methods now in
common practice. Further inquiry should be made of the
applicability of this procedure to a floating decimal calcula-
tion; also to matrices involving complex numbers.2

For large-order matrices this procedure may be used to
process cards continuously from one machine to another,
keeping all machines in operation simultaneously. For
small-order matrices, the number of cards is insufficient to
keep all machines running. In this case, all cards would be
processed on one machine at a time. Several matrices could
be inverted at the same time.

It is possible to perform steps 1 and 6 on a single IBM
Type 519 Document Originating Machine with only one
control panel, if a control punch has been emitted onto the
cards at step 3. This modification would be useful for han-
dling low-order matrices.

If desired, it is also possible to handle a row check similar
to the column check. In this case, the check sum is defined

by:
S = -1 -—E Qi

i
The Appendix contains the program for the 604 and the
wiring diagram for the 521.
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APPENDIX

Norr oN PROGRAM SUPPRESSION: Programs are suppressed
without balance test through calculate selectors as follows:

Programs Calculate Selector
1-37 6T
38-43 2N
44-56 : 6N

On programs marked suppress PB, the wiring is for sup-
press on positive balance through calculate selector 6N.
Suppress without balance test is wired through 6T. Corre-
sponding wiring occurs for NB.
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DISCUSSION

Dr. Aroian: Could youtell us something about the round-
off error? You started with eight significant figures in a
40-by-40 matrix. What do you have left at the end?

Dr. Petrie: May I quote von Neumann and Goldstein ?
I believe they state if you start with a 19-by-19 matrix you
lose eight digits. That appears to be the worst case. People
who are inverting high-order matrices seem to have better
tuck. I do not know whether it is a matter of luck or some-
thing that is not yet known.

Dr. Brown: What happens when you get eleven digits?

You say the machine stops. Then what do you do?

Dr. Petrie: In this case, it would be necessary to perform
some scaling of the information; that is, divide one column
by a power of 10, or something of that type. However, it is
decidedly not a machine procedure.

Mr. Schiieser: Could you give me an estimate of the time
required to invert, say, a 30-by-30 matrix, using your
method?

Dr. Petrie: This method is quite new and has not been
fully tested. I wish I could give you specific figures of what
has been done. Theoretically, the 30-by-30 matrix would
involve approximately 900 cards which can be processed in
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any one machine in nine minutes. We must repeat that

process thirty times.

Professor Verzuh: Do you use just one 604 control panel

for this operation?
Dr. Petrie: Yes.

Professor Verzuh: With regard to checking, our experi-
ence indicates that it is well to include not only check rows
but check columns. When you do encounter an error you

have an indication of the spot that is in error.

My. Tillitt: Sometimes you might get a zero divisor. I

wonder if it would be worth while to have a 604

every time there is division to see if division is being used.

zero divisor.

111

panel. There is a check to see immediately if we do have a

Dr. Brinkley: You commented that the choice of which

of the four metric operations you have is determined by X
punching in the card. At what stage in the procedure are

those X punches imposed and how is that done?

Dr. Petrie: Originally the matrix is prepared with the
first column and the first row with significant X punches.
Each time in the reduction in passing through the 604, new

X punches are introduced in the row following the pivotal

row and into the column following the pivotal column. The

“look”  x punches at step 6 are then reproduced into the new set of

Dr. Petrie: This is programmed in this particular control  the following cycle.

cards, where they will serve as instructions to the 604 in
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THERE ARE several basic properties of matrices and
vectors which underlie all the common numerical methods
of finding eigenvectors and eigenvalues. It might be advis-
able to state these explicitly before examining any of the
numerical methods. '

The most fundamental property is that a vector remains
a vector under the operation of multiplication by a matrix.
If we consider an #n-dimensional vector as a one-column
matrix of order #, then by applying the definitions of matrix
multiplication we can show that the result of multiplying
an sth-order square matrix by an n-dimensional vector is
another n-dimensional vector. We may write this symboli-

cally as
(1)

(In this and all subsequent equations, capital letters repre-
sent square matrices, and small letters represent vectors.
The letter » will be reserved for eigenvectors, and the sym-
bol A will be used only for eigenvalues.)

Ay=z.

Secondly, this process of matrix multiplication is distrib-

utive. That is
A(y+z) = Ay + 4= . (2)

Thirdly, the process of matrix multiplication is associa-
tive. If 4 and B are two square matrices, then

A(By) = (4B)y . (3)
In particular, if % is a constant,
A(ky) = k(Ay) . %)

These first three properties hold for all matrices and all
vectors as long as the process of multiplication is definable.
Let us now define an eigenvector. If the resulting vector
2 of equation 1 is parallel to the initial vector y, then y is an
eigenvector of the matrix 4. Or symbolically, if

Ax = Iz, (5

where A is a constant, then if x is not of zero length, # is an
eigenvector, and A is its associated eigenvalue.

*The preparation of this paper was sponsored (in part) by the Office
of Air Research.

*
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From this definition, we can show that every matrix of
order » has precisely # eigenvalues. Let us rewrite equa-
tion 5 by transferring the Ax term on the right-hand side of
the equation to the left side. This gives

(A=AD)x=0.

Here 1 is the unit matrix, the matrix with 1’s on the main
diagonal and O’s everywhere else. In this form, it is easy to
see that the matrix equation can be written as a system of #
simultaneous equations in #» unknowns. (We consider the
components of # as unknown and A as a known parameter.)
Further, this system is homogeneous. Now a homogeneous
system of equations can have a non-zero solution if and
only if the determinant of the coefficients is zero. This con-
dition is
|4 —A|=0.

If we expand this determinant, we obtain a polynomial of
degree # in A,and the roots of this polynomial are the values
of A for which eigenvectors x can be found. Since a poly-
nomial of degree n has precisely # roots, it follows that
there are precisely # eigenvalues A of the matrix A4.

It can also be shown that associated with each eigenvalue
of a symmetric matrix is an eigenvector. This is more com-
plicated than the demonstration that there are n eigen-
values, because of the possibility of two or more eigenvalues
being equal. If two eigenvalues are equal, then it is not pos-
sible to specify the two eigenvectors uniquely, but only the
plane in which they lie. For any linear combination of the
two will also satisfy the definition of an eigenvector. Sup-
pose we have a case where A; = A; and have by some means
or other found two vectors x; and x, which satisfy the
eigenvector definition. Then we know that Ax; = A4y and
Axs Mots. Let us now take a linear combination of
1 and s,

2= 1%+ ca%2 .
Applying our matrix, we obtain
A(z) = A(c1x1 + cax2)
Clel + CgAxg
RV, SE21 + CalaXa .
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Since A\; = Mg, this reduces to
A(Z) = 1\1((71.171 —|— 6’2.1,'2)
= A2 .

Hence, 2 is just as good an eigenvector as &y or xa.

From our basic definition of an eigenvector, it is apparent
that only the direction of the vector is important. Its length
is not determined. Therefore, the length can be chosen in
the most convenient manner. This usually means either
choosing the length of the vector to be unity, or choosing
the largest component to be unity.

What we can say about the length is how the length
changes under the matrix multiplication. If we define |y| to
be the length of y and define A; as the absolutely largest
eigenvalue and Ay as the absolutely smallest eigenvalue,
then under multiplication by the matrix 4 we can show that

/\N§%§/\I , where z = Ay (6)

Another property of the set of eigenvectors of any ma-

trix is that, if there are » eigenvectors, they span the space

of the matrix—that is, they can be used as a coordinate sys-

tem to express any other vector of the same dimensionality.

If we let x; be the ith eigenvector, then any arbitrary vector

y can be written as a linear combination of the eigenvectors;
That is,

”
y= zcm . (7)

i=1

There is one last property of the eigenvectors. For a
symmetric matrix, these vectors are mutually orthogonal.
That is,

(i%7) (8)

Now that we have briefly surveyed the mathematical
theory of eigenvectors and eigenvalues, we can examine
some of the numerical methods for finding them, There are
three, namely: the power method, the method of the char-
acteristic polynomial, and the gradient method that we shall
now discuss.

x¢°x,=0.

The first of these, the power method, is perhaps the best
known method for finding eigenvectors. Mathematically, it
is based on these three facts:

N
(&) y= Ecixi .
i=1
(8) A(y+z) = Ay + A4z .
(C) Ax; = Mz
Suppose we choose any arbitrary vector y,. By statement
(A), this can be written as a linear combination of the eigen-

vectors of the matrix. If we multiply this vector by the
matrix .4, we get ancther vector y; as the result. Now by

113

statement (B), we see that multiplication of y, (which is a
linear combination of the eigenvectors) by the matrix A4 is
equivalent to taking the same linear combination of the
products of the eigenvectors by the matrix. By statement
(c), we see that each product of eigenvector and matrix is
equal to the product of the eigenvector and eigenvalue.
Putting this symbolically,

N
Vo = Ci¥y
i=1
N
Ay =y = cilz;
i=1
N
Ayo=v1 =) cihix; .
i=T

We now perform the operation again on the vector y;.
The resulting vector y» can, by the same arguments, be
shown to be equivalent to

N
zci Mg .
i1

After a large number of iterations, our iterated vector y,

can be written
N
Yo = zci A .
i=I

It is now necessary to show that, for sufficiently large val-
ues of #, y, approaches the absolutely largest eigenvector ;.
(The short phrase “largest eigenvector” will be used to
mean the eigenvector associated with the largest eigenvalue;
the phrase by itself has no meaning as the length of the
eigenvectors is arbitrary.) Let us divide both sides of the
equation by A7. This gives

N
Y _ oo (MY
AT C””’E"(M) e

i=II

Since As is the eigenvalue of greatest absolute value, the
fraction A;/A; lies between 41 and — 1. Hence, sufficiently
large powers. of the fraction approach zero arbitrarily
closely. Thus, for sufficiently high powers of %, y,/A? arbi-
trarily closely approaches the vector ¢zr;. And we do not
have to worry about the constants A? and cj, for we have
seen that an eigenvector is defined in terms of its direction
alone, and any multiplicative constant is admissible.

It is possible that the original trial vector was chosen in
such a manner that ¢; was zero. In this case, the power
method may converge to the second largest eigenvector
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rather than the largest. The probability of such an unfor-
tunate choice is small, but it has occurred in our experience
at the Institute for Numerical Analysis.

The two disadvantages of the power method are apparent
from this discussion. The first is the need for normalization.
We saw that the nth iterate of y became, for all practical
purposes, A7x;. Now if A is greater than 1, the length of v,
will become very large as # increases, thus eventually lead-
ing to an overflow. And if A; is less than 1, the length of y,
will become very small as # increases, thus eventually lead-
ing to a zero vector. It is necessary, then, to normalize the
length of the vector after every few iterations. For conven-
ience, we have generally normalized the largest component
to unity at each step of the iteration.

The second disadvantage is the possible slow speed of con-
vergence of this method. The fraction (\;/As)" approaches
zero as # increases, but for values of A;/A; near to 1, #» must
be very large in order to reduce the contributions of the
smaller eigenvectors to a preassigned amount.

The following table gives the smallest exponent # such
that the nth power of a given ratio » = Ay/A;r will be less
than a preassigned small number e. It will serve as a rough
guide to the number of iterations needed to change an arbi-
trary vector into an eigenvector of a given degree of purity
when some knowledge is available as to the relative sizes of
the two absolutely largest eigenvalues.

< 10—+ 10-5 10-8
0.40 11 13 21
0.50 14 7 27
0.60 19 23 37
0.70 26 33 52
0.80 42 52 83
0.90 88 110 175
095 181 226 361

From this table, it is apparent that the power method con-
verges very slowly if the ratio of the two absolutely greatest
eigenvalues is much greater than 0.50.

This slow rate of convergence makes the power method
impractical unless some method is available for accelerating
the convergence. Fortunately, such methods have been de-
vised. Let us consider the case of two close eigenvalues. By
one acceleration scheme! three successive iterates, A"y,
Artly, and A"t+2y are formed, choosing » sufficiently large
so that we are reasonably sure A"y is a linear combination
of only two eigenvectors. It should be noted that A"+!y and
Ar+2y should not be normalized in length. Now choose any
two vectors s and ¢ and form the scalar products

Q2 = §° Any g =1t Any
dog = § ° A"+1y Qog = t- An-l»-ly
azgy = 5+ A"*t2y ags =t A3y .

COMPUTATION

Then the two eigenvalues that we are seeking are the roots
of the determinantal equation

This can be demonstrated to be true as long as A"y is a
linear combination of only two eigenvectors. In case the
determinantal equation yields zero coefficients, a different
choice of s and ¢ will give a solution in nearly all cases.

This scheme can be easily generalized to cases where
more than two eigenvalues are close together. If we con-
sider the case of three close eigenvalues, we find that we
need four successive non-normalized iterates, A"y, 47 +1y,
Ar+2y, and A"+3y. We choose three arbitrary vectors s, ¢,
and u. We form the twelve scalar products

Q12 = s+ A™y a3 =t - A"y g = u » A"y

ags =5 - A"y agg =t Artly gy = u - Artly
Qgs = § An+2y ass =1+ An+2y A3e = U ° An+2y
Gae =5 A"F3y gy =1t : A"y a4 =u - A*3y

and solve the following determinantal equation for the three
close values of A:

1 Q12 13 O14

Q22 Q23 Q24
A2 ags Gz O34
A a4 a3 a4

If one is using the power method, this acceleration scheme
is only used when some close eigenvalues slow the rate of
convergence down below a practical level. However, the
closeness of the eigenvalues is not necessary for the use of
this scheme. In its most general form, this acceleration
method leads directly to the method of the characteristic
polynomial.

The method of the characteristic polynomial, briefly, con-
sists in setting up a polynomial of degree » whose roots are
the eigenvalues of the matrix. There are several ways of
setting up this polynomial. One follows the acceleration
scheme outlined above. Since we are looking for all » eigen-
values, we need n 4 1 successive non-normalized iterates
and #n arbitrary vectors. As before, we form the scalar
products

a2 =59y a3 = t'y . Qi1 =&y
022 =S5 Ay [12%] = t‘Ay cee Qo p4a =" Ay
Az =S5 A2y (33 = t'A2y evs A3p41 =2 A2y

Ap41,2 = S° A”y Ap41,8 = t‘A”y cen Quiindl = 8¢ A”y
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and the determinantal equation

1 12 a13 A1,n+1

A Q22 Qo3 G2,n+1

A2 ase ass a3,n41

. . . =0.
A Gpg12 Opga,3 Cpt1,n+1

The left-hand side of this equation is expanded by any prac-
tical method to give the characteristic polynomial.

A second way of finding the characteristic polynomial is
algebraically more straightforward. It is to write down the
condition (which we have done previously) that a non-zero
eigenvector exists, namely

[A — Al I =0.
This determinantal equation, when expanded by any prac-
tical method, again yields the characteristic polynomial.

Either of these two methods leads to the evaluation of a
high-order determinant. A method which does not demand
this is one which makes use of the theorem of Sylvester and
Cayley which states that a matrix satisfies its own charac-
teristic equation. If the characteristic equation is

n—1
O
Yt )

i=0

a.;)x‘:O N

then the matrix equation
n—1
za,;A‘ =0

i=0

Ar

is also true, as is the equation in any iterated vector
n—1
za,-Ai =

=0

Ay +

Making use of this last equation, we choose any vector
and form the n+1 successive iterates y, Ay, A%y, ..., A™y.
No normalization of length can be used in this sequence.
Then taking the jth component of each vector, we have a
set of # equations of the form

n—1

zai(Aw = —(dy)j .
i=0

This is a set of » linear equations—one for each component
of the vector—in # unknowns, the coefficients a,. It can be
solved by standard techniques to give the coefficients of the
characteristic polynomial.

Once the characteristic polynomial is found by any one
of these proposed methods, the eigenvalues, which are the
roots of the polynomial, are very easily found. A straight
solution by Newton’s method will produce the roots. The
eigenvectors are then calculated from the matrices 4 — /.
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The components of the ith eigenvector are the cofactors of
any row or any column of the determinant |4 — A/

This method of the characteristic polynomial has one
great disadvantage. It demands that a large number of
digits be carried throughout the computation. In setting up
the n+1 non-normalized vectors, a large number of digits
must be carried to insure some significance in the last
vector. And the coefficients of the characteristic polynomial
must be carried to a large number of digits in order to in-
sure significance in all coefficients and hence in all the roots.

We have seen that both the power method and the
method of the characteristic polynomial have certain com-
putational difficulties. A method which presents fewer nu-
merical difficulties is a gradient method which is applicable,
however, only to symmetric, or more properly to Hermitian,
matrices.?

A gradient approach to a problem is an approach that
leads to maxima or minima. We look for some function that
has a maximum or a minimum at an eigenvector. Such a
function is
x - Ax
xx

p(r) =

When x is the largest eigenvector, p(x) is a maximum and
is the algebraically largest eigenvalue. When « is the small-
est eigenvector, u(x) is a minimum and is the algebraically
smallest eigenvalue. When x is any other eigenvector, u(x)
is a critical value as well as an eigenvalue, and the deriva-
tive of u(x) is zero at that point.

If we choose an arbitrary vector y, we can compute u(y)
and its derivative, and we shall most probably find that the
derivative is not zero, Thus, we know that y is not an eigen-
vector and u(y) is not an eigenvalue. However, we can
compute the gradient of w(y), that is, the direction of
change of y which produces the largest change in u(y). The
direction of the gradient is the direction in which u(y)
locally increases most rapidly, or it is the direction of steep-
est ascent. It can be shown that the gradient of u(y) except
for a scale factor, is given by

Ey) =4y —p(»y .
Knowing the direction of the gradient, we can then con-
struct a new vector y which more closely approximates an
eigenvector. If we change y in the direction of steepest
ascent,
M= y0+ “5(3’) ’

y; tends to approximate the algebraically largest eigen-
vector. If we change y in the direction of steepest descent,

Y1 = Yo — %(3),
y; tends to approximate the algebraically smallest eigen-
vector. The size of the constant « is important. In order to

2This method was developed by Dr. M. R. Hestenes and Dr. W.
Karush2 of the Institute for Numerical Analysis.
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insure convergence of u(y) to an eigenvalue and y itself
to an eigenvector, « must be chosen less than 2/M, where
M = A — A, (Arabic subscripts will denote the algebraic
ordering of the eigenvalues; A; is the algebraically largest
and A, is the algebraically smallest eigenvalue.) It can
further be demonstrated that if & is less than 1/M, ¢ con-
verges in direction to the second eigenvector (x2 or #,_;
according to a positive or negative choice of ).

- Although this gradient method seems quite different from
the power method, the two are very closely related. In the
power method, the relation between a new approximation
and an old one is

Yrg1 = Ay, .
In the gradient method, the relation is

Yre1 = Yr + @ [Ayr — p(y)3:] -
If we choose @ as [1/u(¥,)], this becomes

Thus, the gradient method with this choice of « is the
same as the power method with a normalizing factor of
[1/m(y,)]. This equivalence means that the amount of work
necessary to produce an eigenvector by either of these two
methods is roughly comparable.

Since the gradient method is about equivalent to the
power method, it also demands an acceleration scheme to
insure convergence for close pairs of eigenvalues. We shall
first show that the gradient method tends to remove the
lower eigenvectors early in the iteration. Let us assume that
we have chosen a to be

B
A — A

where 0 < < B8 < 1. Our iteration scheme then becomes
Yrgr = Vr + @€(yr)
yr + alAy, — p(3r) y]

% (% yr+ Ay, — I"(yr)yr>

[ {1 —n() } 1+ 4l

After several iterations, n(y,) very closely approaches A,
and can be approximately replaced by A;. Hence,

Vr41 = & I:{é - )\1}1 + A]y,- .

If we now replace 1/a by (A;—A,) /B, we find that

yen=a| (B n) 1+ 4l

It
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Since we have chosen « so that 8 is close to 1, we can
approximately replace 8 by 1, getting

Yr1 =& [A = MI] yr .
This is the formula for the power method using the matrix
A — A, and the normalizing factor a. Let »; be the eigen-

values of the matrix A — A,[. Then the relation between
the eigenvalues of 4 and those of 4 — A, [ is

vi =N — A .

Thus, we have effectively transformed our scale so as to
make the algebraically smallest eigenvalue about zero. The
power method then kills off the smallest eigenvector very
rapidly, since the ratio v,/»; will be very small. It should be
noted that, while the gradient method effectively uses the
matrix 4 — kI, the value of k depending on the choice of
@, the results that it produces are the eigenvectors and
eigenvalues of the matrix 4.

After some steps of this nature, the lower eigenvectors
will be removed from the trial vector. We apply our accele-
ration process by increasing «. Suppose we were to choose
a = (1/A;—AXs). The gradient process would be equivalent
to the power method with the matrix A4 — Asl, and would
very quickly remove the fifth eigenvector x5. In general, we
would start with an « close to our original limit 1/M, and
increase « as the vector converged to an eigenvector. Con-
stancy of direction of the gradient ¢(y) would be our cri-
terion for increasing a.

This acceleration method is not normally applied by in-
creasing « monotonically; rather, one intersperses a larger
value of @ among several smaller ones. The reason for this
is that large values of « tend to magnify the contribution
from any small eigenvector that may be present, and
round-off error always introduces small portions of all
eigenvectors. Hence, one uses several small values of a to
keep the smaller eigenvectors out of the trial vector and
then uses a large value of « to remove a portion of the larger
eigenvectors.

There is a fairly simple geometrical picture that may
make this acceleration scheme a little clearer. The function
u#(¥:) has only one maximum and one minimum. The rest
of the critical points are saddlepoints. We now start our
procedure by choosing an arbitrary vector y, computing the
function p(y) and the direction of steepest ascent &(y).
We want to change y by moving in the direction of ¢(y),
but we dare not move too far or we may find ourselves over
a saddle and down the slope on the other side. So we take
a small step in the direction of ¢(y) (we choose a small
value of @), we stop and re-evaluate the direction of steepest
ascent. When we get to a point where the direction of the
gradient changes very little from step to step, we know we
are nearly on a ridge and can follow the ridge a long dis-
tance toward the peak. So we take a long step forward (we
choose a large value of @). However, our direction was not
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precisely correct. Although we are much closer to the peak,
we are now down on the side of the ridge and must slowly
make our way to the ridge again by small steps and by con-
stantly recomputing the direction of steepest ascent. Thus,
step by step, we make our way to the peak.

So far, we have talked about finding the largest eigen-
value by the power method and the gradient method. To
find the other eigenvalues and eigenvectors is not difficult
if the matrix A is symmetric. We make use of the mutual
orthogonality of the eigenvectors, and seek by either
method the largest eigenvector which is orthogonal to the
one we know. It is very easy to make one vector orthogonal
to another. If x is our known eigenvector, y is any arbitrary
vector, and Y is that component of y which is orthogonal to
%, then ¥ can be found from the equation

— Y- x
V=Yt

In either the power method or the gradient method, the
second eigenvector can be found by choosing any trial
vector 4y, and keeping it orthogonal to the first eigenvector
during the computing process. If y is made orthogonal to x,
it should theoretically stay orthogonal to it. However,
round-off error will continuously bring in portions of x,
and the numerical operations will magnify these small por-
tions. Hence, every once in a while the iterated vector must
be re-orthogonalized to keep out the largest eigenvector. It
will then converge to the second eigenvector.

We have spent a great deal of time talking about the-
oretical ways of finding eigenvectors and eigenvalues. At
the Institute for Numerical Analysis, we have tried all
three of these methods on our IBM Card-Programmed
Electronic Calculator and have some practical experience
that may be of value in assessing the relative merits of these
three methods.

We have solved quite a few eigenvector problems by the
power method. Our operating procedure has been as fol-
lows. We set up a control deck of four parts. Part one loads
the 941 storage unit with the components of the trial vector.
Part two of the control deck orthogonalizes the trial vector
to all known eigenvectors. Part three normalizes the length
of the trial vector to unity. Part four multiplies the trial
vector by the matrix to get the next approximation.

The loading deck consists of spread-read-in cards which
carry the components of the trial vector and instruction
cards which transfer these components to the 941 storage
unit. This section of the control deck is used only at the
start of the run, if the matrix is of low order. It must be
used at each step if the order of the matrix is large. For it
is apparent that no component of the old trial vector can
be thrown away until all but one component of the new trial
vector has been computed. As the components of the old
trial vector are used in computing the last component of
the new trial vector, they can be thrown away. So, if the
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matrix is of high enough order that two trial vectors cannot
be simultaneously retained in the storage system of the
machine, then the components of the new trial vector must
be punched out and read back into the storage system at
the beginning of the next iteration.

The orthogonalization deck is not needed when solving
for the largest eigenvector. It is needed when solving for
the smaller eigenvectors, and its size increases as the num-
ber of known eigenvectors increases. When finding the sec-
ond eigenvector, the trial vector must be orthogonal to one
known vector; when finding the third eigenvector, the trial
vector must be orthogonal to two known vectors; when
finding the nth eigenvector, there are n — 1 known eigen-
vectors against which to orthogonalize. Notice that it is
unnecessary to solve by iteration for the nth eigenvector.
The orthogonality conditions are sufficient to define its di-
rection uniquely.

The orthogonalization deck first computes the scalar
product of the trial vector, which is stored in the 941, and
the known eigenvector, which is punched into the instruc-
tion cards. The scalar product is accumulated in one of the
counters of the IBM Type 417 Accounting Machine. This
is then divided by the product x - x, which is a constant
and is punched on one of the instruction cards. The quotient
replaces # - y in the counter of the 417. This new constant
is then used as a multiplier of the components of the eigen-
vector . As soon as the component, which is carried on one
of the instruction cards, is multiplied by this constant, it is
subtracted from the corresponding component of y, which
is in the 941, and the difference replaces the old y compo-
nent in the 941. This operation requires only one counter
in the 417, and hence causes no strain on tight storage
space.

It is unnecessary to orthogonalize at every step. We gen-
erally print out the product y - x. As long as this product
is less than a hundred in units of the last place carried, we
feel that no great lack of orthogonality has occurred be-
tween successive orthogonalizations. If the product stays as
small as three or four units in the last place, then we are
orthogonalizing too frequently.

The normalization deck is the first deck that is always
needed. This deck sums the squares of the components of y
in one of the counters of the 417. The square root of the
sum is taken to give the length of y, and this quantity re-
places the sum in the 417 counter. This length is then di-
vided into the components of vy, and the quotients replace
the old components of y in the 941 storage units. This oper-
ation, like the orthogonalization, requires only one addi-
tional storage space, a 417 counter, and does not generally
add to the storage problem. We print out the length of the
vector as a check on the convergence of the eigenvector.

The multiplication deck multiplies the elements of the
matrix by the components of the trial vector. The elements
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are punched on instruction cards, while the components of
the vector are stored in the 941. The components of the
new vector are accumulated in the counters of the 417. If
the matrix is of sufficiently low order, the new elements are
transferred to blank spaces in the 941 until all elements are
computed and available in storage. They are then all trans-
ferred to the spaces of the 941 occupied by the correspond-
ing elements of the old vector. If the matrix is not small
enough, the elements of the new vector are punched out of
the 417 counters as soon as these counters are full.

We have used this method successfully in some cases of
non-symmetric matrices with well separated eigenvalues,
and used it unsuccessfully in one case of non-symmetric
matrices with close sets of eigenvalues. It is a method with
some advantages, and one that should be considered when
looking for a way to solve an eigenvector problem.

The method of the characteristic polynomial is one that
has proved the least successful at the Institute for Numeri-
cal Analysis. We have tried it only once, and that was as a
training program for a class of students. We tried to solve
a fourth-order matrix by this method, and ended up with
only four significant figures. We set up our characteristic
polynomial using the Sylvester and Cayley approach. The
coefficients of the polynomial dropped off rapidly in size.
We solved for the roots of this polynomial by Newton’s
method. The accuracy of the roots was limited by the accu-
racy of the coefficients of the polynomial. And we computed
the components of the eigenvectors by taking minors of the
determinant |4 — A;|. From this one sample, we feel that
this approach is not desirable in the case of one or two
matrices, as there must be a great deal of attention given to
the shifting to preserve the significance of the coefficients of
the polynomial. We feel that this may have better uses as a
way of solving a large number of matrices on a machine
capable of handling longer numbers.

We have, of course, tested the gradient method exten-
sively. Our procedure has been to set up a control deck of
five parts. Part one is the loading deck. Part two is the
orthogonalizing deck. Part three is the deck that computes
the function u(y). Part four computes the gradient ().
Part five computes the next approximation y, .

The loading deck and the orthogonalization decks are ex-
actly analogous to those used in the power method. The first
new deck is the deck which computes p(y,). We store the
vector vy, in one half of the available storage. This deck
multiplies the vector by the elements of the matrix, which
are punched on the instruction cards. As soon as a compo-
nent of the vector Ay, is completed, it is transferred to the
free half of the memory. Now the two scalar products v, * ¥,
and Ay, - y, are computed and stored in two counters of the
417. The function u(y,) is then computed and replaces one
of the now unnecessary scalar products in the 417. This
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value of p is then printed out to enable us to check on the
convergence of the eigenvalue.

The fourth deck computes £(y,). The components of ¥,
are multiplied by the value of u(y,) and subtracted from
the components of 4y,. The difference is the component of
£(y,) and it replaces the corresponding component of Ay,
in the memory.

The last deck computes the new approximation y,4i. *
Both vectors v, and £(y,) are available in the memory. The
constant « is read in from an instruction card, and the com-
ponent of the new vector is computed by adding « times the
component of £(y,) to the component of y,. The new com-
ponent replaces the corresponding component of y, in the
memory. The components of ¢(y,) and those of y,,; are
printed out, for the components of ¢(y,) go to zero as y,4+1
approaches an eigenvector.

In practice, we have found all six eigenvalues and eigen-
vectors of a sixth-order symmetric matrix in six hours. The
accuracy of the vectors was better than one part in ten
million in the length, and the accuracy of the eigenvalues
was about the same. For matrices of the order of 5 to 8, we
figure that an hour per eigenvector is a reasonable time
estimate. We have also solved matrices of higher order.?

The choice of a particular computing method depends a
great deal on the problem at hand and the equipment avail-
able. It is our opinion that the gradient method is preferable
to the power method in finding the eigenvectors of a few
matrices. Its advantages are mainly its flexibility. It needs
no normalization, its acceleration process is very easy to
apply, its gradient converges to give a two-digit approxima-
tion to the next eigenvector, it will find either the highest
or the lowest eigenvector—these are all advantages. How-
ever, the method needs the watchful care of an operator,
and may not be well adapted to finding all the eigenvectors
of a large number of matrices until fully automatic com-
puters (ones which store the programming inside the in-
ternal memory) are available. And if the matrices are not
symmetric, then the choice has to be between the power
method and the method of the characteristic polynomial.

The eigenvector problem is by no means solved from the
point of view of a computer. While the gradient method
offers a method that will give an efficient solution to the
eigenvector problem for symmetric matrices, no matter how
closely the roots are spaced, there is no method which will
always efficiently find the eigenvectors of a non-symmetric
matrix. Once a reasonable method is devised to handle the
case of the non-symmetric matrix with close eigenvalues,
then we can say that this method, together with the gradient
method, will allow us to solve the eigenvector problem for
all practical cases.

bOne of order 17 was solved by Mr. Robert Hayes, one of our grad-
uate fellows, who has been very active in testing the numerical
process. He is confident that he can solve a matrix of order 24 by
this method.
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DISCUSSION

Dy. Welmers: Do you have any impressions as to whether
this method could be extended to a non-symmetrical matrix
or whether you have to start off on an entirely different
method for those?

Dr. Yowell: Dr. Hestenes has been trying to answer that
question now for about a year and a half.

Professor Verzauh: 1 wonder whether some of the people
in the aircraft industry have any practical comments on
non-symmetrical matrices.

Dr. Yowell: I can make a comment for John Lowe in his
absence, because I have discussed the problem with him
many times.

He expands the non-symmetric matrix, finds the charac-
teristic polynomial and solves for the root by Newton’s
method. I believe this is a widely-used method.
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Mr. Bell: We have used the method that Dr. Yowell has
just described. We have used another one that I would like
to call a guessing-game, in which you take the matrix,
assume a value for the eigenvalue, place it in all elements
except 1, rearrange the matrix so that the element which
does not have an eigenvalue is in the upper corner, reduce
the matrix to a triangular one so that the determinant is
now equal to the product of the main diagonals, and you
adjust this one element so that the problem will be zero.
You have a product of terms, none of which is equal to
zero. You want it to be equal to zero; so, by adjusting the
last term, you have a value. If it agrees with the initial
guess, you have the eigenvalue. This supposes that you
have some knowledge of where the eigenvalue is. It has the
advantage in the aircraft field that very often they do have
quite good knowledge of where the root lies, and can go
after a specific value without having to grind through a
number, working from either the low or the high end.

Since we do a great deal of work of this type, working
on the average with eighth-order complex matrices, we
have an average of about three guesses per eigenvalue. It
requires something of the order of about an hour—not of
machine time but of elapsed time—to get out one trial; so,
about three trials will give an eigenvalue, with the assump-
tion that you know where you are looking.



An Application of the IBM CM&Z-ngMMWoZ Electronzc
Calculator to the Analysis of Asrplane
Manenvering Horizontal Tail Loads

LOGAN T.

A METHOD is shown by means of which the design
maneuvering horizontal tail loads of an airplane can be cal-
culated rapidly on the IBM Card-Programmed Electronic
Calculator. This method is based upon use of the Laplace
transform to derive a solution of the differential equations
which is suited to machine computation techniques.

The methods shown in references 1 and 2 were devised
primarily for manual computation and are very cumber-
some to apply directly to machine computation procedures.
Also, these methods are limited to the use of a trapezoidal
time history of the elevator deflection, while the method
shown in this paper is good for any shape of the elevator
deflection time history. This means that experimental flight
test data can be checked and correlated directly with the
machine calculation method shown here.

Two possible cases are obtained for the solution of the
differential equations. Case I represents a stable airplane
configuration, while Case II represents an airplane config-
uration having a heavily-damped short-period oscillation.
Whether Case I or Case II (described mathematically
under the section headed Theory) is required to obtain the
solution of the differential equations depends largely upon
the fore and aft location of the center of gravity of the air-
plane for the loading condition being analyzed. The numeri-
cal example shown in this paper is a Case I solution. It will
be seen that the Case II solution can be obtained in a
manner very similar to that shown in this paper for Case I,
if the proper programming revisions are incorporated to
take care of the differences in the equations for the two
cases.

The problem upon which this paper is based is a typical
airplane design analysis required to establish the magnitude
of the dynamic loads which will result when a given load
factor is imposed upon the airplane. It should be apparent
that other dynamic loads analyses such as landing loads,
gust loads (near critical flutter speeds), aileron loads, and

WATERMAN
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*
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vertical tail loads can be calculated in a manner very similar
to the methods shown in this paper.

The estimated CPC operating time for a production run
for 35 time intervals based upon the method shown in this
paper is about one hour per loading condition. The same
analysis setup parallel to the manual computation method

shown in reference 1 takes three hours per loading condi-

tion. In addition, more re-runs are required for this latter
method, because more errors in card handling occur in this
more complicated procedure. Hence, the method shown in
this paper results in better than a 70 per cent saving in CPC
running time.

Before discussing the actual theory involved, it might be
well to define the symbols which will be used. The nomen-
clature is given on pages 121 and 122.

THEORY

The equations of motion used are taken directly from
reference 1. The discussions behind the assumptions leading
to the neglect of certain stability derivatives in order to
obtain the simplified equations shown below are beyond the
scope of this paper. The reader is referred to references 1
and 2 for elaboration on this phase of the problem.

The equations of motion are

w—Zyw— Ugqg =0, (1)
Mpyw+ Mypw-+Meqg—G= — Mg de (2)
other required parameters are
A, =w — qu B (3)
w
Ay = m ) (4‘)
. w
Ay = —(J_O ) (5)

(Continued on page 123)
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N

WX N owm

10.
11.
12.

13.

14.

15.
16.
18.
24.

26.
27.

28.
33.

36.
41.

42,

43.

acy
do
p
Sw
U,

Constant
M

dCy
da

C=MAC

Constant
dCy
dée

Constant
t

€os ot
sin ot

at

2

at
8—5
Constant
Kr

An

An

I

NOMENCLATURE

Slope of lift curve of the wing (per radian)

= mass density of the air
Area of wing (sq. ft.)

= Linear velocity of center of gravity along the x-axis
( Positive when in plus x-direction) (ft./sec.)

= 2.00
= Mass of airplane (slugs)

i

= Slope of the moment coefficient curve for the whole airplane for
a given weight and power configuration (per radian)

= Mean aerodynamic chord (ft.)

= Moment of inertia about the y-axis which is through the center
of gravity and perpendicular to the plane of symmetry (X-Z2)
(slug-ft.2)

= Slope of lift curve of the horizontal tail (per radian)

= Area of the tail (sq. ft.)
(dynamic pressure) s
(dynamic pressure) sree stream

= Tail efficiency =

= Change in angle of downwash with respect to change in angle of
attack of the wing

Iy
Mlt2

= 125

= Change in the moment coefficient for the whole airplane with
respect to a change in elevator deflection (per radian)

= 573

= Time (sec.)
=10
_ A _ Required load factor
=274
A,

=335= Calculated maximum load factor on first run of 1165
: deck
= Distance, parallel to the x-axis, from airplane center of gravity
to the aerodynamic center of the tail (ft.)

(Continued on next page)

*The number symbols are shown on the listing to identify the calculated data obtained from the CPC.
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501.

502.

503.

504.

505.
506.
507.
508.

512.

542.

543.
548.
552.
562.
579.
580.

590.
591.

592.

593.
594.
595.

596.

597.

598.

599.

601.
602.
603.
604.
605.

NOMENCLATURE (CONTINUED)

1 9Z
Zu = Mow
1 oM
Mo =1, 0w
1 oM
Mé =1, 0w
1 oM
Moo T
M de
a/2
b
C1
/ a\? )
® =YVb— 2) , (real for Case IT)
321”2 = Linear acceleration at the center of gravity along the z-axis (g’s)
O = Angle of attack of the wing (radians)
q = Angular pitching velocity of the airplane (rad./sec.)
&
q
o = Angle of attack of the tail (radians)
Al = Incremental maneuvering horizontal tail load
(positive when upward) (lbs.)
(1 — de/da)
It
UoVy
l;(de/da)
Uo
da,/dde
m
n
Cy
m—n

A_t
2
Constant = 1
32.2
emt
ent
de(t) = Elevator deflection (radians)
w = Linear velocity of center of gravity along the z-axis (ft./sec.)
w
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where
' dCr/da) p Su U
Zo= - (SRR (6)
dCy/d Sw U C
A i %)
M, = — (dCL/da)thK.S]'l}q (de/da) )
1.25 (dCy/d S, U
My = — ( Lz/Kajsz :+Uoy 9
p)
M, = (dCM/db‘;)I: SwUZC (10)
Alt = KT [+ 13 (11)
KT = (dCL/da)t%p U% St"l (12)

_ _ _(!i ltq lt (dc/da) dw
%y = (1 da) %y + UO\/_"; + UO
+ (day/dse) Se .

(13)
The initial conditions are

w:z’v:O

att =0, .
%q =q =0.

The Laplace transforms of equations 1 and 2 subject to
these initial conditions are

sM(s) = Zu(s) — Uoo(s) =0, (14)

MpX(s) + My sa(s) + My d(s) — sé(s)
= — M8e Lée. (15)

Equations 14 and 15 are solved for A(s) and ¢(s) and the
following substitutions made ¢

a=M;+ Zyp+ Uy M, (16)
b=MyZy— Uo M, (17)
C1 = U0M6e (18)

m=54V(5) - (19)
n=%_J@YT?. (20)

Hence, the Laplace transforms of the coordinates are

Ms) = mfl(s oy L8 (21)

Cy (s — Zw)
o(s) = To (s —m) (s — 1) Lde . (22)
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Using partial fractions or the Bromwich integral the in-
verse transforms can be shown to be:

2
Case I, (%) >0
. Cl mt __ ,nt] k
W= [e em] * 8e (23)
— C1 — mt
q_Uo(m——n) [(m — Zy) e
— (n— Zyp) e™] * 8e. (24)

By the theorem of convolution, equations 23 and 24 can be
written as follows:

t t
w = Cyem™ 8¢ (1) de — Cye™ de (1) d
(m — n) enr (m — n) ent
) 0
t
_Ci(m = Zyp) e™ de (7)
1= Uy (m — n) A emT dr

¢
Ci(n—Zy) Se (7)
~ Tolm = n)[ = dr. (26)

Equations 25 and 26 are evaluated numerically for analyses
that require a Case I solution. The additional parameters
are calculated by

Ay = Zpw (27)

w=A.+ Usq (28)

§=Myw+ Mydo + Myq-+ Ms, de (29)
w

@ = 7 (30)

LW

v = 7 (31)

Where complex roots of the quadratic are obtained, the
following substitutions are made:

o="\Np— (%)2 (32)
"= % — o (34)
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The transforms of the coordinates shown by equations 21
and 22 become

G

A(s) = Le (35)
_a_ _a .
<s 3 m) (s 2 —+ m)
$(s) = 51 (s = Ze) v Loe.  (36)
Uo(& —z - 10))(5'—?-'—1(0)
As shown under Case I, the inverse transforms are:
Case 11, b> (—)
LT 2
’ at
w =2 Ginut * e (37)
w
a at
.Cl (" - Zw)ez
=N Gnet*se
1= Tow s
it
2
-+ Cie cos ot * 8¢ . (38)
Us

-Again, by the theorem of convolution, equations 37 and 38
can be written as follows:

at ¢
w = Gie sin w,/cos or 8e(r)dr
@ 0
at t
—_ Gie? cos wt/Sinwrse(T)dT
@ 0
at
3, A
1€” . .
= p— ¢ sin ot 8e(7)d
q [ UO SN o Ugw COS w ] i T (‘r) T
at
C] g‘ _ er e? _tz,z_t t
2 Cle
-+ Uow + Us Coswt] cos wr de(r)dr.
0

(40)

(39)

Equations 39 and 40 are evaluated numerically for analyses
that require a Case II solution. The additional parameters
are given by equations 27 through 31, inclusive.

COMPUTATION

The integrals shown in the equations under Case I and
Case II are evaluated numerically by multiplying At by the
average ordinate (integrand). The scheme used is shown
as follows:

Let I; = value of integral at any station,
A; = product of the integrand and At at any station.

Written explicitly, the first three values of the integral are

A A 3 A
11=Ao+—0‘-5——1=§z40+—2—1

A+ A4 3 A
Iy = I1+—L2—‘£=§A0+A1+72‘

A A 3 A
Iy = Iz+——2;f P=sdot At At S0

By inspection, the equation for the integral at the sth sta-
tion is

Ii:gAO+A1+A2+...+A¢_1+%. (41)

Of course, almost any desired refinement can be obtained
by the use of more elaborate integration schemes. However,
the accuracy required in the analysis shown in this paper is
satisfactorily achieved by means of equation 41.

DiscussioNn oF REsurrs

No attempt was made in the numerical calculation to ob-
tain extremely refined results. Although better answers
could be obtained easily by using more elaborate numerical
integration methods, it is considered that the results shown
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are well within the practical limitations of the problem.
Two typical calculated parameters are shown plotted in
Figures 1 and 2. In general, better agreement was obtained
for the other parameters not shown. Figure 1 shows a plot
of the time history of the angular pitching acceleration of
the airplane. Figure 2 shows a plot of the time history of
the limit incremental tail load for the airplane.

It is noted that the time interval used in the analysis
shown in this paper is exactly the same as that used in ref-
erence 1. If a direct numerical solution of the differential
equations had been attempted, a much smaller time interval
would have been required. It is estimated that this would
lead to more complicated programming which would exceed
the storage capacity of the machine as well as to require
more CPC running time for each condition analyzed.

ProCEDURE ¥OR CALCULATING MANEUVERING
HorizonTar Tair Loaps—Cask I

The calculations are accomplished by the proper sequenc-
ing of several decks.? These decks are interrelated—some
storing data and others punching data for the decks that
follow. The deck numbers are listed below in the proper
order to complete one condition for one set of factual data.

The listing shown in Table I is a complete set of factual
data cards for one weight and center of gravity condition.
The deck from which this listing was made is called a basic
factual data deck. It is preserved for the purpose of printing
listings such as the one shown in Table I into which factual

aA sample listing of all decks used in the analysis is not shown.
Those omitted are considered to be elementary calculations which
the reader can find in several sources of literature on the subject.
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data are directly written. Also, it is used to reproduce fac-
tual data decks (channel A blank), into which the copied
factual data are key punched.

Table II is explained as follows:

Deck 1154 calculates ASe/At, 8e, and At and punches these
values in table look-up cards for use in the 1124 deck.
Pull out old factual data on column 46 and sort in new

factual data on sequence numbers in columns 45, 44, and
43,

Deck 1124 calculates 8e time history and punches the values
with all other necessary information in cards for use in
the 1165 deck. Change factual data cards and table
look-up cards by hand. It is noted that card number 3
will have the specified load factor for the first calculation
(ie., card 3 and card 2 will have the same channel A
entry). After the first run of the 1165 deck, the maximum
load factor obtained will be key punched into channel A
of card number 3 for the final calculation.

Deck 1126 calculates Al; equation coefficients and punches
these values along with all other necessary information in
cards for the 1165 deck. Pull old factual data out on col-
umn 46 and sort in new factual data on columns 3-2.

In Table III there is only one deck used:

Deck 1161 calculates the stability derivatives and the inte-
gral coefficients and stores this data for use in the 1162,
1163, and 1165 decks. Pull out old factual data on column
46 and sort in new data on columns 3-2.

Finally, Table IV makes use of the following decks:

Deck 1162 calculates ¢™ and punches these values—along
with all other necessary information such as program-
ming, dectmal locations, identification, and symbols—in
cards for use in the 1165 deck. No sorting is necessary.

Deck 1163 calculates ¢ and punches these values, along
with all other necessary information, in cards for use in
the 1165 deck. No sorting is necessary.

Deck 1165 calculates time history for An, oy, dy, g, g, and
Al;. Pull old factual data out on column 46 and sort in
new factual data on columns 3-2, 42-41. For the first trial,
a maximum lJoad factor will be obtained at a specified
time which is not necessarily correct. Enter this load
factor in card number 3 of deck 1124 and repeat decks
1124, 1161, and 1165. This second run of deck 1165 will
give the correct values for all the parameters obtained.

Drscriprion oF CPC Contror, PANELS

The same control panels were used throughout the
analysis shown in this paper. However, it is recommended
that special panels similar to those shown in reference 6

(Continued on page 129)
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be wired to calculate and punch trigonometric functions
and e-functions.

The control panel for the 604 electronic calculating unit
is the same as that shown in reference 7.

The control panel for the 521 punch unit is wired to
punch either table look-up or programmed cards through
the punch selectors. Programmed cards are punched out of
the normal side of the selectors, and table look-up cards are
punched out of the transferred points. The punch selectors
are picked up by means of the DI-impulse on the control
panel of the IBM Type 417 Accounting Machine wired
through a column split on the 521 panel to pick up pilot
selectors which in turn pick up the punch selectors with a
card cycles impulse through the transferred points. The
punching is done out of three 417 counters into table
look-up cards and four 417 counters into programmed
cards. Both table look-up and programmed cards received
two additional ten-place numbers from the 604 counter and
general storage.

The 417 control panel is wired to utilize all the features
available on the 604 control panel. In addition, a two-posi-
tion shift to the right into channel A before calculation is
provided; also, a two-position shift to the left into channel B
before calculation is provided.

A table look-up feature is wired into the control panel
whereby direct linear interpolation for any value of # can
be obtained from table cards containing Ay/Ax, v, and Ax.

The 417 is wired to detail print, controlled by a setup
change switch. This can also be controlled by an X-punch.

A negative balance test to “machine stop” is provided
through a 604 negative balance selector. Also, a four condi-
tion negative balance test using two of the 417 counters
simultaneously is provided. This test is used to select calcu-
lations. These features were not used for the calculations
shown in this paper.

Selection is provided for net-balance or non-net balance
operation for individual cards. This is controlled by an
X-punch. The non-net balance operation is used for all cal-
culations and punching, except table look-up and the con-
version of a number to its absolute value.

All storage units are cleared by a Y-punch which also
causes an asterisk to list. Counters 1, 2, and 3 are cleared by
an X-punch. Also counters 4, 5, 6, and 7 are cleared by a
different X-punch. All counters can be cleared on any card
with these two X-punches.
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DISCUSSION

My. Ferber: We have been doing weight and balance
reports for many years on IBM equipment, but we have not
felt that it was a job for the CPC. We run the finished
product on the accounting machine, and from this finished
product we have the start of the job for the next time by
the weight group, making the changes on one copy—usually
the master copy, not the carbon copy—in colored crayon. A
key-punch operator will cut new cards, take the cards to a
604, multiply them in one pass, insert them in a collator,
and then run the report with all the totals. We actually run
many reports from these cards by sorting the cards into
different sequences and running many different types of
reports.

I think the development of general-purpose control
panels has now reached a very high level on.the 604. 1
believe that there is now much room for the development of
general-purpose panels on the 417 and even the 521, and I
would like to hear some comments, because one thing I find
that is very important is the ability to emit a selected value
through a co-selector.

My. Waterman: In regard to the weight and balance cal-
culations, we have never had a very efficient method prior
to this. We did this same job on a 602-A and accounting
machines, and it took us 28 hours. We consider this to be
a better way than the manual method, but we do it in two
hours on the CPC, because we have another advantage
when we use the CPC: We get a speed of 150 cards per
minute straight through, and on the 604 we would get only
100 cards per minute. Besides, we have no need for repro-
ducing cards or changing anything in the cards except those
changes which are made by the weights section in between
the monthly reports, or weekly reports, or whatever we
happen to run.



Fifth-Order Aberration in an Optical System”

RUTH K. ANDERSON

National Bureau of Standards

THE IBM Card-Programmed Electronic Calculator has
helped tremendously in the field of optical ray tracing. Until
recently, the lens designer resorted to less accurate experi-
mental methods rather than struggle with laborious hand
calculations.

Assume an optical system consisting of a series of spheri-
cal surfaces of varying curvature whose centers lie in a
straight line called the optical axis. Number the surfaces
from left to right using the subscript £ to denote an arbi-
trary surface. If there are F surfaces, # may be an integer
from 1 to F, inclusive. Let ¢, be the curvature of an arbi-
trary surface; the medium to the right of the kth surface is
called the kth medium, and the data associated with it will
have the subscript k. Thus, the index of refraction of the
medium to the right of the kth surface is N;. The distance
between the kth and k-}1th surface, measured along the
optical axis, is given by d. The quantities ¢, d and N are
the constants of the optical system. When they are known,
any arbitrary ray may be traced through the system.
In addition, one usually calculates the number v;, where
ve = (Nyg—1/Ny).

First-order data are obtained by tracing two paraxial
rays through the optical system. These are the marginal
and principal rays. (The subscript pr is associated with the
principal ray.) Two numbers are necessary to characterize
a paraxial ray; u is associated with the medium and repre-
sents the slope of the ray, and y is associated with the sur-
face and represents the height of the ray above the optical
axis. Usually g (#0)pr, y1 and (y1), are given, and ug,
(%r)pr, yr and (yr)pr are found by alternate applications of
the refraction and transfer equations:

Refraction %z = ¢ (1—w) yi +
Transfer yry1 = Y — diuz.

Data for third and fifth orders are more complicated to
compute. The procedure is not difficult but long and tedious.
To simplify the coding of the problem, third and fifth-order
dataare grouped together. The final results consist of 12 fifth-
order aberrations at each surface (a1,0s, . . ., ¢12) and the
total aberrations at each surface. Each aberration, in turn,

*The theoretical work was developed by Mr. Donald P. Feder of the
National Bureau of Standards, Optics Division.

Vi Urp—1

o4
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consists of two parts: hybrid aberration (a4, as, . . . , G12)
and intrinsic aberration (a4, @, . . ., a12).

The hybrid aberrations at a given surface are sums of
products; these products are of the form, [constant] [third
order coefficient] [partial sum]. Third-order coefficients
are functions of the constants of both the optical system and
the marginal and principal rays. The third-order coefficient
By, is a function of ux, uy—1, yr, (yk)pr, € vi, and Ny_1. The
partial sum at the nth surface is defined as

n—1

By.

k=1

b

A typical example of the formula for a hybrid aberration is
@5y = 2[Bi b+ Fr(cvt2he+ 2ji) + C(4fu+ki) + E gxl,
where capital letters designate third-order coefficients, and

small letters designate partial sums.

The intrinsic aberration at a given surface is expressed
in a similar manner: [function of constants of both the op-
tical system and the marginal and principal rays] [sum of
fifth-order coefficients].

ab, = 2 [en(yn),, — (ue—1),,] [2(A133 v + 42 G5 G)
+ A3H%r + A4Her] ’

where 4; = [1.5v (v—1) 1] G 3 S
A2=[15(1 +1:| s
A,e; = "‘SGy
Ay = =S [cyiG+yGhl
S _ Nk_l(l""l')
T 2v(v+1)21
I = Ny [u(ye),, — (), ¥il
Gk = v [1k - Mk]
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A 60-program control panel for the IBM Type 604 Elec-
tronic Calculator is wired to perform all basic arithmetic
operations with ten-digit numbers. In coding division by a
ten-digit number, the approximation

1 1 1
a5 o 270 ]

is used. Channel A is connected to electronic storage units,
factor storage 1 and 2, and general storage 3. Channel B is
connected to electronic storage units, factor storage 3 and 4,
and general storage 4. Because of the limited amount of
storage space, it is necessary to summary punch third and
fifth-order coefficients (with necessary instruction) and
feed them back into the machine.

Approximately 375 programming cards are needed for
each surface. Including the printing of intermediate and
final results, summary punching, card handling and check-
ing, about seven minutes is required for each surface in the
system.
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DISCUSSION

My. Tillitt: There are other schemes for tracing rays.
One of those is in progress at Inyokern, where a means
has been developed using a sort of vector scheme for getting
through glass and using a coding deck of around 80 cards.
This will allow you to take skew rays or meridional rays
through symmetric or asymmetric surfaces. The largest
thing that has been done so far is a piece of glass which had,
I believe, 140 surfaces. There was some question as to
whether any light was going to get through this system;
but, at any rate, the computations were carried out.

Mrs. Anderson: This is just one type of ray tracing that
we do. We also trace paraxial and skew rays through
spherical or aspherical surfaces, but I understand this is
the first time any fifth-order work has ever been coded on
the machine. I think our regular tracing of skew rays
through a spherical surface takes about 80 cards also.



Theory of Elastic Vibrations of Helicopter Fuselages

PETER

F.

LEONE

Piasecki Helicopter Corporation

SUMMARY

AN analytical method for determining the natural fre-
quencies of an elastic helicopter fuselage system has been
developed herein, with particular application to the longi-
tudinally tandem rotor type helicopter. The Myklestad
method of elastic beam vibration analysis was employed to
study the bending-torsion vibrations of a non-uniform free-
free U-shaped elastic beam supporting flexibly mounted
engines. The U-shaped beam, whose horizontal component

comprises the fuselage proper and whose vertical compo-

nents comprise the pylons, assumed cantilevered at the
attachment points, was considered to execute uncoupled
bending vibrations in a vertical plane and coupled side
bending and torsion vibrations in a horizontal plane,
ignoring rotor blade motion, damping, and aerodynamic
forces. An application was made to a typical helicopter
fuselage system wherein an IBM electronic calculator
was employed to effect the repetitive tabular calculations
required to determine the natural frequencies and normal
modes of the system. The machine computations were made
by Mr. William P. Heising of the IBM Technical Comput-
ing Bureau of New York, employing the IBM Card-Pro-
grammed Electronic Calculator.

INTRODUCTION

Because helicopter rotors generate periodic forces in the
forward flight condition, the helicopter fuselage is capable
of executing elastic forced vibrations in the normal flight
speed range. The fuselage response to the rotor excitations
is generally manifested in uncoupled bending vibrations in
a vertical plane and coupled side bending and torsion vibra-
tions in a horizontal plane, the latter resulting from the
fuselage static mass unbalance about its torsion axis. For a
balanced rotor having b number of blades, the rotor excita-
tion frequencies are found to be integer multiples of the
bth harmonic of the rotor angular velocity, the major exci-
tation being the fundamental harmonic.

The proximity of the natural frequencies of the helicopter
fuselage system to the rotor excitation frequencies will, of
course, dictate the degree of the fuselage forced response,
the fuselage system being composed of the fuselage proper,

x

the pylons and the flexibly mounted engines. Consequently,
a determination of these natural frequencies should be made
in the design stage in order that an optimum fuselage de-
sign may be attained. A vibration analysis of the helicopter

fuselage system during the design stage could be either ex-
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perimental (employing a dynamic structural model) or
theoretical (employing linear elastic vibration theory). The
present paper is concerned with the theoretical study and
presents an analytical method for determining the natural
frequencies of a helicopter fuselage system. In particular,
the Myklestad method of elastic beam vibration analysis
will be employed in determining the natural frequencies of
the fuselage system of a longitudinally tandem rotor type
helicopter.

PRELIMINARY ANALYSIS

In the study of the elastic vibrations of a helicopter fuse-
lage, the fuselage system may be described by an elastic
beam comprising the fuselage proper, elastic beams canti-
levered to the fuselage proper comprising the pylons, and
simple mass-spring systems mounted to the fuselage proper
comprising the flexibly mounted engines. A schematic rep-
resentation of the fuselage system of a longitudinally tan-
dem rotor type helicopter is shown in Figure 1.

Engine .
Rear
Forward Pylon
Pylon
FWD.
Fuselage Proper
Ficurg 1

For the longitudinally tandem rotor type helicopter
shown in Figure 1, the fuselage proper is capable of execut-
ing uncoupled bending vibrations in a vertical plane and
coupled side bending and torsion vibrations in a horizontal
plane, the latter resulting from the fuselage static mass un-
balance about its torsion axis. The pylons can execute bend-
ing vibrations in the fore and aft and in the lateral senses.
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In addition, the pylons can execute torsional vibrations,
which, depending upon their static mass balance about their
torsion axes, can couple with bending. The engine, consid-
ered to be flexibly mounted in the vertical, lateral, and roll
senses, can execute uncoupled vertical vibrations and cou-
pled lateral-roll vibrations, the latter due to a static mass
unbalance about its roll axis. The resulting motion of the
fuselage system will consist of a coupling of the motions of
the three fuselage system components. In the vertical plane,
the coupled fuselage system motion will include vertical
bending of the fuselage proper, fore and aft bending of the
pylons, and vertical engine motion. In the horizonta! plane,
the coupled fuselage system motion will include coupled
side bending and torsion of the fuselage proper, coupled
lateral bending and torsion of the pylons, and coupled lat-
eral-roll engine motion. The coupled fuselage system mo-
tions are shown, for the case of infinite pylon torsional
rigidities, in Figures 2'and 3.

Ficure 3. CourLep SipE BENDING AND ToRSION

The simplest analytical study is to decouple the resulting
motion of the fuselage system into the motions of its indi-
vidual components and to decouple further the motions of
the individual components. The uncoupled natural frequen-
cies of the individual components are then found, from
which an approximation to the characteristics of the fuse-
lage forced response can be made by noting the proximity
of the uncoupled natural frequencies to the rotor excitation
frequencies. The uncoupled natural frequencies may be ap-
proximated from uniform beam theory if weighted mass
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and stiffness parameters are employed. For this approxima-
tion, the fuselage proper may be considered as a uniform
free-free beam for bending and as a uniform free-free shaft
for torsion. The pylons may be considered as uniform canti-
levered beams for bending and as uniform cantilevered
shafts for torsion, if both mass and stiffness are distributed.
For a concentrated tip mass and distributed stiffness, the
pylons may be considered as massless cantilever beams for
bending and massless cantilever shafts for torsion. The un-
coupled natural frequencies of the engine on its flexible
mounts will, in general, be known.

Having found the approximate uncoupled natural fre-
quencies of the fuselage system components, their repre-
sentations on two frequency spectra, one for vibrations
in the vertical plane and the other for vibrations in the hori-
zontal plane, along with the representations of the rotor
excitation frequencies, will disclose which component mo-
tions of the fuselage system will be of importance in the
study of the fuselage forced response. The general locations
of the approximate coupled natural frequencies may be
found by noting that for any pair of adjacent uncoupled
natural frequencies, the coupled frequencies will be such
that one is to the left of the lowest uncoupled and the other
to the right of the highest uncoupled frequency. This ap-
proximation appears valid, however, only if the pair of
adjacent uncoupled natural frequencies is relatively iso-
lated from the remainder of the spectrum. T'ypical frequency
spectra for a three-bladed longitudinally tandem rotor
type helicopter whose pylon torsional rigidities are infinite
are shown in Figure 4, wherein all frequencies are dimen-
sionless, being referred to the normal operating rotor speed.

As shown in Figures 4A and 4B, page 134, the rotor ex-
citation frequencies are considered in band form to account
for the range of rotor speed encountered in all possible flight
conditions. The first rotor harmonic band accounts for the
major excitation because of a rotor unbalance, and the third
rotor harmonic band accounts for the major excitation gen-
erated by a three-bladed balanced rotor.

It is to be noted that the complete natural frequency
spectra would include the quasi-rigid body modes at the
low ends of the spectra which are associated with the
dynamic stability of the helicopter in flight and include the
effects of rotor blade motion and aerodynamic forces. These
coupled quasi-rigid body motions of the fuselage system
and rotor blades are of little interest in the study of the
elastic fuselage forced response since their coupling with
the elastic modes appears negligible. Consequently, rotor
blade motion and aerodynamic forces are ignored in the
present analysis.

Unfortunately, the uniform beam theory uncoupled nat-
ural frequency spectra do not accurately describe the
uncoupled motions of the fuselage system components due
to the non-uniformity in mass and stiffness distributions.
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oRy wpy  OVy w11
Natural 2.84 5.09 5.51 8.15
Frequencies ‘ ’ I .
NI NS X SV S
0 2 4 6 8 10
Rotor
Excitation .89111.06 3.18
Frequencies 2.67
Q 3Q
Ficure 4A. UNcOUPLED VERTICAL BENDING
WEp @By @pp wg; or; o011
1.62 2.35 48  6.56 7.158.08
Natural
Frequencies l l { l
L o L . s " L h . s w/Q
0 2 4 6 8 10"/
Rotor
Excitation .89111.06 3.18
F . 2,67
requencies Q 39
Ficure 4B. CouprLED SipE BENDING AND TORSION
LEGEND:

oy, = sth mode fuselage vertical bending frequency.
g, = nth mode fuselage side bending frequency.

o7, = nth mode fuselage torsional frequency.

w11 = Forward pylon fundamental bending frequency.
wpy = Rear pylon fundamental bending frequency.

®Ey, WEg, 0By, = Engine uncoupled vertical, lateral and roll fre-
quencies, respectively.

Q

Normal rotor angular velocity.

Ficurg 4. UNcouPLED NATURAL FREQUENCIES
FrOM UNI1rorM BeaM THEORY

The exact uncoupled natural frequencies are found to be
lower than the approximate uniform beam theory fre-
quencies, the errors being as high as 30 per cent for bend-
ing and 40 per cent for torsion. But even the exact un-
coupled frequencies do not properly describe the resulting
motion of the fuselage system, because the component mo-
tions couple with one another. Consequently, a rigorous
analysis accounting for non-uniformity and coupling is re-
quired in order that an accurate study of the fuselage forced
response be made. For this reason, the Myklestad method
of elastic beam vibration analysis will be employed to deter-
‘mine the exact coupled natural frequencies of a non-uniform
helicopter fuselage system. In particular, the Myklestad
method will be applied to the fuselage system of a longitudi-
nally tandem rotor type helicopter. Although the Myklestad
method will be applied in a free vibration analysis, in which
any one mode may be found independently of all other
modes, it may be extended to provide a forced response
analysis, the results of which would include the forced
modes of response and the dynamic stress distributions.

COMPUTATION

MYKLESTAD ANAILYSIS -

In applying the Myklestad method to the analysis of the
elastic fuselage vibrations of a longitudinally tandem rotor
type helicopter, the fuselage system is approximated by an
equivalent U-shaped elastic free-free beam composed of a
finite number of sections, each section having its individual
mass and stiffness properties. The horizontal component
of the equivalent beam comprises the fuselage proper, and
the vertical components comprise the forward and rear
pylons assumed cantilevered at the attachment points. The
engine is assumed to be flexibly mounted to a section of the
fuselage proper, the flexibility being in the vertical, lateral
and roll senses. The equivalent beam is considered to exe-
cute uncoupled bending vibrations in a vertical plane and
coupled side bending and torsion vibrations in a horizontal
plane, wherein the pylon torsional rigidities are assumed
infinite. Rotor blade motion, damping, and aerodynamic
forces are ignored, in that their effects upon the elastic
motions are negligible.

Uncoupled Vertical Bending Vibrations

Now consider the equivalent U-shaped elastic beam com-
posed of a finite number of sections to be executing free un-
coupled bending vibrations in a vertical plane (Figure 5).

F,

Ficure 5

As shown in Figure 5, the fuselage proper is divided into a
finite number of sections, each section consisting of an
elastic beam having a concentrated end mass and a bending
stiffness distributed over its length. The engine mass is
assumed concentrated and flexibly mounted to a section of
the fuselage proper, and the pylon mass centers are as-
sumed coincident with the rotor centers, at which centers
originate the constant rotor forces F,, and Fj,. Designating
the concentrated masses as vibration stations consecutively
numbered from forward to rear, then the tip mass of the
fuselage proper becomes station 1, and its end mass be-
comes station b, where b designates the base. The forward
and rear pylon masses are designated as stations 11 and bb,
respectively., To simplify the analysis, the engine mass is
considered to be part of the fuselage station mass to which
it is flexibly mounted. In so doing, however, an effective
engine mass must be employed whose magnitude is a func-
tion of the uncoupled engine natural frequency and the vi-
bration frequency of the fuselage system motion (see Ap-
pendix A).



SEMIN AR

Now consider two adjacent fuselage stations, designated
n and n+1. Then the slope of the bending curve, the bend-
ing deflection, the shear, and the bending moment at each
station are shown in Figure 6.

Ficure 6

The symbols employed in Figure 6 are defined as follows:

oy = Slope of bending curve at #.

yn» = Bending deflection at #.

S» = Shear at #.

M, = Bending moment at ».

m,, = Mass concentrated at ».
I, = Length of nth section.

xyn = Coordinate of m, from base b.

Employing recurrence equations, the slopes and deflec-
tions of the two adjacent stations are related as follows:

Uny1 = O — SuUp, — My vy, } (1)
Yo+l = Yn — ln Op41 — Sn dF,, - Mn dMn

where, considering the section beam to be cantilevered at
n+1 and free at #, the bending elastic coefficients are de-
fined as follows:

vr, = Slope at # due to a unit force at #.

vy, = Slope at # due to a unit moment at #.

dy, = Deflection at # due to a unit force at ».
dy, = Deflection at # due to a unit moment at ».

For a uniform cantilever beam of length /, the bending
elastic coefficients become the following:

v = 2/2E]
Uy = l/EI (2)
dp = B/3E]
dy = 12/2E]

where EI is the bending stiffness assumed constant over
the beam length.

During a free vibration, the solutions for the slope, de-
flection, shear and bending moment at any station # take on
the form:
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a(t) = ae?
y(t) = yett 3
S(t) = Setwt )
M(t) = Met?

where now @, y, S and M are considered as the amplitudes
of the dynamic quantities during the free vibration. Denot-
ing the amplitudes of the slope and deflection at station 1
to be ¢ and $§, respectively, then the assumption of linear
elastic vibrations permits the determination of the slope and
deflection at station » as linear functions of ¢ and 8. Hence,
a, and y, may be expressed as follows:

an = ¢fg, — 8, }

Yn = —¢Ggy, + 395,
where fi, and gy, are the undetermined amplitude coeffi-
cients for the slope and deflection, respectively, at station n.
In a similar fashion, the amplitudes of the shear and bend-
ing moment at station » take on the form:

Sn = _¢G¢n -‘l" SGan }
M, = —¢Gs, + 8Gs,

where G, and Gy, are the undetermined amplitude coeffi-
cients for the shear and bending moment, respectively, at
station #. Substituting equations 4 and 5 into the equations

1, then the recurrence equations for the slope and deflection
amplitude coefficients become the following:

fkn+1 = fkn + 'an Gkn + 'UMn G’:’n } (6)
gkn+1 = g"’n + l"fkn-i—l - an Gkn - dMn G’,cn .

The amplitudes of the shear and bending moment at station
n are found as shown in Figure 7.

(4)

(5)

]

mn—\ yi

S—
m; )
%

T

Ficure 7

As shown in Figure 7, S and M, are the amplitudes of
the shear and bending moment at station 1, respectively,
resulting from the motions of the forward pylon and the
tip mass of the fuselage proper, yet to be determined, and

-
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myyw? is the incremental shear amplitude at station ¢ result-
ing from the bending vibration. It follows, therefore, that
Sy and M, become the following:

”

Su= S14+ ) my’
i=2 n—1 7)
M” = M1 + Sl(xl—'x,,) +Emiyiw2 (xi—x,,) .
i=2

Substituting equations 4 and 5 into equations 7, then the
recurrence equations for the shear and bending moment
amplitude coefficients become the following:

n

Gk” = le + meﬁgki
==

COMPUTATION

where

n—1
Xy — Xp = zl, . (9)
J=1i

The recurrence equations for the slope and deflection
amplitude coefficients, given by equations 6, and the re-
currence equations for the shear and bending moment am-
plitude coefficients, given by equations 8, formulate the
tabular calculations required in the Myklestad analysis.
These tabular calculations may be effected by the well-
known Myklestad tables for uncoupled beam bending vi-
brations (Tables I and II). The tabular calculations re-
quired in the analysis for uncoupled vertical bending free

n—1 ®) vibrations are formulated in these amplitude coefficients
Gi, = Giy, + zlfck@' tables, one associated with the tip slope ¢ and the other with
= the tip deflection 8.
TABLE I. MAss AND STIFFNESS PARAMETERS
8 vr X 108
”n m EI x 10 l dy X 108 T d X 10F vy X 108
11
1
\J
bb
TasLE II. AMpritupg COEFFICIENTS
kth Table @ @ @ @ @
_ Gy X 1078 = | G} X 1078 = |frens1 = Iy Agy =
n | me?/108 a=0D+ LZNY6) Yix @ |+ X QIX®—drx@
forn—1 108 forn—1 + vy X —dMX@
1 Gy Gy Giy fro Agr,
\j
b
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The amplitudes of the shear and bending moment at
station 1 are found from a study of the motions of the for-
ward pylon and the tip mass of the fuselage proper, as
shown in Figure 8.

Y11 F"’
ou -~
/m” %—
~I /'/
l '/ M
N lll
N
Sh

Ficure &

It follows from Figure 8 that

S1 = (mg + m1) y10° }

(10
My = y11(111m11m2—on) . )

The amplitudes of the slope and deflection of the forward
pylon, @y; and yy1, respectively, must now be evaluated.
These are found to be as follows:

%1 = &1 + Upy; (MY’ — a1 Fy)) } (11)
Y = e + an('muyuwz—Otquo) .
Now, since at station 1
% = (f)
12
niy } (12)
then it follows from equations 4 that
for =95 =1 } (13)
f51 = g¢; = 0.

The forward pylon slope and deflection amplitudes then
take on the form:

@11 = fpy; — 8y, } (14)
Y11 = —¢gey; + 895y,
where
f¢11 = {1+ mnw“’(lnvFu - an)}/Au
(15)
foy =0 ’

96y, = — {lu+ on(lu‘UFu - dFu)}/All } (16)
9o, =0

and where
Ay =1+ Foup,, — muo®dp,, .

(17)

Making substitutions into equations 10, then the amplitude
coefficients for .S; and M; become: :
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Gy, =0

Gﬁ]_ = (m1+mll)m2 } (18)

Gé*l = 9¢14 (lnmnwz—on) 19
] -

It now remains only to evaluate the rear pylon boundary
conditions. This is effected as shown in Figure 9.

Py

Yoo %?/
/ Wypy Z_;_

AYS

FIcure 9

It follows from Figure 9 that in order to meet the require-
ments for zero net shear and bending moment at the base
section b, the following boundary condition equations must
be satisfied:
S e O
M, + ybb(Lbbmbbwz—Féo) =0.

The amplitudes of the rear pylon slope and deflection, oy,
and ypp, respectively, must now be evaluated. These are
found to be as follows:

Uy = % + Uy, (mppypo® — anpF7,) (21)
Yoo = loooy +-dpy, (MupYere® —annlsy)

The solutions for ay, and vy, then become:

opp = — 8
= Lo @
where
Tow = Y1foy } (23)
fony = v1fsy
= —A
ol @
and where
y1= {1+ mb?‘l’2 (lyovryy, — dryy) Y/ Avs } (25)
M = {lw + Fey (lovvry, — dryy) 3/ Auo
Apy = 1 4 Frvr, — mupo®dr,, . (26)

The boundary conditions given by equations 20 may be
expressed in the form:

M} = —¢My+8Ms =0

where Sh and M} are the net shear and bending moment,

(27)
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respectively, at station b which must be zero concurrently,
and where their amplitude coefficients are defined as:

Ve = Ggp + mnnw’gy,

2
Va = Gab + mbbwzgab } ( 8)
My = Go, + goyp (lovmupe® — Fi) (29)
M; = G’ab + 9oy (bypmppe® — F'zo) .

If, now, the tip deflection 8 is made unity for normalization
purposes, then the tip slope ¢ becomes, from the net shear
equation, the following:

¢="Vs/Vs . (30)
Substituting, the net bending moment then becomes:
My = —My(Vs/Vy) +M; =0 . (31)

The above equation 31, which expresses the zero net bend-
ing moment at the fuselage base, becomes the criterion for
the existence of a natural frequency in uncoupled vertical
bending free vibrations. The tabular calculations must be
repeated for assumed values of natural frequencies until the
criterion is satisfied. The solutions for the slope, deflection,
shear and bending moment at a natural frequency then be-
come simply:

Ay = ¢f¢n — fan

Yo = —¢9s, 1+ 9o,
Sn = —¢Gy, + G,
M, = —¢Gy, + Gj, .

(32)

The foregoing equations 32 express the final solutions for
uncoupled vertical bending free vibrations. These solutions
are valid only at a natural frequency of vibration which sat-
isfies the criterion of zero net bending moment at the fuse-
lage base given by equation 31.

Coupled Side Bending and Torsion Vibrations

Now consider the equivalent U-shaped elastic beam com-
posed of a finite number of sections to be executing coupled
side bending and torsion free vibrations in a horizontal
plane, shown in Figure 10.

Ficure 10

COMPUTATION

As shown in Figure 10, the individual section beam is now
considered to have its concentrated mass offset from the
torsion axis and to have both bending and torsional stiff-
nesses distributed over its length. As before, the engine
mass is assumed concentrated and to be flexibly mounted
to a fuselage station, the flexibility being in both the lateral
and roll senses. The engine mass will again be considered
as part of the fuselage station mass to which it is flexibly
mounted, where now its effective value will be a function
of both its uncoupled lateral and uncoupled roll natural fre-
quencies and the vibration frequency of the fuselage system
motion (see Appendix A).

Now consider two adjacent fuselage stations, » and n+-1.
Then the slope of the bending curve, the bending deflection,
the twist, the shear, the bending moment and the torque at
each station are shown as in Figure 11.

W1, n+1

|
|

Yn

Ficurg 11

In addition to the symbols employed previously, the symbols
of Figure 11 are defined as follows:
6, = Twist angle at n.
T, = Torque at n.
J» = Mass polar moment of inertia about torsion axis
at n.
7. = Vertical offset of m, from torsion axis.

In addition to the recurrence equations for the slopes and
deflections of two adjacent stations given by equations 1,
the recurrence equation for the twist angles of the two adja-
cent stations becomes:

(33)

where, considering the section as a uniform shaft canti-
levered at n-4-1 and free at », the twist elastic coefficient vp
is defined simply as:

Up = I/G]p

0n+1 = 0» - ann

(34)
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where G, is the torsional stiffness assumed constant over
the section length.

In addition to the form of the solutions for the slope, de-
flection, shear and bending moment, given by equations 3,
the solutions for the twist and torque at station # take on
the form:

0(t) = fetot

T(t) = Te‘“"} (35)
where 6 and T are considered as the amplitudes of the
dynamic quantities during the free vibration.

Denoting the amplitudes of the slope, deflection and twist
at station 1 to be ¢, 8 and y, respectively, then the assump-
tion of linear elastic vibrations permits the determination of
@, y, and 6 at n as linear functions of ¢, 8, and y. Hence,

Up = ¢f¢n - Sfan - "’f‘#n
Yn = —dJs, + 395, + Y9y, (36)
6, = —qSh¢n -+ Shgn + ¢h\pﬂ

where fk,, and Ik, are defined as before and where 7, are
the undetermined amplitude coefficients for the twist at #.
In a similar fashion, the amplitudes of the shear, bending
moment and torque at » take on the form:

Sp = _¢G¢n -+ SGan —+ t//G,pn
M” = _4)6&7‘ + SGISn + lpG\lpn
To = —¢Hy,+ 8H;, + yHy,

where Gy, and Gy, are defined as before, and Hy, are the
undetermined amplitude coefficients for the torque at #.

In addition to the recurrence equations for the slope and
deflection amplitude coefficients given by equations 6, the
recurrence equation for the twist amplitude coefficients be-
comes, upon substituting 6, of equations 36 and T', of equa-
tions 37 into equation 33, the following:

(37)

(38)

The amplitudes of the shear, bending moment, and torque
at station # are found as shown in Figure 12.

hk"+1 = hkn - 7r, H’”’n

Ficurg 12
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As shown in Figure 12, Sy, M,, and T’ are the amplitudes
of the shear, bending moment, and torque at station 1, re-
spectively, resulting from the motions of the forward pylon
and the tip mass of the fuselage proper. Also acting at sta-
tion 1 is the vertical shear on, being the shear transmitted
by the constant forward rotor force. Also, the incremental
shear and torque amplitudes at station ¢ are found to be
miw? (v;—7i0;) and o? (J;0;—mriy,;), respectively. It follows,
therefore, that S, M,, and T, become the following:

n

Sn = S]_ + thz(yi—mo,;)
1=2
n—1
Mn = M1 +S]_(}V1_xn) —}—2miw2(yi—m»0i)(_xi—.r.,,) (39)
=2
T, = T4 +zw2(h0i—-mmyi) - on(yl_yn}-

=2

Substituting equations 36 and 37 into equations 39, then
the recurrence equations for the shear, bending moment
and torque amplitude coefficients become the following:

G, = G, +2M’liw2(gki”‘7’ihki)
=2

n—1
Gi, = G + Em,@ (40)
i=1
n n—1
Hkn = Hkl +Zw2(]ihki——mmgki) +2Fz0Agki
i=2 i=1
where
n—1
— — A
Ten = It E T (41)

i=1

Agr,, = Gonp1 ™™ Gy

The recurrence equations for the slope and deflection ampli-
tude coefficients, given by equations 6, the recurrence equa-
tion for the twist amplitude coefficients, given by equation
38, and the recurrence equations for the shear, bending
moment, and torque amplitude coefficients, given by equa-
tions 40 and 41, formulate the tabular calculations required
in the Myklestad analysis. These tabular calculations may
be effected by the well-known Myklestad tables for coupled
bending-torsion beam vibrations (Tables IIT and IV).

The tabular calculations required in the analysis for
coupled side bending and torsion free vibrations are formu-
lated in the amplitude coefficients tables, their being three
such tables, these being associated with the tip slope ¢, the
tip deflection §, and the tip twist y.



TaBLE III. MASS AND STIFFNESS PARAMETERS

n m 7 mr J EI X 10—8 | GI, X 10—8
11
Y
b
bb
vr X 108
n me?/108 mre?/108 Jo?/108 ! dp X 108 | ——2—-——— | vy X 108 vp X 108
dy X 108
11
\/
b
bb
TasLg IV, AMrLITUDE COEFFICIENTS
kth Table
H; X 10-8 =
= = —8= / "8= J 2 fkn =fkn Agkz
r 0| ne @Gzl (k@) | bk
| D | —ux®| R D| 2 ix@ | 2 +ox@| 1%
5 forn—1 108 + ou X@ —dr X@
forn—1 _\'mro ><®
107 +) Fagx10-2x @ — du X®
forn—1 !
1 Irq Py G,y Gy Hy, fry Agry
|
b
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The amplitudes of the shear, bending moment, and torque
at station 1 are found from a study of the motions of the

forward pylon and the tip mass of the fuselage proper, as
shown in Figures 13A and 13B.

N1

S1

9, m,Jy

Ficure 13A

my

M, ﬁl—
~

Si

Ficure 13B

It follows from Figures 13A and 13B that

S1 = M0’ (y1 - 7’101) =+ muynw2
M, =0 (42)
T = ]1'”201 —m 17’13’10’2 + 1111’”1131110)2 —1gy (yn —M )
The amplitudes of the slope and deflection of the forward

pylon, 6; and yi;, respectively, must now be evaluated.
These are found to be as follows:

611 = 61+ vFu(mHyuwz—Oquo) (43)
Y1 = Y1+ laby + dry (Muiy10®—011F,) .
Nouw, since at station 1
o = ¢
y1=38 (44)
01 = Slf s
then it follows from equations 36 that
f¢1 =9gs = hlh =1
fﬁl =gy, = h¢1 =0 (45)
f’l/1=g¢1 = h51 =0.
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The forward pylon slope and deflection amplitudes then
become:

011 = _¢h¢11 + 8h511 + ‘/}hlpll (46)
Y1 = '—4’94)11 "I— 89511 + ‘//g!hl
where
9oy, =0
9oy = (14 Fegvryy) /An (47)
Gury = {1+ Foy(lhavry, —dryy) }/An
h¢11 =0
h511 = m11m27/F11/A11 (48>
hyyy = {1+ muo®(havp, —dr,,) }/An
and where
Au =14 Fuyvp,, —muo’dr,, . (49)

Making substitutions into equations 42, then the amplitude
coefficients for Sy, M;, and 7% become the following:

Gy =0
Gal = m1w2 + m11w2g511 (50)
GW]_ = “M’117’1w2 —I- m11w2g¢11

Gy =0

Gi =0 (51)
Gy, =0

Hy =0

Hal = —m1?1m2 + g511(111m110)2—F20) —-'}— FZO (52)
H¢1 = ]1(1)2 —I— gwll (lllﬁ/lzuw‘z—"FzO) .

The rear pylon boundary conditions are now found as
shown in Figures 14A and 14B.

Fz,

Iy

Ficurg 14B
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It follows from Figures 14A and 14B that in order to meet
the requirements for zero net shear, bending moment and
torque and the base section b, the following boundary con-
dition equations must be satisfied:

S + Mmepyppe® = 0
My=0 (53)
T + lymapyose® — Foy (yop—y) = 0 .
The amplitudes of the slope and deflection of the rear pylon,

Oy and 7y, respectively, must now be evaluated. These are
found to be as follows:

Ovo = Oy + Ury, (MapYppe® —00l%) (54)
Yoo = Yo + lwbs + dry, (mopYpee® —00F7,) .

The solutions for 6y, and y,; then become:

O = _¢h¢bb + Shabb + tr”hlﬁbb (55)
Voo = —¢g¢bb + Sgabb + lpg\l/bb
where
hey, = €190y + E2hg,
hébb = Slgﬁb + f?hﬁb (56)
hlﬁbb = Slg\#b + &h\bb
Gopy = P10y + P2h¢b
gﬁbb = Plgﬁb + P2h6b (57)
Gupy = P19y, T+ p2hiy,
and where
pr= (1+ Féo‘vlv’bb)/Abb 58
p2 = pilos — Fiydr,, /D (8)
& = dry/Am (59)
&= {1 —+ mbbw2(lbb'vab - deb)}/Abb
Abb =1 + Féovﬁ'bb - mbbw2deb . (60)

The boundary conditions given by equations 53 may be
expressed in the form:

St =—¢Vy + 85 +ylVy =0

M} = —¢M¢—|—3AM5+¢M¢ =0
T£=—¢T¢+3T5 +1//T;p =0

(61)

where %, My and T4 are the net shear, bending moment
and torque, respectively, at station & which must be zero
concurrently, and where their amplitude coefficients are
defined as:

V¢ = G‘i’b —l— mbbw29¢bb

V5 = ng + M’Lbbwzgﬁbb } (62)
V,p = G‘/“b + mbwagwbb

My = G},

My = G§, } (63)
My = Gy,

COMPUTATION

Ty = Hyy + bymupo®ggy, — Fio(9op,—9s,)
T = Hab + lbbmbbw2g6bb - Fz'o(gabb—ga,,) } (64)
Ty = Hy, + loympe®gy,, — Fiy (Guyy— 9vy)

If now the tip deflection 8 is made unity for normalization

purposes, then the tip slope ¢ and the tip twist ¢ become,

from the solutions of the shear and torque equations, the

following:

¢ = (VyTs — TyVs)/(VyTy — TyVy) } (65)
= (VeTs — ToVs)/(VyTy — TyVy) .

The solutions for ¢ and ¢ must satisfy the zero net bending
moment equation, namely

My = —¢My+yMy+ M; = 0. (66)
'The above equation 66, expressing the zero net bending mo-
ment at the fuselage base section, becomes the criterion for
the existence of a natural frequency in coupled side bending
and torsion free vibrations. The tabular calculations must
be repeated for assumed values of natural frequencies until
the criterion is satisfied. The solutions for the slope, deflec-
tion, twist, shear, bending moment and torque at a natural
frequency then become simply:

£
!

o, — Vv, — Io,
= —¢9¢, + Y9y, + 9o,
0 = —ohy, + yhy, + hs,
Sn = —¢G¢n + ‘pGWn + Gﬁn
—¢Gg, + Gy, + Gj,
—¢Hy, + yHy, + Hs, .

2
3
|

(67)

SR
I

The foregoing equations 67 express the final solutions for
coupled side bending and torsion free vibrations. These
solutions are valid only at a natural frequency of vibration
which satisfies the criterion of zero net bending moment at
the fuselage base given by equation 66.

APPLICATION OF MYKLESTAD ANALYSIS

The results of an application of the Myklestad analysis to
a three-bladed longitudinally tandem rotor type helicopter
are now presented. These results include the solutions for
the first four normal modes of uncoupled vertical bending
and the first three normal modes of coupled side bending
and torsion free vibrations of an equivalent U-shaped elas-
tic beam supporting a flexibly mounted engine and having
infinite pylon torsional rigidities. The Myklestad solutions
for the exact coupled natural frequencies are summarized
in the following dimensionless frequency spectra (Figure
15) which include the approximate uncoupled natural fre-
quencies derived from uniform beam theory (Figure 4).
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Ficurg 15. CourLED NATURAL FREQUENCIES
FROM MYKLESTAD SOLUTION

It was noted earlier that in order to effect the Myklestad
analysis for free vibrations, the tabular calculations must
be repeated for assumed values of natural frequencies until
the criterion for the existence of a normal mode is satisfied.
This criterion is formulated in the boundary condition re-
quiring zero net bending moment at the fuselage base, ex-
pressed by equation 31 for uncoupled vertical bending and
equation 66 for coupled side bending and torsion. To facili-
tate the solution, it is found convenient to plot the function
M}/0® versus o, its zeros then being the criteria for the
existence of natural frequencies. The residual moment func-
tions associated with the results presented herein are shown
in Figures 16A and 16B.
3.42
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143

A 2.76

b/w? K
O 1 L ;" ! 1 1

1'0 0/Q

Ficure 16B. CourLEp SipE BENDING AND ToORSION

F16urg 16. REsipuar, MoMENT FUNCTIONS

The asymptotes shown in the foregoing plots of the
residual moment functions do not, of course, denote natural
frequencies of the system. Rather, they denote those fre-
quencies of vibration at which the amplitudes of the pylon
and engine motions, and the amplitudes of the torsion mo-
tion of the fuselage proper, become infinite for finite ampli-
tudes of bending motion of the fuselage proper. These
asymptote frequencies are associated with the uncoupled
natural frequencies of the motions of the fuselage system
components other than the bending motion of the fuselage
proper. The asymptote frequencies, however, do not corre-
spond exactly with theé uncoupled natural frequencies of
the aforementioned motions due to their coupling with one
another and with the bending motion of the fuselage proper.
In the plot of the residual moment function for uncoupled
vertical bending, shown in Figure 16A, the first asymptote
is associated with the engine vertical motion, the second
with the rear pylon fore and aft bending, and the third with
the forward pylon fore and aft bending. In the plot of the
residual moment function for coupled side bending and
torsion, shown in Figure 16B, the first asymptote is asso-
ciated with the engine lateral motion, and the second with
the rear pylon lateral bending. Further calculations would
yield two additional asymptote frequencies, the first associ-
ated with the first torsion mode of the fuselage proper, and
the second with the forward pylon lateral bending motion.
Calculations beyond this point would yield asymptote fre-
quencies associated with the higher torsion modes of the
fuselage proper. Calculations at the low frequencies should
yield an asymptote associated with the engine roll motion.
In general, it may be said that the total number of asymp-
totes equals the total number of uncoupled modes of each
of the fuselage system components other than bending of
the fuselage proper, when employing the criterion of zero
bending moment at the base of the fuselage proper to de-
termine the natural frequencies of the helicopter fuselage
system. ’
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One final note to be made is the existence of natural fre-
quencies at the low ends of the frequency spectra. For un-
coupled vertical bending, there will exist a natural fre-
quency of the order of .01 to .1 associated with the quasi-
rigid body pitch motion of the fuselage system. For coupled
side bending and torsion, there will exist a natural fre-
quency of the above order associated with the quasi-rigid
body roll motion of the fuselage system. These quasi-rigid
body motions arise from the pendular effects of the constant
rotor thrusts.
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APPENDIX A

ErrEcTivE Mass PROPERTIES OF A
Frexisry MouNTED ENGINE

Uncoupled Vertical Bending Vibrations

Consider an engine of mass m, to be concentrated at a
fuselage station, at which station the concentrated fuselage
* mass is m; (less engine mass). Also, consider the engine to
be flexibly mounted to the fuselage with a spring of constant
k¢ and consider the fuselage station spring constant to be k,,.
The system may then be represented as a simple two-de-
gree-of-freedom vibratory system as follows:

Mg -
kg l
g gj' ¢
=k j

y

Ficure Al

where, in Figure Al, ¢ and y are the linear displacements
of m, and my, respectively. The equations of motion become:

y: mf§{+kyy+ks(y—-*)=0}
& msé‘l"ki(é—y) =0.

For harmonic vibrations of a frequency o, the solutions are

(A-1)

of the form
F i | (42)
whence it follows that
$o = p¢ Yo (A-3)
where
= 1/(1-F)  Be=ofor ol =ke/m,. (A4)

COMPUTATION

The equation of motion with respect to y may then be ex-
pressed as

(ms =+ mepg) y 4 kyy = 0.

Therefore, in uncoupled vertical bending vibrations, the
total effective mass at a fuselage station at which is concen-
trated a flexibly mounted engine becomes:

(A-5)

m = my; + Mopy (A-6)

where the amplification factor u is a function of the vibra-
tion frequency o, and the engine uncoupled vertical natural
frequency, w;.

Coupled Side Bending and Torsion Vibrations

In a similar fashion consider the engine to be mounted
flexibly in both the lateral and torsional senses with the
engine torsion axis located above the fuselage torsion axis
as shown in Figure A2,

ky

N

BN

my, ]f

Ficurg A2

where, in Figure A2, k, and k4 are the lateral and torsional
spring constants of the fuselage station whose mass m; (less
engine) is located a distance 7; below the fuselage torsion
axis and whose mass polar moment of inertia about the
fuselage torsion axis is J;, and ks and &4 are the lateral and
torsional spring constants of the engine whose mass m, is
located a distance & above the fuselage torsion axis and
whose mass polar moment of inertia is J, about its roll axis
likewise offset a distance & above the fuselage torsion axis.
Also, y and 6 are the linear and angular displacements, re-
spectively, of the fuselage station, and 8 and ¢ are the linear
and angular displacements of the engine, respectively, taken
with respect to the fuselage.

The equations of motion then become:

v 5 (mptme) 4 6( —mﬂ’f‘f-’??eh)
+ome + ky =0
6: 6(JHTetmeh®) + 5 (—mpryt-meh)
+8moh + G, + kg = 0
8 Smg+ ym, + Gmoh + ksd = 0
¢ T+ 61,4 ks =0 .

(A-7)
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For harmonic vibrations, the solutions take the form:
Y = Yo sin ot
0 = 0, sin ot

8 = 80 sin ol (A-S)
¢ = ¢ sin ot
whence it follows that
do = BopefS
A-9
B0 = o2 (Yo--hfo) (4-9)
where
P = 1/(1—13%), Btﬁ = ‘”/“’¢, “’% = k¢/]e (A—IO)
e = 1/(1—/3%), Bs = ofws, of = ks/m, .

The equations of motion with respect to y and § may then
be expressed as:
¥ Z.Sf(mf'l'meﬂa) + kyy — 6(mpi—mehps) = 0
0: 6(Jr+Tepg+meh?us) + kb

— Y(mgry—mohps) =0 .

(A-11)
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Therefore, in coupled side bending and torsion vibrations,
the total mass, static mass moment and mass polar moment
of inertia about the fuselage torsion axis at a fuselage sta-
tion at which is concentrated a flexibly mounted engine
become:

m = My ~+ Mepis
rm = mgy — Mhps
J =Ji+ Jepg + meh*ps

where the amplification factors p; and py are functions of
the vibration frequency o and the engine uncoupled natural
frequencies in the lateral and roll senses, ws and wg, re-
spectively.

} (A-12)

DISCUSSION

[This paper and the next were discussed as a unit.]

ArPENDIX B

UnirorM Bram THEORY FormMuLas FOR UNCOUPLED NATURAL FREQUENCIES

Natural Frequency Frequency
Beam Type rad./sec. Mode Coefficient Modal Shape
Uniform - = a \jET 1st bending a =224 S
free-free T 2nd bending ag = 61.7 So ¢
beam 3rd bending as = 1210 A=A
Uniform - = b \/E 1st torsion by=m e
free-free " N2 2nd torsion by = 2= Cp——r
shaft 3rd torsion bs = 37 b S e N
Uniform o= \/73_]_ 1st bending ¢y = 3.52 ey
cantilever " " ult 2nd bending co = 224 —— <
beam 3rd bending cs = 61.7 = S
Uniform . G, 1st torsion dy ==/2 —-
cantilever on = d”\/Tpg 2nd torsion ds = 3n/2 % = '
shaft 3rd torsion ds = 57/2 Fm——=—"
Massless o = \BEI Fundamental unity 4*
cantilever Ve bending ‘
beam with
tip mass
Massless . GI, Fundamental unity 4 —_— ]
cantilever - Y torsion
shaft with

tip inertia

LEGEND:

EI = Bending stiffness
GI, = Torsional stiffness

m = Mass

J = Mass polar moment
of inertia
| == Beam length

# = m/L, mass per unit length
A =J/L, mass polar moment
of inertia per unit length
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PRELIMINARY ANALYSIS

THE system of equations developed in the previous paper
is a difference system approximating a system of differen-
tial equations. If the fuselage section properties are assumed
constant, and the corresponding differential equations are
examined, a crude analysis shows that the various depend-
ent variables may be expected to increase in an exponential
manner along the fuselage. The curve will be influenced by
the value of the parameter, .

The modal shapes are developed from the dependent vari-
ables f, g, and % (which increase exponentially along the
fuselage) by the following equations:

Uncoupled Vertical Bending:

Coupled Side Bending and Torsion:

Deflection: Yo = —®gy, + g5, + Y9y,
Twist Angle: 8, = —®hy, + hs, + Yhy, .

In the case of uncoupled vertical bending, there are two
independent solutions which satisfy all the boundary condi-
tions at the forward pylon. Because of the linear character
of the equations, any linear combination of the two solutions
is also a solution which satisfies the initial boundary condi-
tions at the forward pylon. These two solutions are called
the ¢ solution and the § solution. There are two boundary
conditions to be satisfied at the aft pylon. These conditions
state that the residual shear and bending moment are zero
at the rear. A parameter @ is the multiple of the ¢ solution
to be added to the § solution so that the combined solution
has zero residual shear at the aft pylon. The residual bend-
ing moment is then computed and plotted as a function of o;
the roots of M’ = O correspond to the natural frequencies
of undamped harmonic vibration of small amplitude.

The case of coupled side bending and torsion is similar
except that there are three independent solutions consistent
with the boundary conditions at the forward pylon. At the
aft pylon, the boundary conditions for a natural vibration
frequency are that the residual shear, torque, and bending
moments be zero. Two parameters, ® and ¥, are chosen so

Deflection:

X
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that the residual shear and torque are zero. These param-
eters are the relative amounts of the ¢ and y solutions
which must be added to the § solution to give zero shear
and torque at the rear pylon. The residual moments com-
puted using various values of the frequency parameter,
o = 2nf, are plotted against o, and the roots give the natural
frequencies of the system.

Under these conditions, the variables f and g, together
with the parameter ® (also the variable 4 and the param-
eter ¥, in the case of coupled side bending and torsion), de-
termine the modal shapes at the natural frequencies. Since
the variables f, g, and % increase exponentially along the
fuselage, whereas the appropriate physical quantities de-
scribing the modal shape (such as deflection in the case of
uncoupled vertical bending) oscillate in sign and remain of
the same order of magnitude along the fuselage, there must
be very nearly exact cancellation of the component deflec-
tions from the various solutions near the rear of the
fuselage. '

In practice, the first three to five significant figures may
be identical before subtraction. Thus, a high degree of ac-
curacy in the dependent variables is necessary to get reason-
ably accurate modal shape curves. Five to seven figures are
necessary to obtain two to three significant figures in the
modal shape curve. The experience of the Piasecki engi-
neers lead them to recommend the retention of at least six
significant figures at all times, if possible. In order to main-
tain maximum accuracy and yet avoid the likelihood of
counter overflow in the Type 402 Accounting Machine,
particular care in the scaling of this problem was essential.

SCALING THE SysTEM ofF UNITS

The system of units in which design engineers express the
various structural constants of the helicopter fuselage is
gravitational, with the pound of force, the inch, and the
second as fundamental units. In the engineer’s system of
units, the numerical values of the different types of struc-
tural constants range from 10° to 10—°. By an appropriate
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alteration of these units by powers of ten, all the various
structural constants become of the order of unity in the new
system of units. The various dependent variables (f, g, k,
G, G', and H) also become of the order of unity in the new
units. Thus, 102 inches, 102 seconds, and 107 pounds of
force were chosen as convenient units for machine proce-
dure, and the various factors for conversion from the engi-
neers’ system of units to the given system are powers of ten.

Examination of sample hand computations for typical
cases performed?® over a part of the range of frequencies of
interest indicated that the maximum values of the various
variables were fairly approximately proportional to «?. Since
all the equations are linear and homogeneous in all the other
variables, it was decided to use solutions with initial or
starting values of 1/0? rather than unity for §, g, or 4, as the
case might be. The analogous quantities in this solution,
f, 9, h, G, G', and H, are equal to f/v?, g/0?, h/v? etc.,
respectively.

MacHINE PLANNING

Machine planning for the IBM Card-Programmed Elec-
tronic Calculator allowed for seven decimal digits in all con-
stants and variables used in the computations. Thus, the
appropriate channel C shift code depends only on the mathe-
matical operation being performed. A setup change switch
was wired so that the problem could be instantly converted
to the solution of the problem using six instead of seven
decimal digits. This setup change switch automatically
shifted the reading of the factors from the card one position,
and also automatically altered the channel C shift code on
the 402 control panel in the proper manner.

The parameter, o?, was entered into the CPC on the first
card only. The remaining program cards contained instruc-
tions and fuselage constants. To repeat the solution for a
different frequency, a different initial card was substituted.
Output was in the form of a tabular listing only. At the end
of each section, all the counters were impulsed to total with-
out reset on a minor program cycle. This caused the print-
ing of a table of f, g, h, G, G’, and H. The machine used was
equipped with automatic conversion and reconversion so
that true negative values were listed, and complement nega-
tive values were retained. The identical program cards were
used for different helicopters, or revisions of the same
model helicopter. The new structural constants were
punched in a different factor field in the same card.

The time of solution on the CPC was approximately two
minutes for uncoupled vertical bending (compared to eight
hours hand computing). Coupled side bending and torsion
required five to six minutes per frequency investigated.

Complete checking was not attempted. Smoothness of
the residual moment curve served as a check against ob-

aThese computations were carried out in the Vibration Analysis De-
partment of the Piasecki Helicopter Corporation.
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vious errors. These curves were plotted while the CPC was
in operation. If a random error was suspected, that fre-
quency was re-run. If the results were identical, and a con-
sistent error was suspected, a setup change switch was
utilized to read the structural constants from a different
factor field on the cards, which field contained the struc-
tural constants of an helicopter model which had previously
been extensively investigated.

Throwing of the setup change switch which controlled
the number of decimal figures retained in each step of the
calculation, should give similar answers; thus, single digit
counter overflow could be ruled out. These safeguards
against error, together with the expected values of the
natural frequences of vibration derived by the design engi-
neers on the basis of uniform beam theory were deemed
sufficient guarantees of the correctness of the calculation.
The errors arising from truncation of the various numerical
quantities after seven decimal places-could usually be esti-
mated by comparison of the results obtained using only six
decimal digits. As was expected, this truncation error in-
creased rapidly with %, but was within acceptable bounds
for the ranges of interest for design purposes.

This problem is considered an ideal type of problem for
solution on the CPC. The counters and storage were prac-
tically completely utilized to the maximum efficiency. After
the problem had been set up and in operation for some
months, the engineers wished to discover what effect, if any,
their assumption of a rigidly mounted engine had upon the
frequency spectrum. This meant that to investigate the non-

. rigid engine mounting case, some of the structural “con-

stants” became prescribed functions of the frequency being
investigated. The conversion from one problem to the other
required the replacement of 5 to 10 program cards; thus, it
was very convenient to alternate between the two cases to
assess the importance of their original assumption in the
various frequency ranges.

It is of interest to compare the procedure used with the
recently developed floating decimal procedures. The main
body of the solution consists of the accumulation of products
to obtain the succeeding values of the dependent variables.
In the procedure used, practically every card used the mul-
tiplication type of operation, and the addition was per-
formed by the read-in to the 402 counters. Thus, the pro-
gramming of this problem by floating decimal procedures
would require practically twice as many program cards.

On the other hand, floating decimal procedures would
guarantee eight significant figures at each step. This com-
pares with six figures (or five in a few cases at higher fre-
quency) in the present procedure. Further, the initial plan-
ning would have heen only a fraction as complicated, since
scaling would have been unnecessary. Floating decimal
operation would also have eliminated the necessity for con-
version factors of powers of ten.
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DISCUSSION

Mr. Ferber: This is exactly the method that we have
been using at Consolidated Vultee in San Diego for the past
four or five years. In fact, we used this method on the
601 sometimes with complex numbers. It was really a big
problem. We also have more flexibility taken into account
and instead of four and six equations, we often have eight
and ten simultaneous equations. However, I found again
that this was just the problem where you would want to
emit the value of  rather than punch a card each time.

Mr. Conant: Is there a possible application to slightly
different problems, that is, vibration within the cabin of an
aircraft, due to vibrations of the motor and propeller-mount ?

My. Leone: One of the easiest ways to remedy the exces-
sive vibrations of the engine, of course, is to vary its
flexible mounts, but in this particular problem, one has to
be careful that, in so doing, the resulting coupling effect of
the fuselage vibration with the engine will not produce a
coupled frequency which will fall inside of an excitation
range.

Dr. Welmers: Very frequently a rough experimental
check, after the airplane or the helicopter has been con-
structed, can give some results rather conveniently. In one
particular instance on a helicopter where we had excessive

COMPUTATION

cabin vibration, a couple of hours spent in vibrating the
ship and in shifting the battery around in the tail structure
solved the problem. The total shift of the battery was about
one and a half or two feet. It completely eliminated an
annoying cabin vibration that had been complained of by
the pilots. Much of this work is hardly worth a careful
analytical. study because the variations from one ship to
another may make it almost impossible to apply on a pro-
duction basis. The sheet-metal and the way in which it is
bent on most of these non-structural items is not particu-
larly carefully watched.

Mr. Leone: 1 would just like to say that we at Piasecki
are developing a method for the analysis of the flutter and
force response of the rotor blade in which we, too, hope to
use complex numbers, but it appears to be a big problem
at the moment because of the obscure knowledge of the
oscillating air forces on rotating wings.

My, Ferber: It may be of interest to mention an addi-
tional reference on this subject of Mr. Leone’s paper: “Cal-
culation of Coupled Vibration Modes and Frequencies of
Aircraft” by Michael Dublin, Consolidated Vultee Aircraft
Corporation. This paper was presented at the Applied Me-
chanics Conference held at Stanford University on June
22-23,1951.



