

Palo Alto Amateur Radio Association Solar 101

Any information provided in this presentation is the opinion of the author and should not be considered expert advice.

Electricity is inherently dangerous and if you are at all unsure about what you are doing, please consult a professional electrician.

Always follow electrical codes specific to your area and consult with your insurance company before undertaking any modifications to your home electrical system or storing fuel to unsure they comply with your insurance policy.

Readers agree to assume all risks resulting from the application of any of the information provided within this presentation.

Agenda

- Why Solar?
- Evaluating your needs
- Batteries
 - Lead Acid
 - Lithium Iron Phosphate (LiFePO4)
- Photovoltaic (Solar) panels
 - Monocrystalline
 - Polycrystalline
 - Foldable
 - Hybrid
- Charge Controllers
 - Pulse width modulation (PWM)
 - Maximum power point tracking (MPPT)

Inverters

- Modified sine wave
- Pure sine wave

Putting it all Together

- Designing Your System
- Using Solar in Emergency Communications

This is Why We Prepare!

Severe Storms Leave Nearly 400,000 Without Power on East Coast

Shawn Marsh/AP 9-25 AM FT

🔤 f 🗾 <u>8</u> in

Public transit was disrupted

(TRENTON, N.J.)-Powerful storms that plowed through eastern Pennsylvania, New Jersey and Connecticut downed trees and power lines, leaving nearly 400.000 customers without electricity and disrupting mass transit service in both states Wednesday.

In Pennsylvania, PECO says more than 165,000 homes and businesses were without power. Chester and Delaware counties were hardest hit, and officials said full service might not be restored until the weekend

through Centre Count

Power outages to continue

COURIER-POST STAFF 5:18 p.m. EDT June 24, 2015

See end of story for Carly Q. Romalino's live reports of South Jersey storm damage.

(Photo: Jim Walsh/Courier-Post)

f 292	9 45	in	•	6
CONNECT	TWEET	LINKEDIN	COMMENT	EMA

More than 200,000 homes and businesses I electricity Wednesday after powerful thunder toppled trees and snapped power lines acros Jersey.

Public officials opened cooling centers and Power Outages across Connecticut "reception stations" that all

recharge phones, contact insurance companies and pick up i

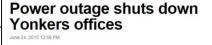
Complete utility restoration may take several days.

Downed trees cause power outage in Freeport

Downed trees cause power outage in Freeport WCSH

11:48 p.m. EDT June 23, 2015

Photo: NEWS CENTER



knocked out power to many homes and businesses along Route 1 in Freeport Tuesday night after a strong storm blew through southern Maine.

"It was a quick shift of the weather. I mean it happened instantly. It became more than just a

regular rainstorm. It became something else in the snap of the finger," said the coowner of the Kendall Tavern Inn, Mark Provost.

(June 24, 2015 12:56 PM)

The Yonkers Public Library and the several of city's offices in Larkin Plaza are closed this afternoon because of a power outage

Hundreds of city employees, including some employees from the Board of Education, have been sent home for the day

WTNH.com Staff Published: June 23, 2015, 4:42 pm | Updated: June 24, 2015, 7:23 am KK6DAC

(WTNH) — The severe weather is over but there are thousands of homes still without power across the state.

Here are the latest power outage numbers from United Illuminating and Eversource listed by town.

As of Wednesday morning, 18,908 Eversource customers and 567 United Illuminating customers were without power.

contractors and workers from other states are helping in the effort BY MAX RETTIG | JUNE 24, 2015 AT 12:49 PM

Shutterstock.com

After last night's stormy weather, PECO is working hard to restore power to some 140,000 houses and businesses throughout the area.

The biggest power losses occurred in Chester County – where 52,022 customers were affe - and Delaware County, with a whopping 69,881 outages, according to a PECO outage map updated as of 12:23 p.m. Those numbers represent 24%-29% of the homes in those

The Power Grid is Vulnerable

U.S. Power Grid Being Hit With 'Increasing' Hacking Attacks, Government Warns

Potential to 'take down' U.S. power grids, water systems and other critical infrastructure

BY: Adam Kredo

June 24, 2015 5:00 am

Major attacks on the U.S. power grid system are "increasing," with hackers stepping up efforts to penetrate critical systems and to implant malicious software that could compromise the power grid and result in a nationwide crisis, according to a government report.

While experts have long signaled that the U.S. power grid and related systems are

vulnerable to physical attacks by terrorists and other individuals, the U.S. government is now warning

that sensitive con Congressional Re American Scientis

Hackers attacked the U.S. energy grid 79 times this year

POSTED 7:04 PM, NOVEMBER 18, 2014, BY CNN WIR

f FACEBOOK Y TWITTER 8+ COOCLE P PINTEREST

REST 💣 REDDIT 🔤 EMAIL

NEW YORK (CNNMoney) – The nation's energy grid is constantly under attack by hackers.

In fiscal year 2014, there were 79 hacking incidents at energy companies that were investigated by the Computer Emergency Readiness Team, a division of the Department of

Homeland Security. There were 145 incidents the previous year.

The outermost defenses aren't holding up. Between April 2013 and 2014, hackers managed to break into 37% of energy companies, according to a survey by ThreatTrack Security.

CYBER ATTACK

US White House asks Congress for new hacking protection laws

The US White House has urged Congress to pass new cyber security rules after this week's revelation by the US government that the personal data of millions of current and former federal employees had been hacked.

HOMELAND INSECURITY U.S. POWER GRID HIT WITH 'INCREASING' HACK ATTACKS

Malicious software could cause national crisis

Published: 2 hours ago

(FREEBEACON) — Major attacks on the U.S. power grid system are "increasing," with hackers stepping up efforts to penetrate critical systems and to implant malicious software that could compromise the power grid and result in a nationwide crisis, according to a government report.

While experts have long signaled that the U.S. power grid and related systems are vulnerable to physical attacks by terrorists and other individuals, the U.S. government is now warning that sensitive computer systems that maintain the grid are increasingly being attacked, according to a Congressional Research Service (CRS) report that was not made public until the Federation of American Scientists (FAS) disclosed it this month.

The report warns that hackers potentially affiliated with terrorist groups or rogue nations have the ability to insert harmful malware into the internal systems governing the U.S. grid, which increasingly are being hooked into the Internet.

The Infrastructure is Aging

When the power grid fails

JUN 18, 2015

Hurricane Sandy in 2012 knocked out power in Branford, Connecticut for nearly a week.

The nation's system of power plants, utility poles and electrical wires is aging. And compared with other developed countries, it's less and less reliable. Among the worst hit states: Connecticut.

Three historic storms hit the state in 2011 and 2012. Each time, more than 600,000 residents lost power for days. More than lights went out: household water comes from wells in the town of Marlborough.

Power grid's failing infrastructure at risk of cyberattack

By Christopher Snyder · Published April 08, 2015 · FoxNews.com 👘 📫 14

Tuesday's power failure in Washington has once again raised questions about the vulnerability of America's electric power grid.

Fox News National Security Analyst <u>KT McFarland</u> spoke to experts Darren Hammell and Jonathan Pollet about potential threats.

The power grid "is very vulnerable, whether its physical attacks, mistakes like this one or even cyberattacks ... there have been a lot of high visibility outages lately and there are just more we can expect," said <u>Hammell</u>, chief strategy officer and

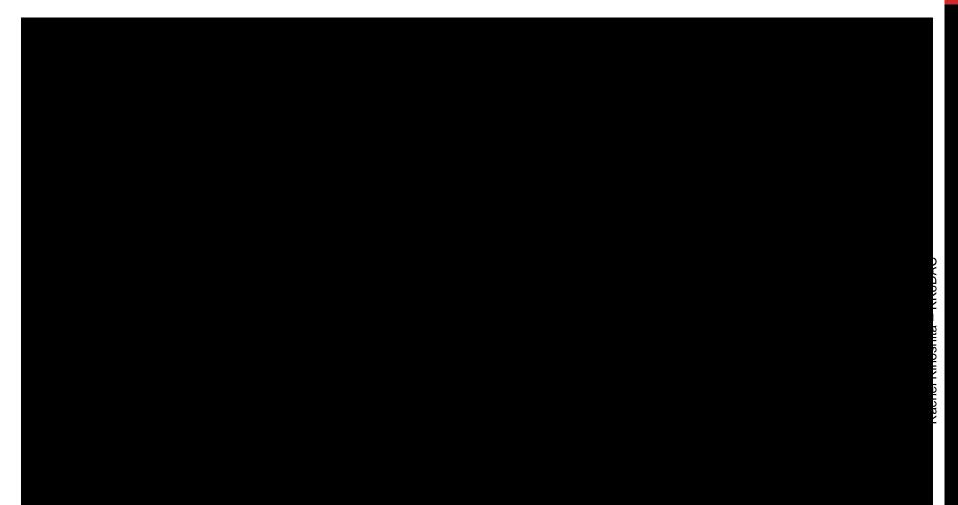
Is the U.S. Investing Enough in Electricity Grid Reliability?

Like it? Posted June 16, 2015

La Keywords: Electricity, Energy Security, Tech, Smart Grid, Sustainability, Utilities, Environmental Policy, Risk Management, Electricity Grid, Energy and Economy, Fuels, News, electricity demand, grid infrastructure, grid reliability

We had a 2-hour power outage at our house last week, together with 45,000 other customers in the East Bay. The lights flickered off just after 8PM and didn't come back on until after 10PM. Nothing like going without something that you take for granted to make you realize just how valuable it is.

My son and I had fun gathering our candles and figuring out that our hand-crank radio played Mariachi music, but that only lasted for about half an hour. As the minutes ticked by without WiFi, the economist in me started thinking about just how much I would be willing to pay to get the electricity back. I had a meeting the next day to prepare for, and it was my turn to take a pass through the slide deck. I couldn't even get good enough cell service to download the presentation to my phone, perhaps because local cell towers were also affected by the outage.



The East Bay outage was reportedly caused by a squirrel

- KK6DAC

Rechel Kinoshita

How Long Will it Take to Restore Power After a Disaster?

Electricity – The Basics

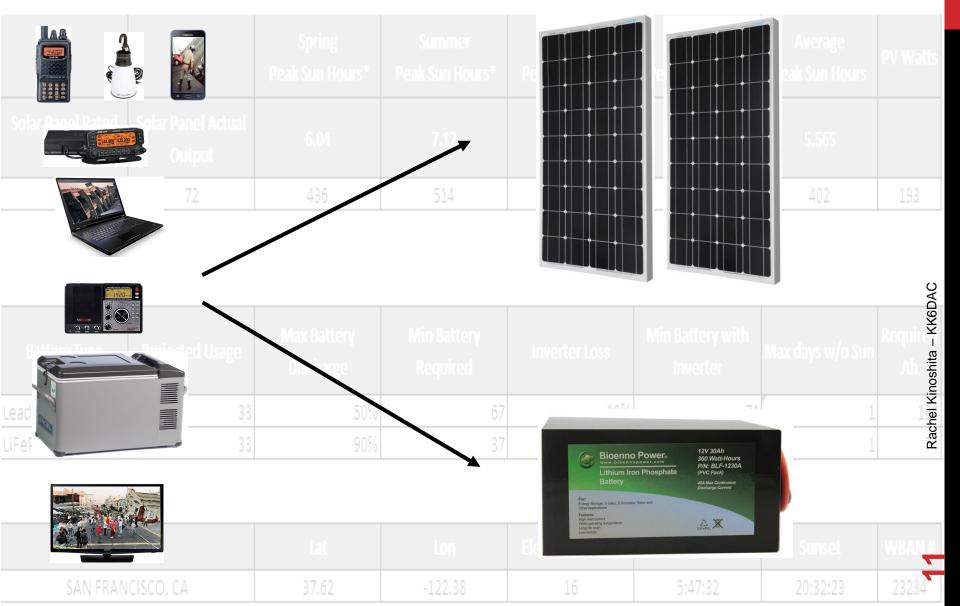
Terminology

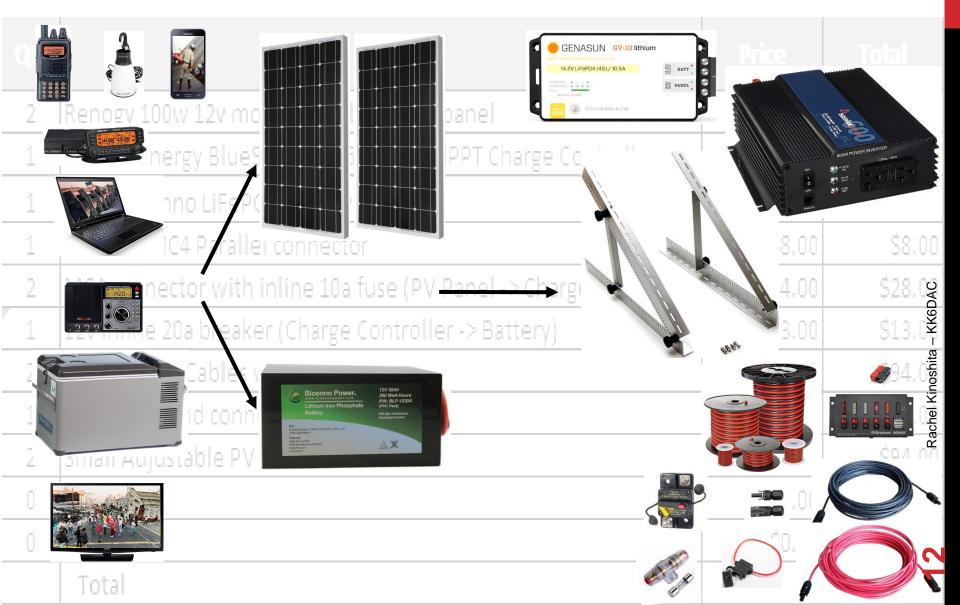
- AC stands for alternating current; it's the form of electricity delivered to your house
- In the US, AC cycles back and forth 60 times per second (i.e. 60 hertz) in a sine wave pattern
- In the US, standard household AC is 117 volts with a peak voltage of 165 volts
- Two legs of 117/120v AC are delivered to each house for a total of 240v
- The two legs are typically split between leg A and B so most circuits are 120v
- Most households also have a 240v circuit for things like electric dryers
- DC stands for direct current; it's for the form of electricity that comes from batteries
- Most cars use 12v DC (actually closer to 13.8v DC)
- Direct current has a positive (+) and negative (-) which don't cycle
- Many items such as your mobile phones, tablets, computers, televisions, radios use direct current

Rachel Kinoshita – KK6DAC

What's a Watt?

- Watts are volts (for example 120VAC or 12VDC) times amps
- A 60 watt lightbulb would use <u>0.5</u> amp at 120VAC (60 = 120 * 0.5), but <u>5</u> amps at 12VDC (60 = 12 * 5) per hour
- A 1200 watt microwave would use <u>10</u> amps at 120VAC, but <u>100</u> amps of 12VDC per hour




Evaluate Your Needs

What Do You Need To Power Those Devices?

What Is Needed To Connect It All Together?

What do you need to power?

- Ham radio
- Lights
- Radios
- Mobile phones
- Laptop computer
- Television
- Refrigerator
- Microwave
- Medical Devices (CPAP, oxygen, refrigeration for insulin)
- How long do you need it to run?
- Do you need both AC and DC?

What do you need to power?

- Ham radio
- Lights
- Radios
- Mobile phones
- Laptop computer
- Television
- Refrigerator
- Microwave
- Medical Devices (CPAP, oxygen, refrigeration for insulin)

> How long do you need it to run?

- How many hours per day and days per week
- Short outages during storms
- Three to four weeks during after an earthquake
- Months or perhaps even years after an major disaster
- Do you need both AC and DC?

• What do you need to power?

- Ham radio
- Lights
- Radios
- Mobile phones
- Laptop computer
- Television
- Refrigerator
- Microwave
- Medical Devices (CPAP, oxygen, refrigeration for insulin)

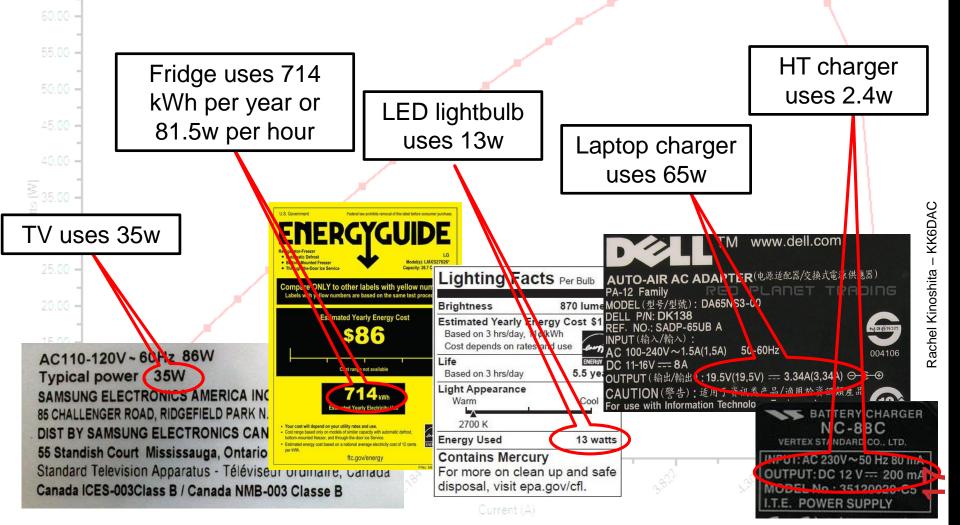
How long do you need it to run?

- How many hours per day and days per week
- Short outages during storms
- Three to four weeks during after an earthquake
- Months or perhaps even years after an major disaster

Do you need both AC and DC?

- Inventory your devices and see how many actually use DC, but are charged by AC
- DC to AC and AC to DC is expensive, try to avoid it

Measuring your usage


• 65.00

- For AC powered devices, get a Kill A Watt monitoring device and plug it into each appliance you plan to run. See how much power each uses over a 24 hour period
- For DC powered devices, a Watts Up meter can be used to measure the watts used over time
- Once you have identified the devices you want to power by solar, multiply the watts used per hour by each device times the number of hours you want to power them
- Add up the watt hours for each device to determine your overall watt hour requirements

• You can also look at the label on the device itself which should indicate the power usage for that device. However, this is often less accurate.

- Ham radio
- Lights
- Radios
- Mobile Phones and tablets
- Laptop Computers
- Television
- Refrigerator
- Microwave

Reducing your carbon footprint

Ham radio

- Use a good antenna, tuned to the frequency you're using
- Ensure good elevation and as few obstructions as possible
- Use the lowest power necessary
- Lights
- Radios
- Mobile Phones and tablets
- Laptop Computers
- Television
- Refrigerator
- Microwave
- Medical Devices

- Ham radio
- > Lights

- Switch to LED lightbulbs (saves around \$13 per year over incandescent)
- 12v LED lights Goal Zero, LED light strips, LED flood lights
- Solar chargeable lights LUCI Lights
- Headlamps and flashlights
- Batteries Rechargeable's Panasonic Eneloop, Tenergy Centura
- Battery charger Charge AAA, AA, C, D 18650 with 12v
- Radios
- Mobile Phones and tablets
- Laptop Computers
- Television
- Refrigerator
- Microwave
- Medical Devices

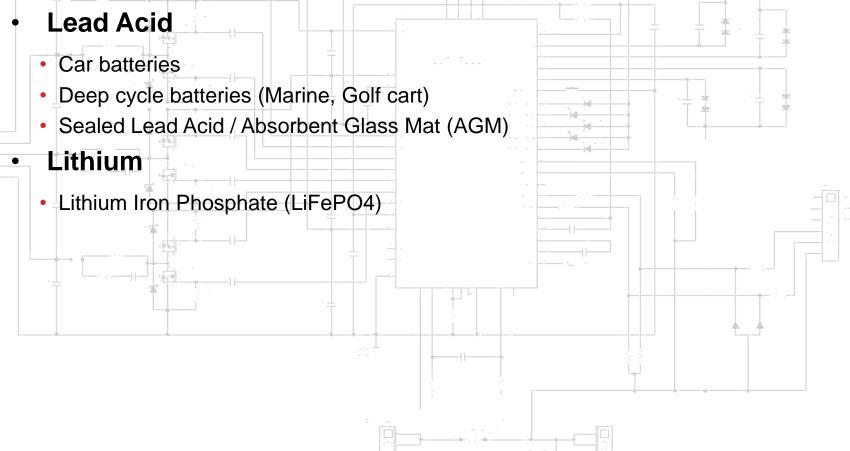
- Ham radio
- Lights
- Radios
 - Crank radios are good, but their tuners are often poor to mediocre
 - Purchase a good AM/FM radio that runs on AA's and use Panasonic Eneloop batteries
 - For extended run-time consider an AM/FM radio that uses rechargeable "D" cells
- Mobile Phones and tablets
- Laptop Computers
- Television
- Refrigerator
- Microwave
- Medical Devices

- Ham radio
- Lights
- Radios
- Mobile Phones and tablets
 - Typically use 5vdc USB chargers
 - Make sure you have a 12vdc to 5vdc USB chargers
- Laptop Computers
- Television
- Refrigerator
- Microwave
- Medical Devices

- Ham radio
- Lights
- Radios
- Mobile Phones and tablets
- Laptop Computers
 - Many laptops use 19vdc powered through a transformer
 - Use a 12vdc to 19vdc up converter to run direct from DC
- Television
- Refrigerator
- Microwave
- Medical Devices

- Ham radio
- Lights
- Radios
- Mobile Phones and tablets
- Laptop Computers
- Television
 - Get a small, portable, battery operated ATSC LCD TV or a full size HDTV that runs off of 12 – 14vdc
 - Get an HDTV antenna
- Refrigerator
- Microwave
- Medical Devices

- Ham radio
- Lights
- Radios
- Mobile Phones and tablets
- Laptop Computers
- Television
- > Refrigerator
 - See http://expeditionportal.com/overland-journal-portable-12vfridge-review/
 - Most can run from 12 or 24vdc and 120vac
 - Expensive, but can be used as a small chest freezer for everyday use
 - Thermoelectric coolers are not refrigerators
- Microwave
- Medical Devices



- Ham radio
- Lights
- Radios
- Mobile Phones and tablets
- Laptop Computers
- Television
- Refrigerator
- > Microwave
 - Microwave Use a generator to run your microwave or cook with a gas stove
- Medical Devices

- Capacity
 - Car batteries are usually measured in Cold Cranking Amps (CCA)
 - Deep cycle batteries, AGM, LiFePO4 are usually measured in Amp hours (Ah)

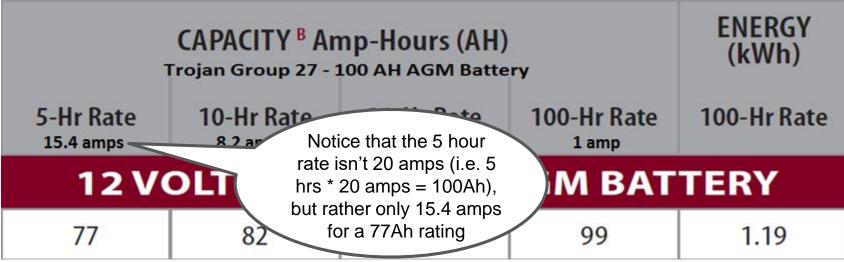
Capacity (Amp Hour Rating)

 How many amps can be delivered over a period of time before the battery is completely dead

	CAPACITY ^B Amp-Hours (AH) Trojan Group 27 - 100 AH AGM Battery				
5-Hr Rate 15.4 amps	10-Hr Rate 8.2 amps	20-Hr Rate 4.45 amps	100-Hr Rate 1 amp	100-Hr Rate	
12 V	12 VOLT DEEP CYCLE AGM BATTERY				
77	82	89	99	1.19	

Capacity (Amp Hour Rating)

 How many amps can be delivered over a period of time before the battery is completely dead

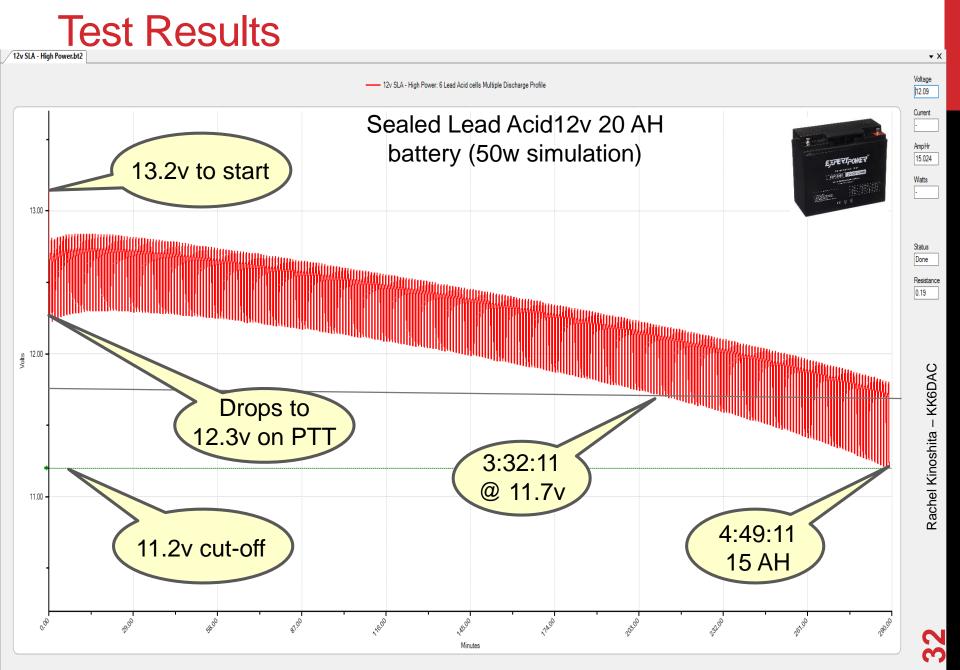

	CAPACITY ^B Amp-Hours (AH) Trojan Group 27 - 100 AH AGM Battery				
5-Hr Rate 15.4 amps	10-Hr Rate 8.2 amps	20-Hr Rate 4.45 amps	100-Hr Rate 1 amp	100-Hr Rate	
12 V	12 VOLT DEEP CYCLE AGM BATTERY				
77	82	89	99	1.19	

Why the different rates and amp hour capacity?

Capacity (Amp Hour Rating)

 How many amps can be delivered over a period of time before the battery is completely dead

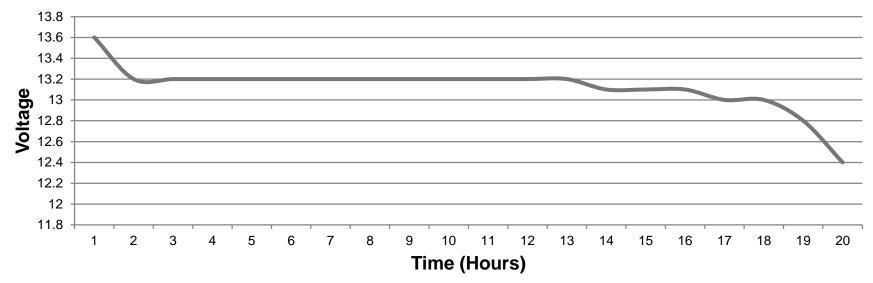
- Why the different rates and amp hour capacity?
- Peukert's Law Lead acid batteries have a shorter amp hour life, the higher the amperage draw


Capacity (Amp Hour Rating)

 How many amps can be delivered over a period of time before the battery is completely dead

	CAPACITY ^B Amp-Hours (AH) Trojan Group 27 - 100 AH AGM Battery				
5-Hr Rate 15.4 amps	10-Hr Rate 8.2 amps	20-Hr Rate 4.45 amps	100-Hr Rate 1 amp	100-Hr Rate	
12 VOLT DEEP CYCLE AGM BATTERY					
77	82	89	99	1.19	

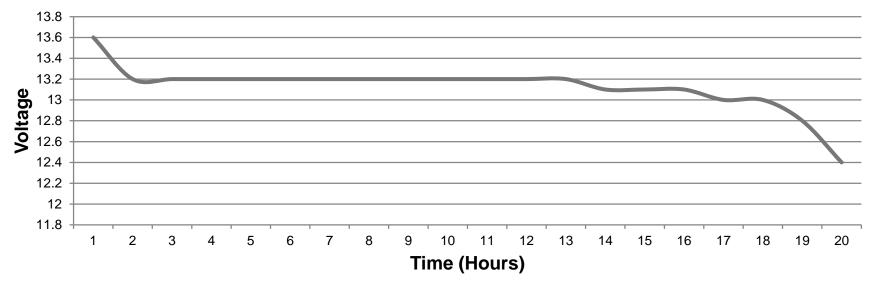
- Why the different rates and amp hour capacity?
- Peukert's Law Lead acid batteries have a shorter amp hour life, the higher the amperage draw
- And keep in mind that this battery will be completely dead (i.e. may no longer be rechargeable) if you use all of this capacity



Capacity (Lead Acid)

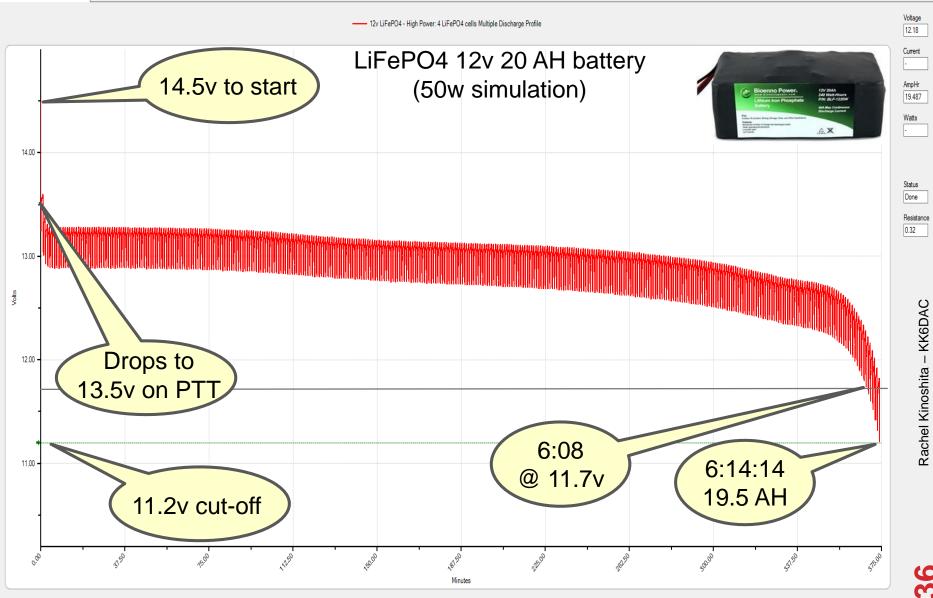
- Is the rate of discharge, the only factor that impacts capacity?
- No, other factors such as battery storage temperature and age also impact capacity
- Battery capacity is rated at 25° C / 77° F
- Lower temperatures reduce capacity
 - At 15.5° C / 60° F capacity is reduced to 90%
- Higher temperatures increase capacity
 - At 32° C / 90° F capacity is increased to 110%

Capacity (Amp Hours)


• LiFePO4 batteries typically have a much flatter discharge curve

Capacity (Amp Hours)

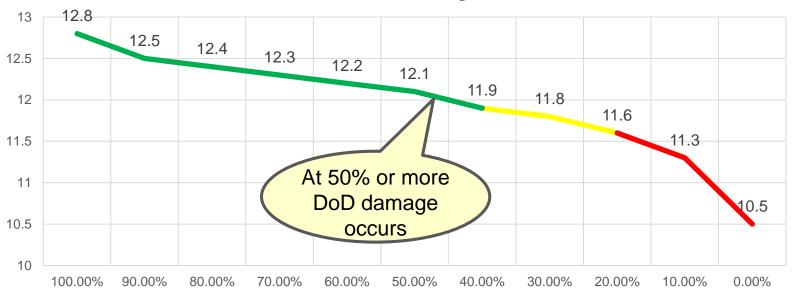
• LiFePO4 batteries typically have a much flatter discharge curve



 A 40Ah LiFePO4 battery can provide nearly 40 amps for an hour and can still be recharged

Test Results

12v LiFePO4 - High Power.bt2


CBA #40706 - Idle 🎆 🐓

- X

True Capacity – Lead Acid Batteries

- Avoid discharging below 75% (12.4vdc) on a regular basis to ensure maximum life
- At 50% depth of discharge, batteries will experience some degree of permanent damage; This should be the maximum discharge level
- · When calculating available amp hours, take the rated amp hours and half it
- Typical deep cycle lead acid batteries are rated for 550 cycles to 50% discharge

12v Lead Acid Voltage Curve

True Capacity – LiFePO4

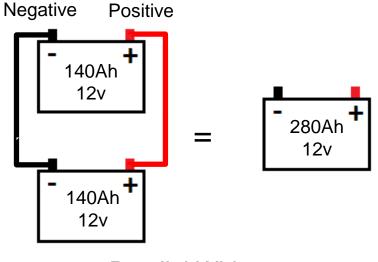
- LiFePO4 batteries can be drawn down to under 10% with no damage and can be recharged to near full capacity
- They can safely provide a very large number of amps in a short amount of time (i.e. a high C rating)
- Because LiFePO4 batteries can be drawn down to below 10%, the true Ah available in a LiFePO4 battery is much higher than that of an equivalent Lead Acid battery
- Beware of LiFePO4 batteries with an amp hour rating stated as "PbEq" which means "Lead Acid Equivalent". A LiFePO4 30ah PbEq battery is really a 15 to 20 amp hour (or less) battery
- LiFePO4 batteries can be recharged thousands of times

LiFePO4 Voltage Curve

Rachel Kinoshita – KK6DAC

> Adding More Capacity

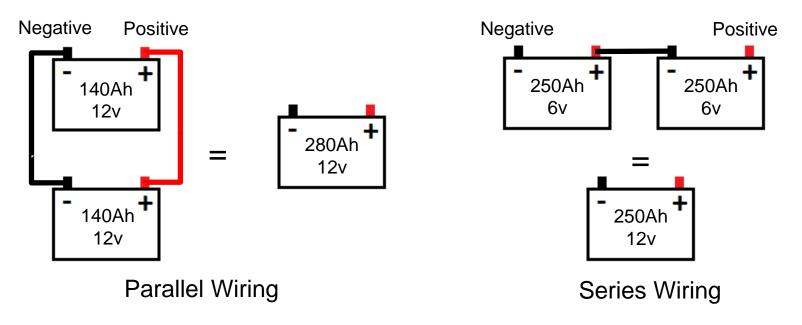
• You can increase the capacity of your battery bank by adding more batteries


> Adding More Capacity

- You can increase the capacity of your battery bank by adding more batteries
- Batteries should be the same voltage and amp hours and if at all possible the same age

> Adding More Capacity

- You can increase the capacity of your battery bank by adding more batteries
- Batteries should be the same voltage and amp hours and if at all possible the same age
- Batteries would be connected in parallel (positive to positive, negative to negative)



Parallel Wiring

Adding More Capacity

- You can increase the capacity of your battery bank by adding more batteries
- Batteries should be the same voltage and amp hours and if at all possible the same age
- Batteries would be connected in parallel (positive to positive, negative to negative)

- 2 Batteries connected in parallel doubles the amp hours
- 2 Batteries connected in series doubles the voltage

Lead Acid – Car Batteries

- Not recommended
- Designed for starting, not cycling
- Can be used in an emergency
- Expected battery life = 3 to 12 months depending on how it is maintained*

Lead Acid – Flooded Deep Cycle

- Thicker lead plates
- Requires venting
- Need to monitor the water level and refill as necessary
- Prices vary depending on Ah's and quality
- Expected battery life = 4 to 8 years depending on how it is maintained*

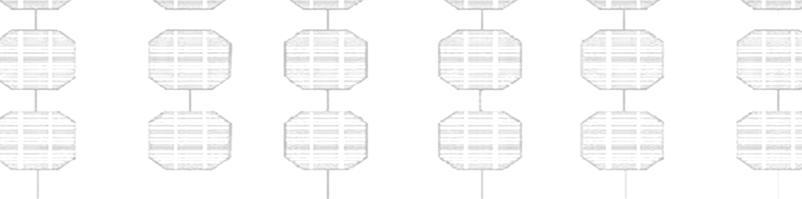
Lead Acid – Golf Cart Batteries

- Typically six volt, so you need to purchase them in pairs and connect them in series to get 12vdc
- Requires venting
- Need to monitor the water level and refill as necessary
- Relatively inexpensive per Ah
- Expected battery life = 2 to 7 years depending on how it is maintained*

Lead Acid - Absorbent Glass Mat (AGM) / Sealed Lead Acid

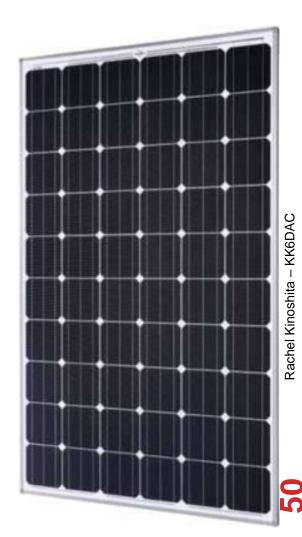
- Sealed, so venting and adding water is not needed
- Can be installed in any position
- Deep cycle
- Most expensive of Lead Acid type batteries
- Expected battery life = 4 to 8 years depending on how it is maintained*

Lithium Iron Phosphate (LiFePO4)


- Safe (punch a hole in one and they won't catch fire)
- Over charge/discharge protection with built-in battery management system (BMS)... will not explode
- Can be discharged below 10% and will recharge back to 100%
- Thousands of discharge/recharge cycles
- Be careful of how the manufacturer rates them (PbEQ)
- Although more expensive than lead acid batteries, over their life, they pay for themselves with more cycles and higher useful capacity
- Need to use a charger designed for this chemistry to ensure balancing

Rachel Kinoshita – KK6DAC

- Sunlight hitting the Earth in one hour is enough to power the entire world for a year
 - In the 1870s, William Adams and Richard Day discovered that the Sun's energy creates electricity when passed through selenium
- In the 1950s, Bell Labs scientist discovered that silicon cells generated 5x more energy than selenium and through experimentation, developed a cell that generated 50x more energy than selenium
- Today, some super-thin PV cells are over 300x more efficient than the first selenium cells



- Monocrystalline •
- Polycrystalline ٠
- Foldable (Thin Film, Copper indium gallium selenide [CIGS]) •
- Hybrid Bendable Monocrystalline •

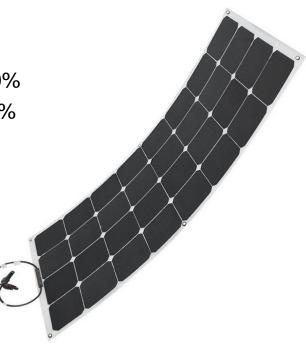
Monocrystalline

- More expensive
- Smaller footprint and less weight per watt
- Most efficient (~25%)
- Work best when pointed directly at the sun
- Shading a single cell could reduce output by 35 to 50%
- Shading by a bare branch could reduce output by 25%

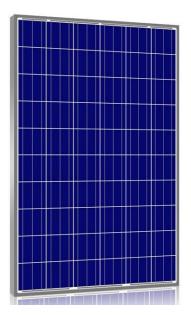
Polycrystalline

- Less expensive
- Larger footprint and more weight per watt
- Less efficient (~20%)
- Work best when pointed directly at the sun
- Shading a single cell could reduce output by 35 to 50%
- Shading by a bare branch could reduce output by 25%

> Foldable (Thin Film, Copper indium gallium selenide [CIGS])

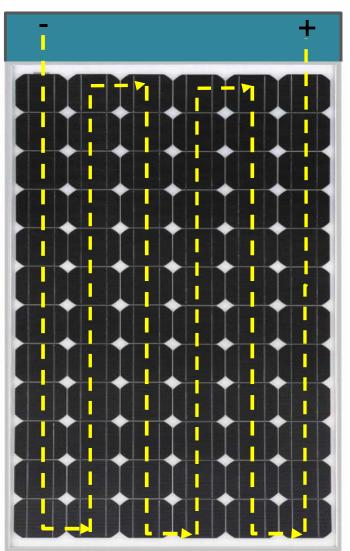

- Most expensive
- Larger footprint, but lighter weight per watt
- Super lightweight
- Least efficient (~14%)
- Don't have to be pointed directly at the sun
- Work well in partial shade

Hybrid – Bendable Solar Panels

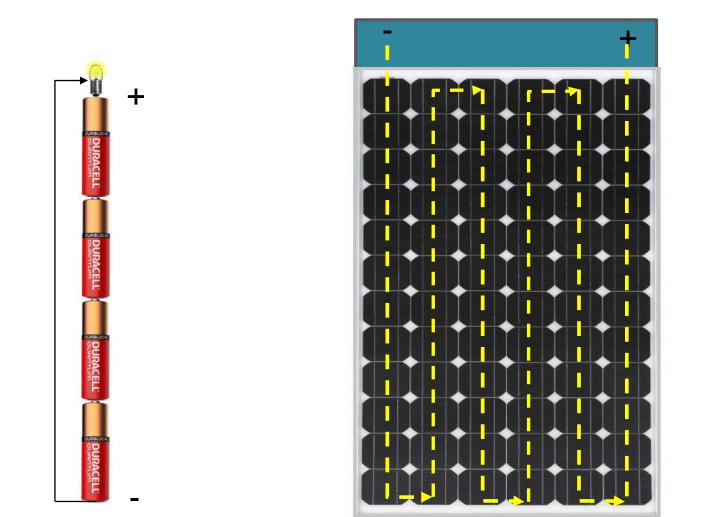

- More expensive than traditional panels, but less expensive than folding panels
- Monocrystalline
- Build on a plastic substrate with no aluminum frame, nor tempered glass
- Can be bent to some degree, but not folded
- Very lightweight
- Most efficient (~25%)
- Not as durable as traditional panels
- Work best when pointed directly at the sun
- Shading a single cell could reduce output by 35 to 50%
- Shading by a bare branch could reduce output by 25%

Larger (24v +) Solar Panels

- For non-portable use, are usually the best price per watt (typically under \$1 per watt)
- Can be found in 24v, 36v, 48v and higher output
- Good value for powering your shack and/or a few moderate sized appliances during power outages
- Work best when pointed directly at the sun
- Shading a single cell will reduce output by 35 to 50%
- Shading by a bare branch will reduce output by 25%

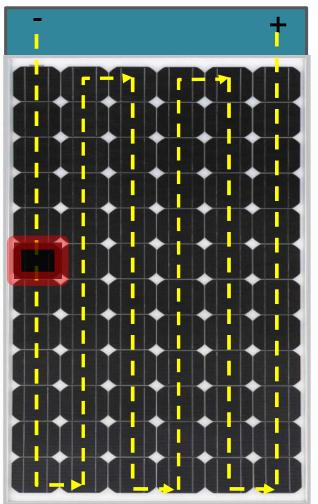


Why are most panels so impacted by a small amount of shading?



Let's take a look at how solar cells are connected...

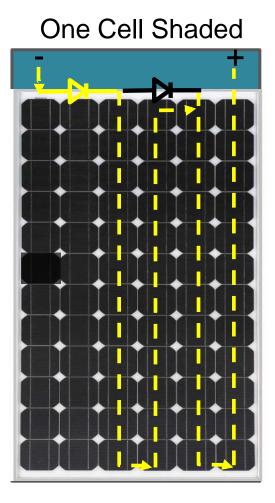
Like batteries in a flashlight, individual solar cells are connected in series

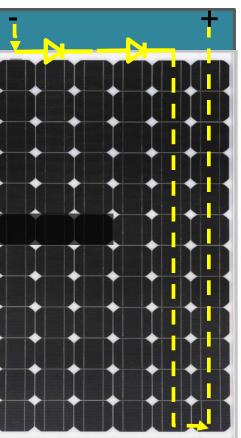


Think of shading like a flashlight with three new cells and one old one. Current flows from high to low, so in the same way that the old battery becomes a drain on the others, the shaded solar cell becomes a consumer of electricity, not a

producer and begins to generate heat

Rachel Kinoshita – KK6DAC


50

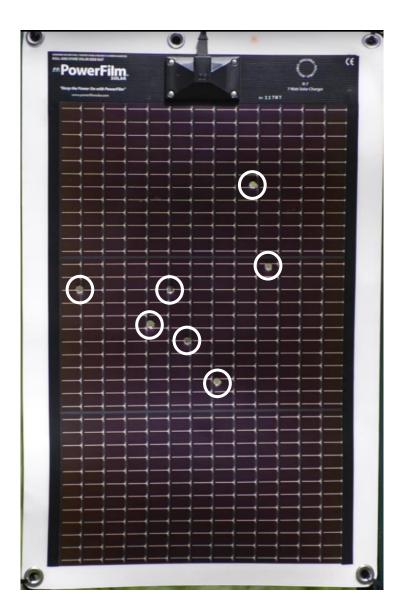

Photovoltaic (Solar) Panels

To prevent this, by-pass diodes are wired in parallel with the solar cells and become a lower resistance path around the shaded cells

No Shading

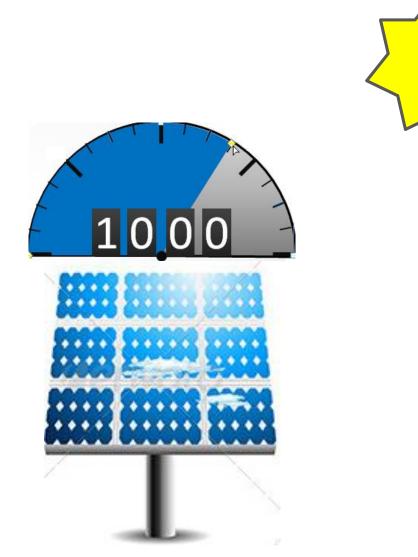
Three Cells Shaded

PowerFilm "panels" are wired differently so that shading or damaging a single cell or series of cells only reduces the output by the percentage that is covered


Shading a single set of cells only reduces the output by 5%

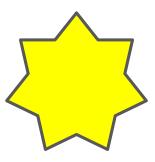
Shooting holes in the panel...

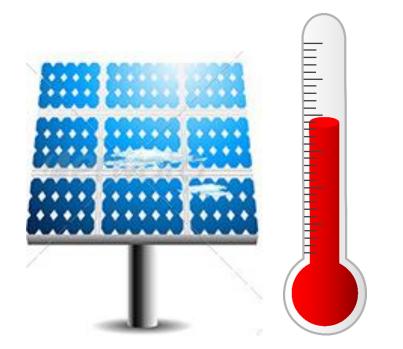
...only resulted in a loss of less than 20%

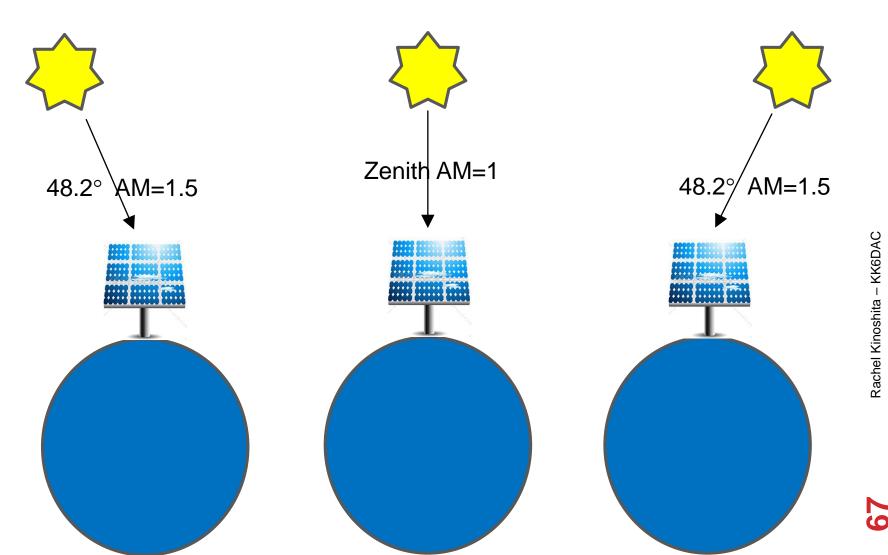


Photovoltaic (Solar)) Panels		
Standard Test Conditi	ions (STC)		Address: 2775 E. Philadelphia St., Ontario, CA, 91761 Tel: 800-330-8678 Fax: 888-543-1164 Web: www.renogy.com
Address: 2775 E. Philadelphia St., Ontario, CA, 91761 Tel: 800–330–8678 Fax: 888–543–1164 Web: www.renogy.com		Module Type: Max Power at STC (P _{max}) Open-Circuit Voltage (V _{oc}) Short-Circuit Current (I _{sc}) Optimum Operating Voltage (V _{mp}) Optimum Operating Current (I	RNG-100P 100 W 22.4 V 5.92 A 17.8 V 5.62 A
Module Type:RNG-100DMax Power at STC (P_{max})100 WOpen-Circuit Voltage (V_{oc})22.5 VOptimum Operating Voltage (V_{mp})18.9 VOptimum Operating Current (I_{mp})5.29 AShort-Circuit Current (I_{sc})5.75 ATemp Coefficient of P_{max} -0.44%/°CTemp Coefficient of V_{oc} -0.30%/°C		Optimum Operating Current (Imp) Temp Coefficient of Pmax Temp Coefficient of Voc Temp Coefficient of Isc Max System Voltage Max Series Fuse Size Rating Fire Rating Weight Dimensions 1010x080x55m STC Irradiance 1000 W/n	-0.44%/°C -0.30%/°C 0.04%/°C 600VDC (UL) 15 A Class C 7.5kgs / 16.5lbs
Temp Coefficient of Isc0.04%/°CMax System Voltage600VDC (UL)Max Series Fuse Rating15 AFire RatingClass CWeight7.5kgs / 16.5lbsDimensions1195x541x35mm / 47x21.3x1 4inSTCIrradiance 1000 W/m², T = 25°C, AM=1.5		WARNING: This module produces electrici Please follow all applicable electrical safety p Only qualified personnel should install or per- on these modules. Beware of dangerously high DC voltageswhei	ty when exposed to light. recautions. form maintenance work n connecting modules.
Electrical parameters at STC		Do not damage or scratch the rear surface of Follow your battery manufacturer's recomme	the module.
	SPECIFICATIONS rs at Standard Test Condition (STC)	005E1JIMSE305SE1JIMSE310SE1JIMSE315SE1JIMSE320SI	ELU MSE325SE1. JMSE320SE1. JMSE335SE1

VC.N	37.79	3 Module Type		-	WSE/905E1	IMSE295SE11	MSE300SE1	MSE305SE1.	MSE310SE1	IMSE315SE1.	MSE320SE1.	MSE325SE1	IMSE330SE1	IMSE335SE1.L
.48A	8.57A		Pmax		290	295	300	305	310	315	320	325	330	335
9.7V	29.9V	3 Tolerance	·····			1				0~+3%				
.92A	8.03A	8 Short-Circuit Current	lsc	Α	8.84	8.87	8.90	8.93	9.96	8.99	9.12	9.13	9.14	9.15
4.44	14.75	1 Open Circuit Voltage	Voc	۷	44.6	44.8	45.2	45.6	45.9	45.8	45.9	46.1	46.11	46.4
rature 2	5°C, AM1.5	Rated Current	Imp	A	8.15	8.19	8.26	8.32	8.39	8.47	8.56	8.60	8.62	8.68
		Rated Voltage	Vmp	۷	36.1	36.3	36.6	36.9	37.0	37.2	37.4	37.8	38.5	38.9
	.48A 9.7V .92A 4.44	.48A 8.57A 9.7V 29.9V .92A 8.03A 4.44 14.75	Module Type .48A 8.57A 8 9.7V 29.9V 3 Tolerance .92A 8.03A 8 Short-Circuit Current 4.44 14.75 1 Open Circuit Voltage rature 25°C, AM1.5 Sted Current	Module Type .48A 8.57A 8 9.7V 29.9V 3 Tolerance .92A 8.03A 8 Short-Circuit Current Isc 4.44 14.75 1 Open Circuit Voltage Voc ature 25°C, AM1.5 Sted Current Imp	Module Type .48A 8.57A 8 Power Output Pmax Wp 9.7V 29.9V 3 Tolerance	Module Type MSE20SE1. .48A 8.57A 8 Power Output Pmax Wp 290 9.7V 29.9V 3 Tolerance .92A 8.03A 8 Short-Circuit Current Isc A 8.84 4.44 14.75 1 Open Circuit Voltage Voc V 44.6 ature 25°C, AM1 5 Pated Current Imp A 8.15	Module Type INSE200SE1J MSE205SE1J .48A 8.57A 8 Power Output Pmax Wp 290 295 9.7V 29.9V 3 Tolerance	Module Type INSE290SE1J MSE295SE1J MSE290SE1J MS	Module Type MSE230SE1J MSE230SE1J MSE300SE1J MSE30SE1J MSE30SE1J MSE300SE1J MSE300SE1J MSE30SE1J MSE300SE1J MSE30SE1J MSE300SE1J MSE300SE1J MSE30SE1J MSE30S	Module Type INSE20SE1J MSE300SE1J MSE300SE1J MSE300SE1J MSE310SE1. .48A 8.57A 8 Power Output Pmax Wp 290 295 300 305 310 9.7V 29.9V 3 Tolerance	Module Type Msezause13 Msezause23 Msezause13 Msezause23 Nsezause13 Msezause13 Mse	Module Type Msez305sE1J MSE3005E1J MSE3105E1J MSE310E1J MSE3105E1J MSE	Module Type MsE295SE1J MSE300SE1J MSE300SE1J MSE305SE1J MSE310SE1J MSE310SE1J MSE310SE1J MSE320SE1J MSE320SE1J MSE325SE1J MSE310SE1J MSE310SE1J MSE310SE1J MSE310SE1J MSE310SE1J MSE310SE1J MSE325SE1J MSE325SE1J MSE325SE1J MSE325SE1J MSE325SE1J MSE310SE1J MSE325SE1J MSE325SE1J MSE325SE1J MSE325SE1J MSE325SE1J MSE325SE1J MSE310SE1J MSE31J MSE310S	Module Type Msezause13 Mse


Jel Kinoshita – KK6DAC


• Irradiance 1000 Watts per Square Meter


• Temperature = 25° C / 77° F

Air Mass (AM) = 1.5 ٠

Testing Solar Panels - Test Methodology

- The test was conducted from 11:45 to 13:00 PDT on 07 August 2016 in Menlo Park, CA
 - Non-foldable panels were tilted and positioned for optimal sunlight. Foldable panels were laid out flat on the ground
- The panels were tested using the West Mountain Radio Computerized Battery Analyzer (CBA) IV and the included software V2.4
 - The "Test Type" was set to "Power Profile", with a "Cutoff Voltage" of 12v
 - Test conditions were clear, 73° F with a light breeze

PV Panel

65.00 ·

60.00

55.00 -

50.00

45.00 -

40.00 -

M) 35.00 30.00

25.00

20.00

Renogy RNG-50DL 12v monocrystalline lightweight panel Renogy RNG-100DB 12v monocrystalline bendable panel Renogy RNG-100D 12v monocrystalline panel Goal Zero Boulder 30M 12v monocrystalline x 4 panels

PowerFilm FM16-7200 12v thin film foldable panel

Renogy RNG-50DL 12v monocrystalline lightweight panel +

Rated Watts	Tested Watts	% of Rated	Weight*	Weight/ Watt	Price**	Price/ Watt
50	37.98	75.96%	2.68	0.07	\$139.99	\$3.69

*Listed in Lbs. Weight is as listed by the manufacturer

**Typical Internet price

Panel no longer available from Renogy - Possible replacement HQST 50 watt 12v
 monocrystalline flexible panel @ \$109.99 for a price per watt of \$2.90

Renogy RNG-100DB 12v monocrystalline bendable panel ++

Rated Watts	Tested Watts	% of Rated	Weight*	Weight/ Watt	Price**	Price/ Watt
100	85.79	85.79%	4.00	0.05	\$219.99	\$2.56

*Listed in Lbs. Weight is as listed by the manufacturer

**Typical Internet price

++ Panel no longer available from Renogy - Possible replacement HQST 100 watt 12v monochrystalline flexible panel @ \$189.99 for a price per watt of \$2.21

Renogy RNG-100D 12v monocrystalline panel

Rated Watts	Tested Watts	% of Rated	Weight*	Weight/ Watt	Price**	Price/ Watt
100	88.7	88.70%	16.50	0.19	\$139.31	\$1.57

*Listed in Lbs. Weight is as listed by the manufacturer

**Typical Internet price

Amazon recently had these on-sale for \$109.99 for a price per watt of \$1.24

Goal Zero Boulder 30M 12v monocrystalline x 4 panels

Rated Watts	Tested Watts	% of Rated	Weight*	Weight/ Watt	Price**	Price/ Watt
120	90.96	75.80%	26.00	0.29	\$799.96	\$8.79

*Listed in Lbs. Weight is as listed by the manufacturer

**Typical Internet price

Additional Items Used as part of the test:

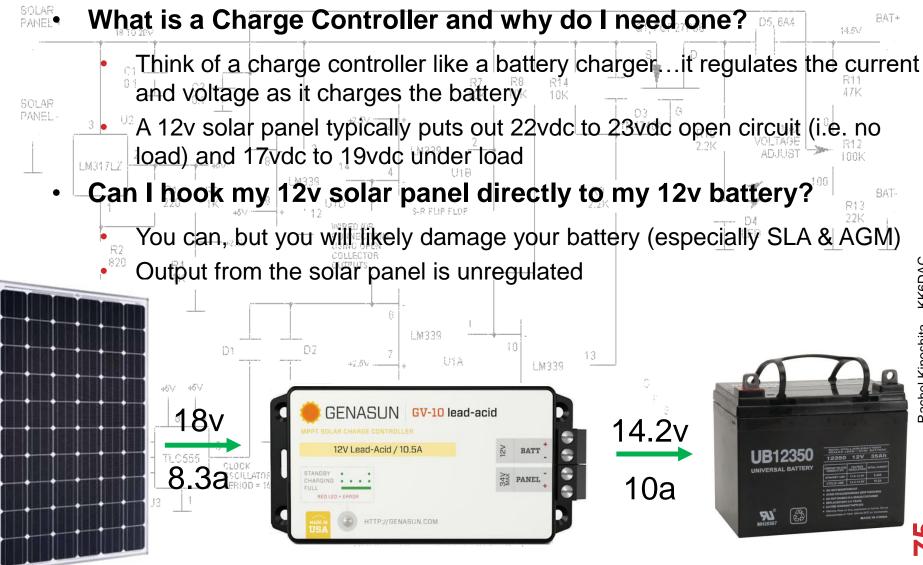
8 Panel Quick Clips, Tripod, Cases \$408.65 for a Price Per Watt \$13.29

Testing the Solar Panels

PowerFilm FM16-7200 12v thin film foldable panel

Rated Watts	Tested Watts	% of Rated	Weight*	Weight/ Watt	Price**	Price/ Watt
120	96.19	80.16%	6.50	0.07	\$1,212.00	\$12.60

*Listed in Lbs. Weight is as listed by the manufacturer **Typical Internet price


Testing the Solar Panels – The Results

PV Panel	Rated Watts	Tested Watts	% of Rated	Weight*	Weight / Watt	Price**	Price/ Watt
Renogy RNG-50DL 12v monocrystalline lightweight panel †	50	37.98	75.96%	2.68	0.07	\$139.99	\$3.69
Renogy RNG-100DB 12v monocrystalline bendable panel ++	100	85.79	85.79%	4.00	0.05	\$219.99	<u>\$2.</u> 56
Renogy RNG-100D 12v monocrystalline panel	100	88.7	88.70%	16.50	q.1 9	\$139.31	\$1.57
Goal Zero Boulder 30M 12v monocrystalline x 4 panels	120	90.96	75.80%	26.00	0.29	\$799.96	\$8.79
PowerFilm FM16-7200 12v thin film foldable panel	120	96.19	80.16%	6.50	0.0	\$1,212.00	
			Port	est ability Watt	W	est Be eight Pe Watt	st Price er Watt Kepyo

⁺ Panel no longer available from Renogy - Possible replacement HQST 50 watt 12v monocrystalline flexible panel (\$99)

++ Panel no longer available from Renogy - Possible replacement HQST 100 watt 12v monocrystalline flexible panel (\$179.99)

SOLAR

PANEL

- A good charge controller will provide 3-stage charging for lead acid batteries (and for flooded batteries, it may be a 4-stage)
 - Bulk Constant Current (or close to it) Charge to about 80% of battery capacity. Unlike a 3-stage AC battery chargers, a solar charge controller can't guarantee constant wattage input. Thus during Bulk, it's not necessarily Constant Current.
 Absorption- Constant Voltage (high voltage / lower current) and slowly reduce the current until the battery is nearly full
 - Float Voltage decreased to battery maximum (13.5 / 13.7), trickle current
 - Equalization A deliberate over-charge of the battery (typically 14.7 to
 - 15v for a 12v battery). Often performed monthly to equalize the cells and de-sulfate the lead plates.
 - Different types of batteries such as AGM, Gel, Flooded, LiFePO4 require different charging profiles
 - Some charge controllers are fixed for one type of battery
 - Some charge controllers have settings for a few battery types
 - Some charge controllers can be programmed with any value to match any battery
 - Make sure the charge controller you choose matches your battery, otherwise you may damage your battery

Rachel Kinoshita – KK6DAC

Charge Controllers

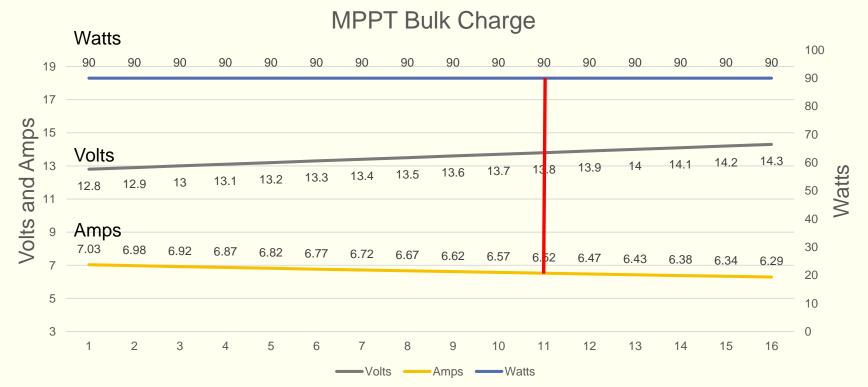
- Maximum Power Point Tracking (MPPT)
- Pulse Width Modulation (PWM)
- Cheap Controllers

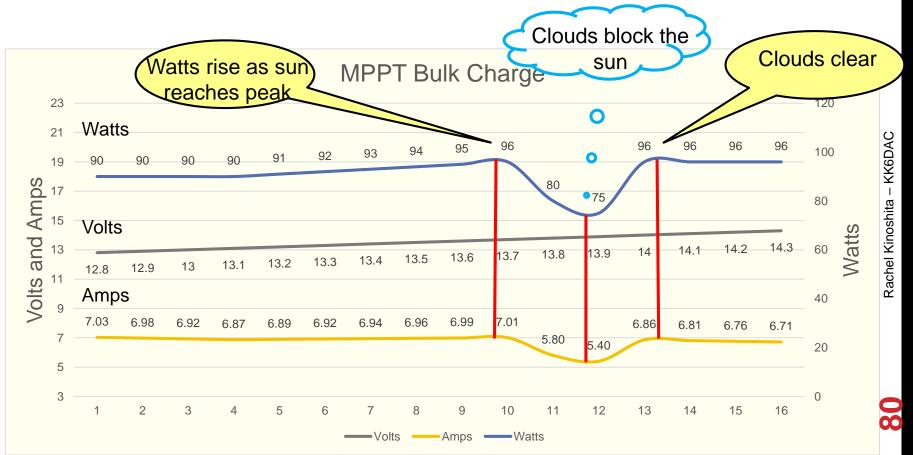
PWM

MPPT

Maximum Power Point Tracking (MPPT)

- More expensive
- Required when PV panel voltage is significantly higher than the battery (i.e. 24 or 36v panels and a 12v battery bank)
- Converts excess PV voltage into more amps
- During the Bulk phase, the controller takes the input wattage and outputs the optimum battery voltage and the maximum current
- During the Absorption phase, the controller pulses on and off many times per second. As the battery resistance increases, the length of the "on" pulse decreases




Maximum Power Point Tracking (MPPT)

For example, a 12vdc solar panel is producing 17vdc @ 5.3 amps (17 * 5.3 = 90 watts) with an initial battery voltage of 12.8v. An MPPT charge controller would, for example, charge the battery at 13.8vdc @ 6.5 amps (13.8 * 6.5 = 90 watts)

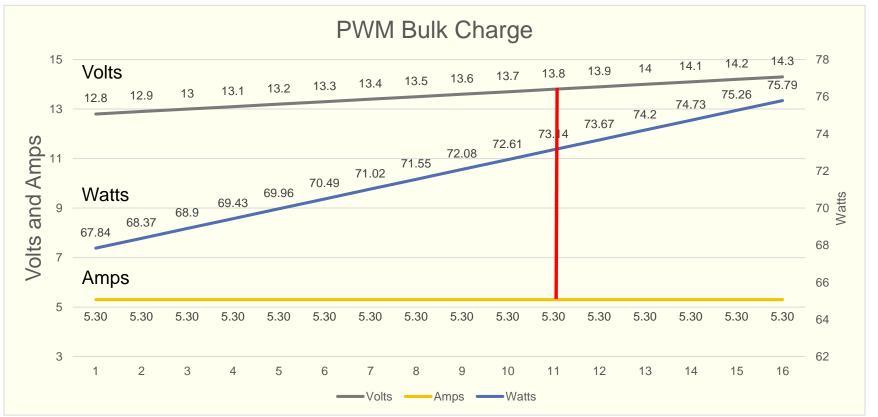
Maximum Power Point Tracking (MPPT)

 In this example, the output from the PV panel starts to go up as the sun rises in the sky. However, a cloud comes through and partially blocks the sun, dropping the output wattage. As the cloud moves out of the way, the output climbs back to 96 watts

Rachel Kinoshita – KK6DAC

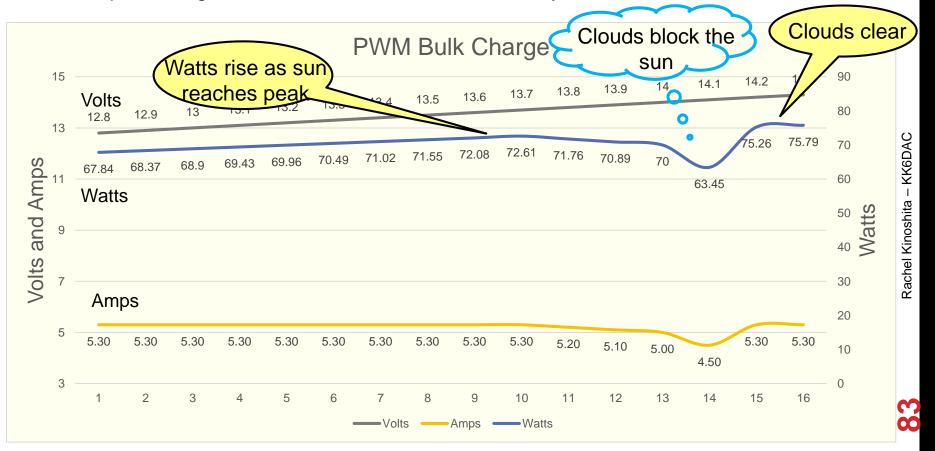
Pulse Width Modulation (PWM)

- Less expensive
- Works well when PV panel and battery voltages are closely matched
- Reduces PV input voltage to the battery voltage
- During the Bulk phase, the controller is basically a connector between the PV panel and the battery. Current is constant. Voltage increases as the resistance increases.
- During the Absorption phase, the controller pulses on and off many times per second. As the battery resistance increases, the length of the "on" pulse decreases
- Uses pulses to charge the battery
- Emit more EMI and RFI



00

Charge Controllers


Pulse Width Modulation (PWM)

Using the same example, a 12vdc solar panel is producing 17vdc @ 5.3 amps (17 * 5.3 = 90 watts). A PWM charge controller would charge the battery at 13.8vdc @ 5.3 amps (13.8 * 5.3 = 73 watts)

Pulse Width Modulation (PWM)

 In this example, the output from the PV panel starts to go up as the sun rises in the sky. However, a cloud comes through and partially blocks the sun, dropping the output wattage. As the cloud moves out of the way, the watts increase.

> Cheap Controllers

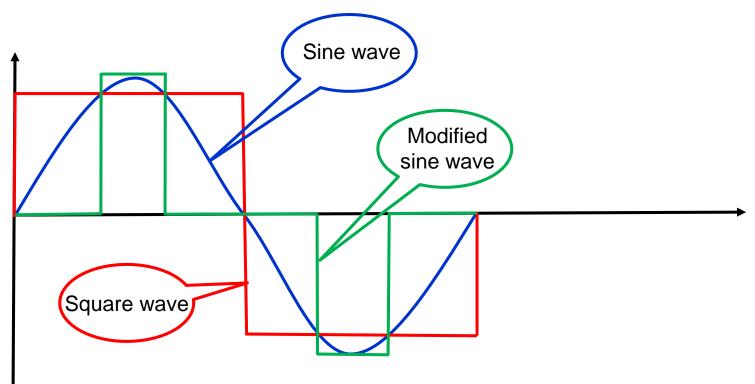
- Very inexpensive
- On / Off charging
- Unknown charging algorithm
- Most are designed for a single charging algorithm
- Could damage your batteries
- Avoid

Inverters

- Converts Direct Current (DC) to Alternating Current (AC)
 - DC is the form of electricity that comes from batteries
 - AC is the form of electricity delivered to your house
- Expect at least a 10% loss due to conversion
- Tend to generate Radio Frequency Interference (RFI)
- Typical consumer inverters use 12vdc to 48vdc input
- Output voltage and frequency for US inverters are typically
 120vac at 60 Hz
- Available in a wide range of output power
 - Different types of output waveform
 - Sine wave

Square wave

Modified sine wave


DIODE ZENER1

Inverters

Different types of output waveform

- Square Wave
- Sine Wave
- Modified Sine Wave

Rachel Kinoshita – KK6DAC

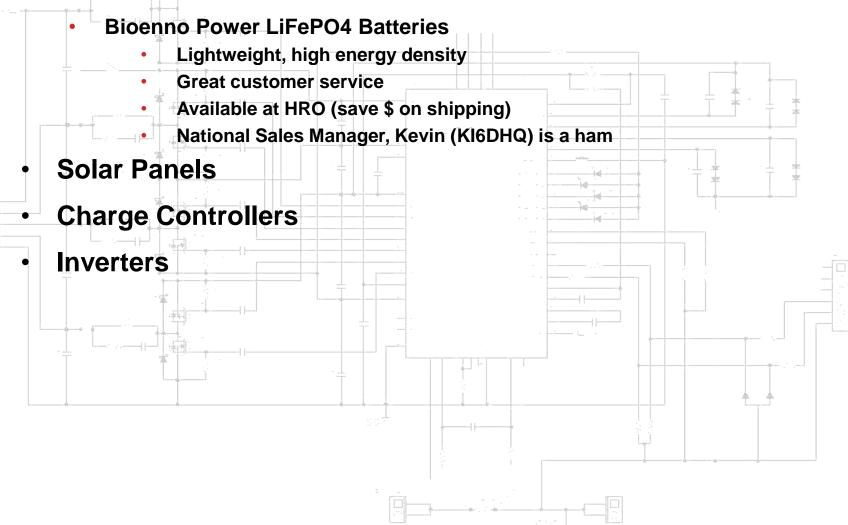
Pure Sine Wave

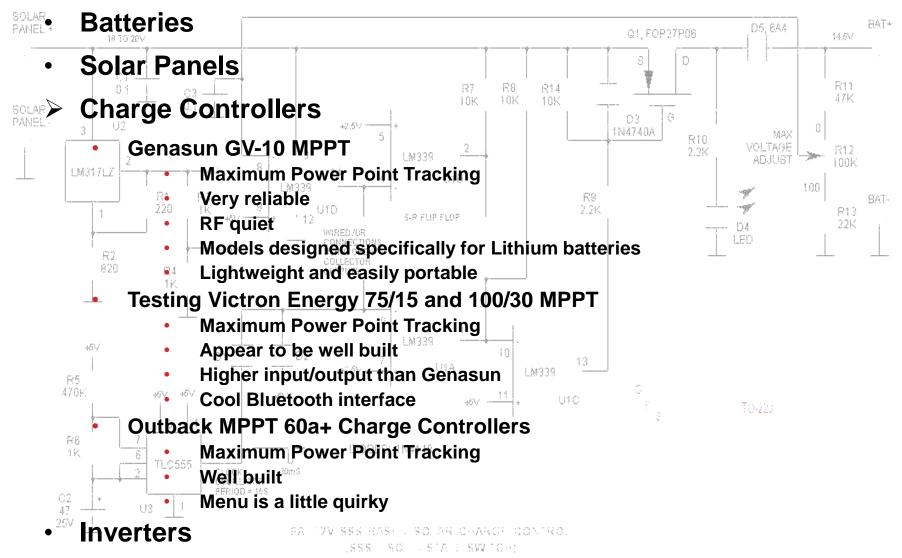
- More expensive, but prices have come down significantly
- Outputs a pure sine wave just like grid power
- Safe for delicate electronics
- Not as efficient, requires more input for the same output
- High surge capacity enables them to have much higher peaks than rated capacity

Inverters

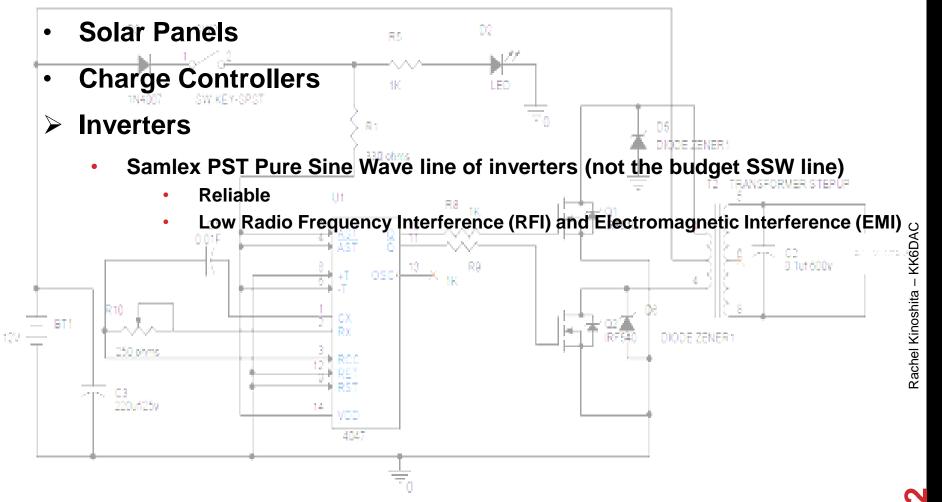
Modified Sine Wave

- Inexpensive
- Output is a square wave approximation of sine wave
- Emit more EMI and RFI
 - https://www.solar-electric.com/learning-center/general-solar-information/reducingelectromagnetic-interference-pv-systems.html
- Safe for many electronics like TVs and computers
- Motor driven devices such as refrigerators and drills don't like modified sine waves
- Microwaves, fluorescent lights and clocks don't like modified sine waves
- May damage delicate electronic devices




Components That I Like

> Batteries


Components That I Like E Vd **Batteries** • **Solar Panels** \geq Renogy 100w Rigid Solar Panels **Reliable and well constructed** Good value **Excellent customer service PowerFilm Solar** Lightweight, fold up into a very small package **Unique design Great for Field Day Charge Controllers** Inverters

Components That I Like

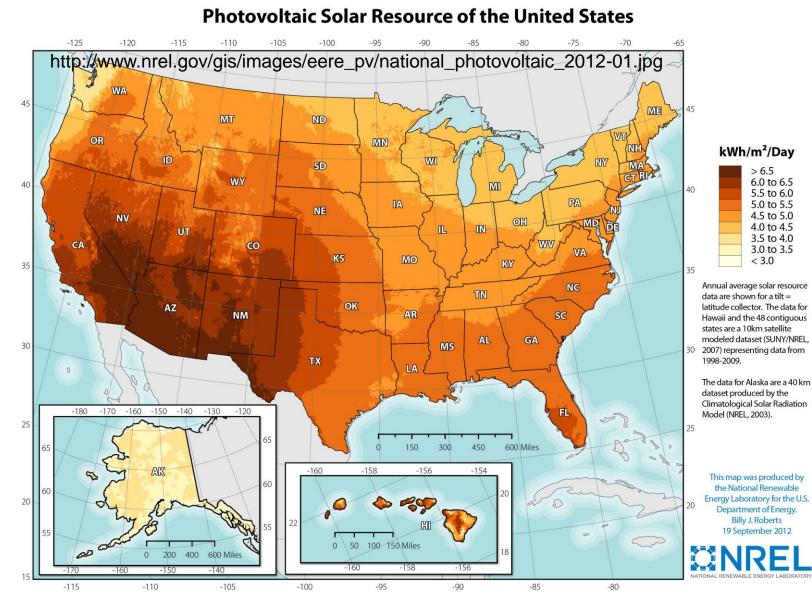
Components That I Like

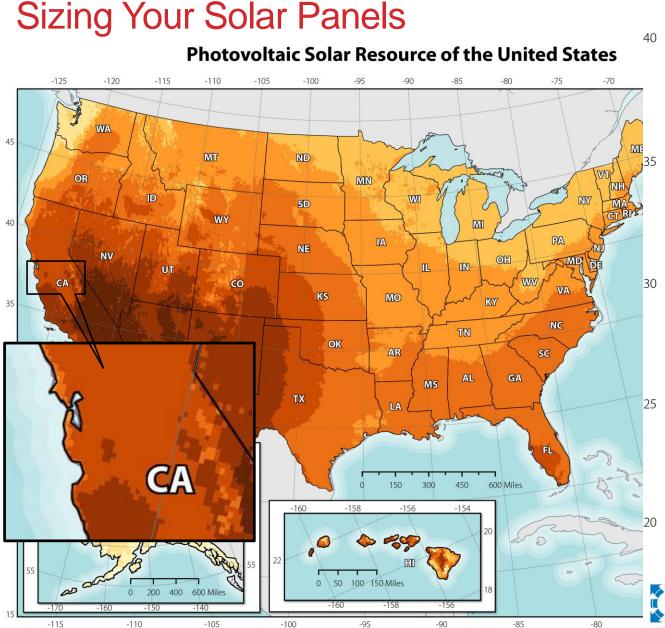
Batteries

Evaluating Your Needs

- 65.00 -60.00 -55.00 -45.00 -40.00 -
- Determine the watts used by each device that you plan to use
- Determine how much time per day it takes to charge that device or how much time per day that you will be using it
- Calculate how many days per week you will be using that device
- Multiply the Qty * Watts * Hours * (use per week / 7), then total it all up Calculate the Amp hours by dividing by the volts of your battery bank (i.e. 12v)

2 30. 2	°]							P Q
2 20	Qty	Device	Volts	Amps	Watts	Hours	Days/Week	Watt hours 0.0 X
~~.		Yaesu FT60r Standard Charger	12	0.2	2.4	10	3	0.0
25.	00 -	Yaesu FT60r Rapid Charger	12	0.9	10.8	1.5	3	ا ق
		Yaesu FT1D/2D Rapid Charger with FNB-101LI Battery	12	0.5	6	2.5	3	0.0
20.	⁰⁰ 1	Yaesu FT1D/2D Rapid Charger with FNB-102LI Battery	12	0.5	6	4	3	10.3 ^Ĕ
15		Engle MT80 Fridge / Freezer @ 41° F, amb temp 77° F			7.2	24	7	<u> </u>
	-	Engle MT80 Fridge / Freezer @ -4° F, amb temp 77° F			30			Rachel
10.	1	Battery Charger	12	3	36	3	1	15.4
_	4	LED Lights			10	3	7	1 <mark>20.0</mark>
э.	1	Mobile Phone Charger			6	2	7	12.0
0.	001	Laptop Charger			45	2	1	12.9
	1	LCD HDTV 24"			30	1	7	20.0
	0.00	Total States All All All All		-92°	-3°	b	5° 62	380.2
		Ah @ 12v						31.3


Sizing Your Batteries


- Let's start by sizing our battery requirements
- In our scenario, we plan to use 380.2 watt hours or 31.3 amp hours at 12vdc
- Lead acid batteries should not be drawn down below 50%, so we need at least a 63.4 Ah lead acid battery
- LiFePO4 batteries can be drawn down to 10%, so we need at least a 35.2 Ah LiFePO4 battery
- If you need to use an inverter, you must factor in a 10% loss converting from DC to AC
- Of course, not every day is sunny, so we also have to compensate for rainy and overcast days when very little solar power is generated

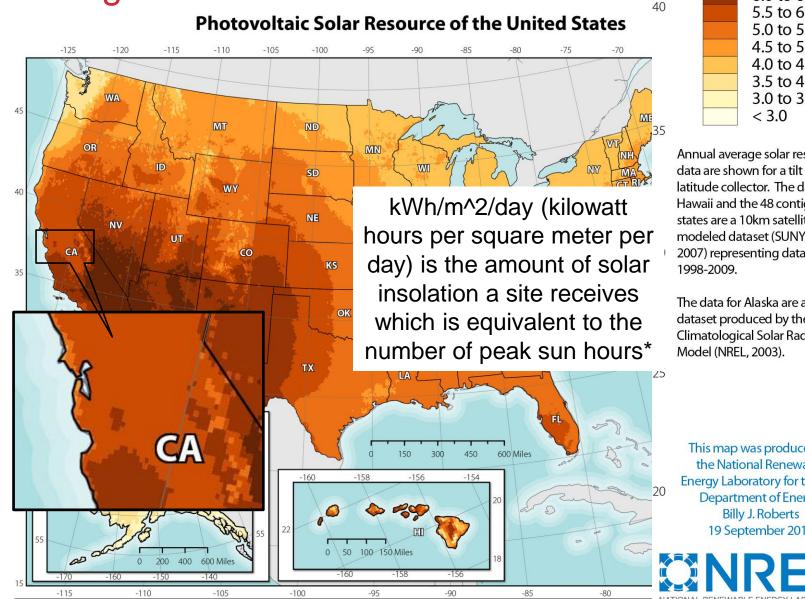
Battery Type	Projected Usage	Max Battery Discharge	Min Battery Required		Min Battery with Inverter		Required Ah	Required Ah (w/Inverter)
Lead Acid	31.3	50%	63	10%	70	2	127	141
LiFePO4	31.3	90%	35	10%	39	2	70	78

Rachel Kinoshita – KK6DAC

Sizing Your Solar Panels

kWh/m²/Day

Annual average solar resource data are shown for a tilt = latitude collector. The data for Hawaii and the 48 contiguous states are a 10km satellite modeled dataset (SUNY/NREL, 2007) representing data from 1998-2009.

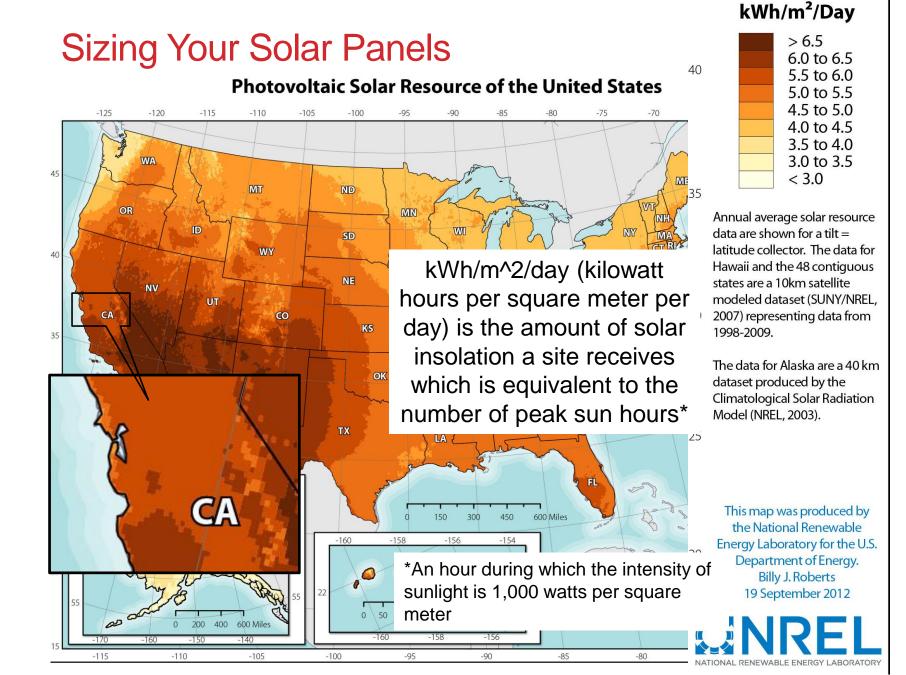

The data for Alaska are a 40 km dataset produced by the Climatological Solar Radiation Model (NREL, 2003).

This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy. Billy J. Roberts 19 September 2012

6

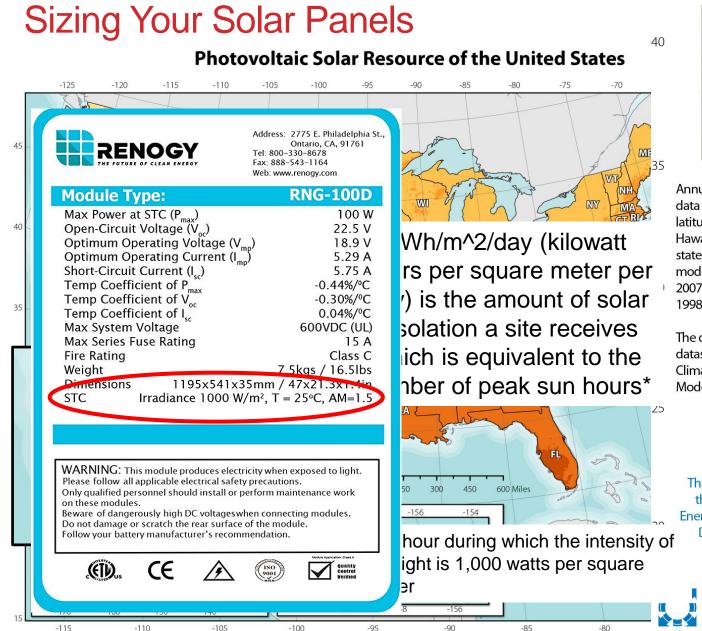
5

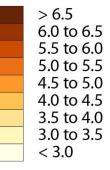
kWh/m²/Day


> 6.5 6.0 to 6.5 5.5 to 6.0 5.0 to 5.5 4.5 to 5.0 4.0 to 4.5 3.5 to 4.0 3.0 to 3.5

Annual average solar resource data are shown for a tilt = latitude collector. The data for Hawaii and the 48 contiguous states are a 10km satellite modeled dataset (SUNY/NREL, 2007) representing data from

The data for Alaska are a 40 km dataset produced by the **Climatological Solar Radiation**

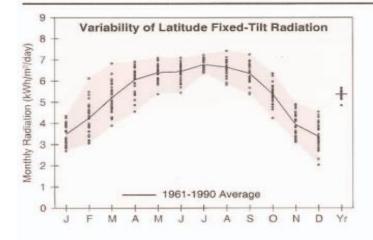

This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy. 19 September 2012



Rachel Kinoshita – KK6DAC

98

kWh/m²/Day



Annual average solar resource data are shown for a tilt = latitude collector. The data for Hawaii and the 48 contiguous states are a 10km satellite modeled dataset (SUNY/NREL, 2007) representing data from 1998-2009.

The data for Alaska are a 40 km dataset produced by the Climatological Solar Radiation Model (NREL, 2003).

This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy. Billy J. Roberts 19 September 2012

San Francisco, CA

WBAN NO. 23234

LATITUDE: 37.62° N LONGITUDE: 122.38° W ELEVATION: 5 meters MEAN PRESSURE: 1017 millibars

STATION TYPE: Secondary

http://rredc.nrel.gov/solar/pubs/redbook/PDFs/CA.PDF

Solar Radiation for Flat-Plate Collectors Facing South at a Fixed Tilt (kWh/m²/day), Uncertainty ±9%

Tilt (°)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average	2.2	3.0	4,2	5.7	6.7	7.2	7.3	6.5	5.4	3.9	2.5	2.0	4.7
	Min/Max	1.8/2.5	2.3/3.9	3,3/5,3	4.4/6.4	5.7/7.4	6.1/7.9	6.9/7.9	5.7/7.3	4.7/6.0	3.2/4.4	2.1/2.9	1.4/2.4	4.4/4.9
Latitude -15	Average	3.1	3.9	5.0	6.2	6.8	7.0	7.3	6.9	6.2	5.0	3.5	2.9	5.3
	Min/Max	2.4/3.8	2.9/5.5	3.8/6.5	4.7/7.0	5.7/7.5	5.9/7.7	6.9/7.8	6.0/7.7	5.3/7.1	4.0/5.8	2.8/4.3	1.9/3.9	4.9/5.6
Latitude	Average	3.5	4.2	5.2	6.1	6.4	6.5	6.8	6.7	6.4	5.4	3.9	3.4	5.4
	Min/Max	2.7/4.3	3.1/6.1	3.9/6.8	4.6/6.9	5.4/7.1	5.4/7.1	6.4/7.2	5.8/7.4	5.4/7.3	4.3/6.4	3.1/4.9	2.0/4.6	4.9/5.7
Latitude +15	Average	3.7	4.4	5.1	5.6	5.7	5.6	5.9	6.1	6.1	5.5	4.1	3.6	5.1
	Min/Max	2.8/4.7	3.1/6.4	3.8/6.8	4.2/6.4	4.8/6.3	4.7/6.1	5.6/6.3	5.3/6.7	5.2/7.0	4.3/6.5	3.2/5.2	2.1/5.0	4.6/5.5
90	Average	3.3	3.6	3.7	3.4	2.8	2.5	2.7	3.3	4.1	4.3	3.6	3.3	3.4
	Min/Max	2.5/4.2	2.4/5.4	2.7/4.9	2.6/3.8	2.5/3.0	2.3/2.6	2.6/2.8	3.0/3.6	3.5/4.7	3.4/5.2	2.8/4.6	1.9/4.7	2.9/3.7

Solar Radiation for 1-Axis Tracking Flat-Plate Collectors with a North-South Axis (kWh/m²/day), Uncertainty ±9%

Axis Tilt (°)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average	3.0	4.1	5.7	7.6	8.8	9.3	9.7	8.7	7.4	5.5	3.5	2.8	6.3
	Min/Max	2.3/3.7	2.8/6.0	4.1/7.7	5.6/8.9	7.0/10.1	7.5/10.8	9.0/10.7	7.4/10.2	6.2/8.8	4.3/6.5	2.8/4.4	1.7/3.8	5.7/6.7
Latitude -15	Average	3.7	4.7	6.3	8.0	8.9	9.2	9.7	9.0	8.1	6.3	4.3	3.5	6.8
	Min/Max	2.8/4.6	3.3/7.1	4.5/8.6	5.8/9.4	7.1/10.3	7.4/10.7	9.0/10.8	7.7/10.6	6.7/9.6	4.8/7.6	3.3/5.4	2.0/4.8	6.1/7.2
Latitude	Average	4.0	5.0	6.5	8.0	8.7	8.9	9.4	8.8	8.2	6.6	4.6	3.9	6.9
	Min/Max	3.0/5.1	3.4/7.6	4.6/8.9	5.7/9.4	6.8/10.0	7.1/10.3	8.7/10.4	7.5/10.4	6.8/9.7	5.1/8.0	3.5/5.9	2.2/5.4	6.1/7.3
Latitude +15	Average	4.2	5.1	6.4	7.7	8.1	8.2	8.7	8.4	8.0	6.7	4.8	4.1	6.7
	Min/Max	3.1/5.4	3.4/7.8	4.5/8.8	5.5/9.0	6.4/9.4	6.6/9.6	8.1/9.7	7.1/9.9	6.6/9.5	5.1/8.1	3.6/6.1	2.3/5.7	5.9/7.1

Solar Radiation for 2-Axis Tracking Flat-Plate Collectors (kWh/m²/day), Uncertainty ±9%

Tracker		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
2-Axis	Average Min/Max		5.1 3.4/7.8	6.5 4.6/8.9	8.1 5.8/9.5	9.0 7.2/10.4	9,4 7.6/11.0	9.9 9.2/11.0	9.0 7.7/10.6	8.2 6.8/9.7	6.7 5.1/8.1	4.8 3.7/6.2	4.1 2.3/5.8	7.1 6.3/7.5

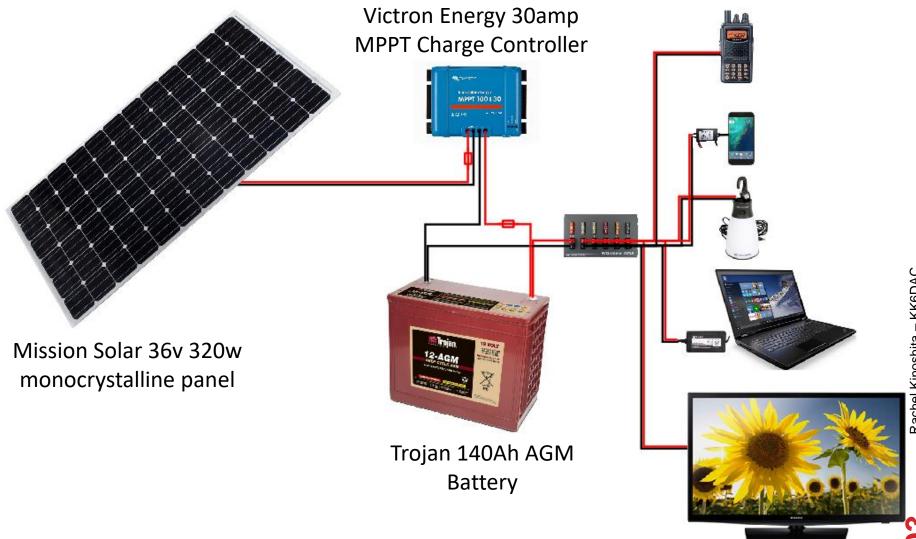
9	Variability of	of Latitud	e Fixed-Til	t Radiatic	n		S	an i	ran	icise	:0, (A		
(day)			Lii			7.3					NO. 23			
	Solar Rad	liation fo	or Flat-P	late Coll	ec		h at a	a Fixed 1	filt (kWh	n/m²/day), Uncer	tainty ±	9%	
Tilt (°)		Jan	Feb	Mar	6.	9/7.9	une	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average Min/Max	2.2 1.8/2.5	3.0 2.3/3.9	4.2 3.3/5.3	4.4/6.4	5.7/7.4	7.2 6.1/7.9	7.3 6.9/7.9	6.5 5.7/7.3	5.4 4.7/6	3.6	9	2.0 1.4/2.4	4.7 4.4/4.9
Latitude -15	Average Min/Max	3.1 2.4/3.8	3.9 2.9/5.5	5.0 3.8/6.5	6.2 4.7/7.0	6.8 5.7/7.5	7.0 5.9/7.7	7.3 6.9/7.8	6.9 6.0/7.7	6.2 5.3/7	2.1/5		2.9 1.9/3.9	5.3 4.9/5.6
Latitude	Average Min/Max	3.5 2.7/4.3	4.2 3.1/6.1	5.2 3.9/6.8	6.1 4.6/6.9	6.4 5.4/7.1	6.5 5.4/7.1	6.8 6.4/7.2	6.7 5.8/7.4	6.4 5.4/7.3	4.3/0.4	2.14.9	3.4 2 0/4 6	5.4 4.9/5.7
Latitude +15	Average Min/Max	3.7 2.8/4.7	4.4 3.1/6.4	5.1 3.8/6.8	5.6 4.2/6.4	5.7 4.8/6.3	5.6 4.7/6.1	5.9 5.6/6.3	6.1 5.3/6.7	6.1 5.2/7.0	5.5 4.3/6.5	4.1 3.2/5.2	3.6 2.1/5.0	5.1 4.6/5.5
90	Average Min/Max	3.3 2.5/4.2	3.6 2.4/5.4	3.7 2.7/4.9	3.4 2.6/3.8	2.8 2.5/3.0	2.5 2.3/2.6	2.7 2.6/2.8	3.3 3.0/3.6	4.1 3.5/4.7	4.3 3.4/5.2	3.6 2.8/4.6	3.3 1.9/4.7	3.4 2.9/3.7

Solar Radiation for 1-Axis Tracking Flat-Plate Collectors with a North-South Axis (kWh/m²/day), Uncertainty ±9%

Axis Tilt (°)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average Min/Max	3.0 2.3/3.7	4.1 2.8/6.0	5.7 4.1/7.7	7.6	8.8	9.3 119.8	9.7 9.0/10.7	8.7 7.4/10.2	7.4 6.2/8.8	5.5 4.3/6.5	3.5 2.8/4.4	2.8 1.7/3.8	6.3 5.7/6.7
Latitude -15	Average Min/Max	3.7 2.8/4.6	4.7 3.3/7.1	6.3 4.5/8.6		9.7) <i>2</i> (10.7	9.7 9.0/10.8	9.0 7.7/10.6	8.1 6.7/9.6	6.3 4.8/7.6	4.3 3.3/5.4	3.5 2.0/4.8	6.8 6.1/7.2
Latitude	Average Min/Max	4.0 3.0/5.1	5.0 3.4/7.6	6.5 4.6/8.9	9.0)/10.'	7 (10.3	9,4 8.7/10.4	8.8 7.5/10.4	8.2 6.8/9.7	6.6 5.1/8.0	4.6 3.5/5.9	3.9 2.2/5.4	6.9 6.1/7.3
Latitude +15	Average Min/Max	4.2 3.1/5.4	5.1 3.4/7.8	6.4 4.5/8.8	7.7 5.5/9.0	8.1 6.4/9.4	8.2 6.6/9.6	8.7 8.1/9.7	8.4 7.1/9.9	8.0 6.6/9.5	6.7 5.1/8.1	4.8 3.6/5.1	4.1 2.3/5.7	6.7 5.9/7.1

Latitude	Average Min/Max		5.0 3.4/7.6	6.5 4.6/8.9	8.0 5.7/9.4	8.7 6.8/10.0	8.9 7.1/10.3	9.4 8.7/10.4	8.8 7.5/10.4	8.2 6.8/9.7	6.6 5.1/8.0	3.5	/ 1
Latitude +15	Average Min/Max	4.2 3.1/5.4	5.1 3.4/7.8	6.4 4.5/8.8	7.7 5.5/9.0	8.1 6.4/9.4	8.2 6.6/9.6	8.7 8.1/9.7	8.4 7.1/9.9	8.0 6.6/9.5	6.7 5.1/8.1	3.6	4.1

Solar Radiation for 2-Axis Tracking Flat-Plate Collectors (kWh/m²/day), Uncertainty ±99 2.3/5.7


Tracker	1	Jan	Eab	Mar	Apr	May	June	July	Aug	Sept	Oct	N		
LIDENCI			100	14101	rapi	a ming	June		an	oopt	67			~ 1
2-Axis	Average Min/Max		5.1 3.4/7.8	6.5	8.1 5.8/9.5	9.0 7.2/10.4	9,4	9.9 9.2/11.0	7.7/10.6	8.2 6.8/9.7	5.1/8.1	3.7/6.2	4.1 2.3/5.8	6.3/7.5

101

- We plan to consume 380.2 watt hours
- In the Bay Area, our peak sun hours vary between 7.3 in the summer • and 3.6 in the winter
- Solar panels provide their rated output under ideal conditions, so we • will use assume 75% to 80% as their actual output
- In this scenario we would need 132 watts of solar panels to ensure we • generate enough power during the winter months
- We need to factor in overcast days, so we double this to 264 watts •

		Spring Peak Sun Hours	Summer Peak Sun Hours	Autumn Peak Sun Hours	Winter Peak Sun Hours	oshita – KK
Solar Panel Rated Output	Solar Panel Actual Output	6.2	7.3	5.5	3.6	Rachel Kinoshita
100w	80	496	584	440	288	
132w	105.6	654.72	770.88	580.8	380.16	
200w	160	992	1168	880	576	C
300w	240	1488	1752	1320	864	
400w	320	1984	2336	1760	1152	

Evaluating Your Needs

What Does it Cost?

264 Watt Solar, 150Ah AGM Lead Acid Battery

Qty	Desc	Price	Total				
1	Mission Solar 36v 320w monocrystalline panel	\$150.00	\$150.00				
1	8 AWG Solar Cables with MC4 connectors	\$47.00	\$47.00				
1	Victron Energy 30amp MPPT Charge Controller	\$202.00	\$202.00				
1	Misc wires, connectors and fuses	\$30.00	\$30.00				
1	150Ah AGM sealed lead acid battery	\$300.00	\$300.00				
	Total		د \$729.00				
264 Watt Solar, 80Ah LiFePO4 Battery							

264 Watt Solar, 80Ah LiFePO4 Battery

Qty	Desc	Price	Total
1	Mission Solar 36v, 320w monocrystalline panel	\$150.00	\$150.00
1	8 AWG Solar Cables with MC4 connectors	\$47.00	\$47.00
1	Victron Energy 30amp MPPT Charge Controller	\$202.00	\$202.00
1	Misc wires, connectors and fuses	\$30.00	\$30.00
1	80Ah Bioenno LiFePO4	\$750.00	\$750.00
	Total		\$1,179.00

Evaluating Your Needs

If we eliminate the Laptop and TV from the usage table, we can • reduce our watt hours to 175.7 and 14.64Ah @ 12vdc

Qty	Device	Volts	Amps	Watts	Hours	Days/Week	Watt hours
	Yaesu FT60r Standard Charger	12	0.2	2.4	10	3	0.0
	Yaesu FT60r Rapid Charger	12	0.9	10.8	1.5	3	0.0
	Yaesu FT1D/2D Rapid Charger with FNB-101LI Battery	12	0.5	6	2.5	3	0.0
1	Yaesu FT1D/2D Rapid Charger with FNB-102LI Battery	12	0.5	6	4	3	10.3
	Engle MT80 Fridge / Freezer @ 41° F, amb temp 77° F			7.2	24	7	0.0
	Engle MT80 Fridge / Freezer @ -4° F, amb temp 77° F			30			
	Battery Charger	12	3	36	3	1	0.0
2	LED Lights			10	3	7	640
1	Mobile Phone Charger			6	2	7	0.0
	Laptop Charger			45	2	1	0,00
	LCD HDTV 24"			30	1	7	30.0
	Total						82 శ్రీ
	Ah @ 12v						6.9

Evaluating Your Needs

- Reducing our battery requirements to 55Ah for Lead Acid and 30Ah for LiFePO4
- This reduces our solar requirements to a 100w panel

Battery Type	Projected Usage	Max Battery Discharge	Min Battery Required	Inverter Loss	Min Battery with Inverter	Max days w/o Sun	Requir	Required Ah w/Inverte r)
Lead Acid	7	50%	14	10%	б та 1 5	. 2	2 41	46
LiFePO4	7	90%	8	10%	ő 8	2	2 23	25
								<u>25</u> РОРУУ -
		Spring Peak Su Hours*	un Peak	Sun Peal	k Sun Pe		Average Peak Sun Hours	PV Watts
Solar Panel Rated Output	Solar Pane t Actual Outp	6 04	7.12	2 5.	.31 3	3.79	5.565	
29	22		131	155	115	82	1	21 87

Genasun 10.5 amp MPPT Charge Controller Renogy 12v 100w monocrystalline panel Bioenno 30Ah LiFePO4 Battery

What Does it Cost?

What Does it Cost?

100 Watt Solar, 55Ah AGM Lead Acid Battery

Qty	Desc	Price	Total				
1	Renogy 100w 12v monocrystalline solar panel	\$125.00	\$125.00				
1	8 AWG Solar Cables with MC4 connectors	\$47.00	\$47.00				
1	Genasun GV-10 10amp MPPT Charge Controller	\$109.00	\$109.00				
1	Misc wires, connectors and fuses	\$30.00	\$30.00				
1	55Ah AGM sealed lead acid battery	\$125.00	\$125.00				
	Total		\$436.00				
100 Watt Solar, 30Ah LiFePO4 Battery							
			oshita				

100 Watt Solar, 30Ah LiFePO4 Battery

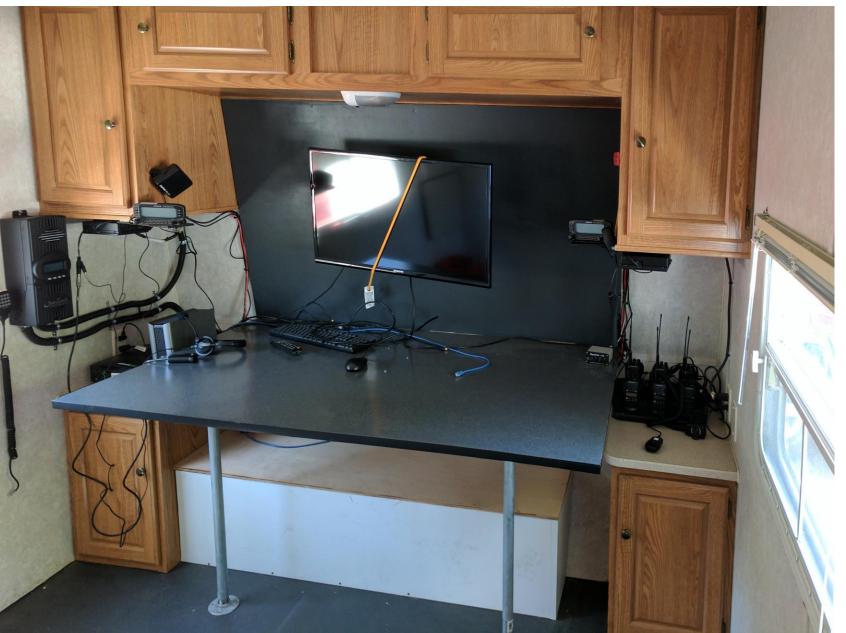
Qty	Desc	Price	Total
1	Renogy 100w 12v monocrystalline solar panel	\$125.00	\$125.00
1	8 AWG Solar Cables with MC4 connectors	\$47.00	\$47.00
1	Genasun GV-10 10amp MPPT Charge Controller	\$159.00	\$159.00
1	Misc wires, connectors and fuses	\$30.00	\$30.00
1	30Ah Bioenno LiFePO4	\$280.00	\$280.00
	Total		\$641.00

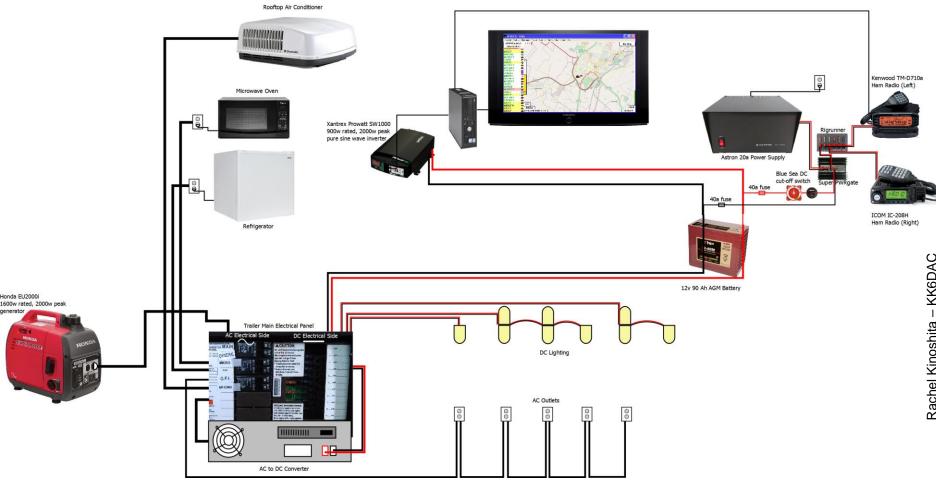
 Post Katrina, FEMA was left with more trailers than they knew what to do with

• The problem was exacerbated because many of the trailers had toxic levels of formaldehyde

 In late 2014 / early 2015 the Menlo Fire District acquired a surplus FEMA Katrina trailer

- Menlo Fire purchased the CERT trailer to provide a platform for communications during an emergency or disaster
- The trailer was outfitted with amateur radios, computers, monitors, a generator, antennas and other accessories necessary to operate
- In that configuration it required manual charging of the battery on a regular basis to prevent battery damage due to low voltage
- Generators require fuel, regular oil changes and have moving parts which can fail
- In a disaster, gasoline for the generator may become a scare resource
- Configuring the trailer to run stand-alone with only batteries and PV panels would ensure independent operations during a disaster





116

Menlo Park - Proposed System

- Batteries will automatically be maintained
- Trailer will always be ready to be deployed
- Provides sufficient power to run radios, computers and lights for an extended period of time
- Reduces or removes dependency on gasoline or propane generator
- Designed for growth

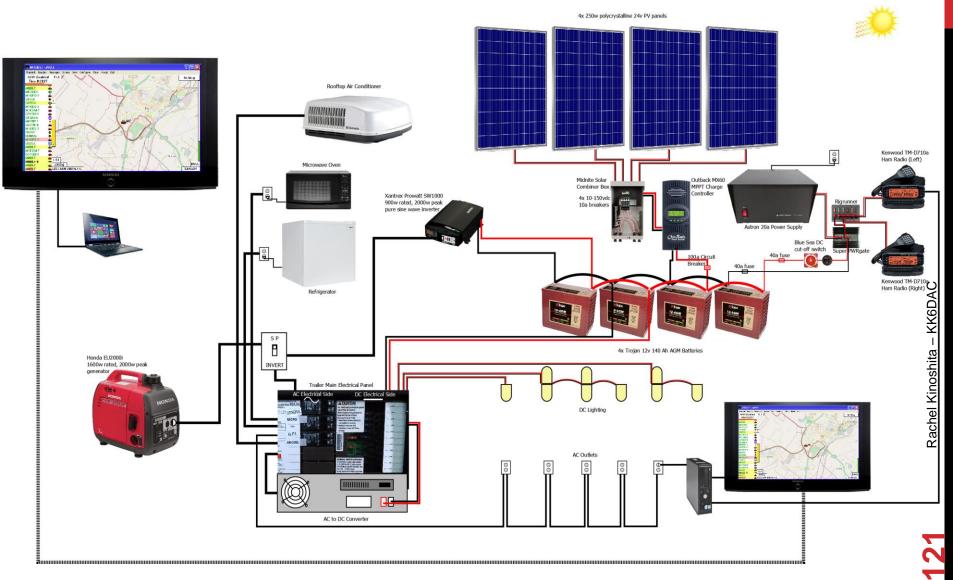
Menlo Park - Proposed System

60A MPPT Solar Charge Controller

6 slot Solar Combiner box

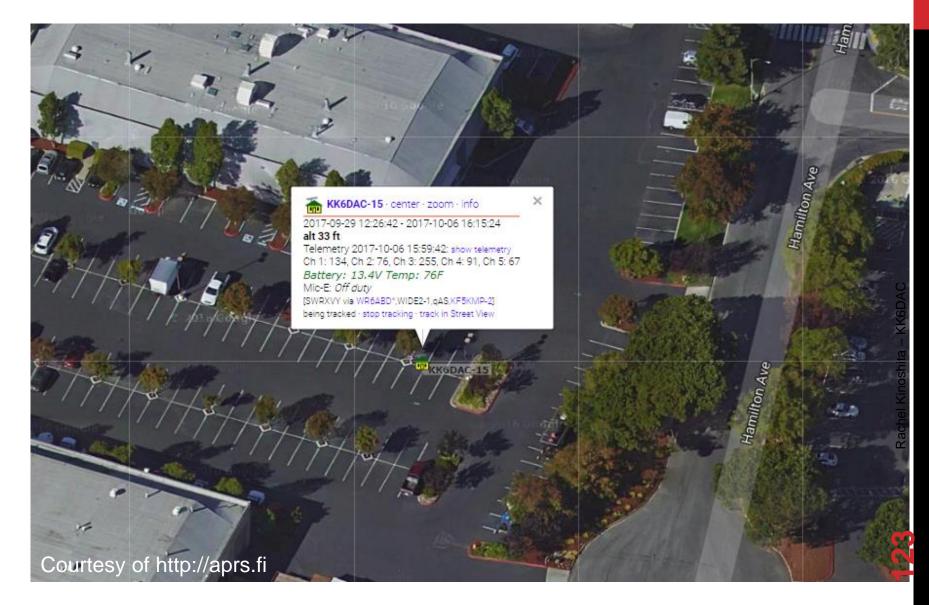
4x 250w PV Panels

4x 140Ah AGM Batteries

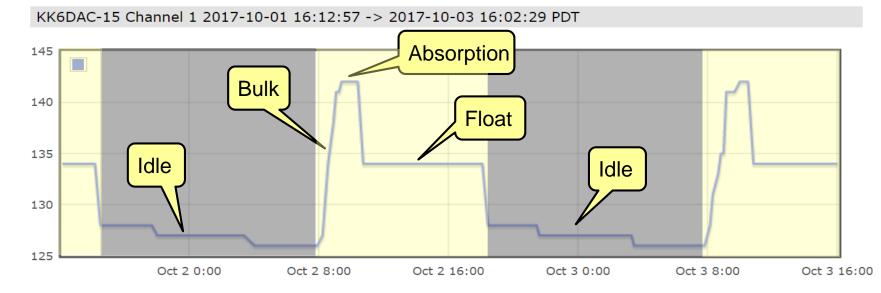


Menlo Park – Completed System

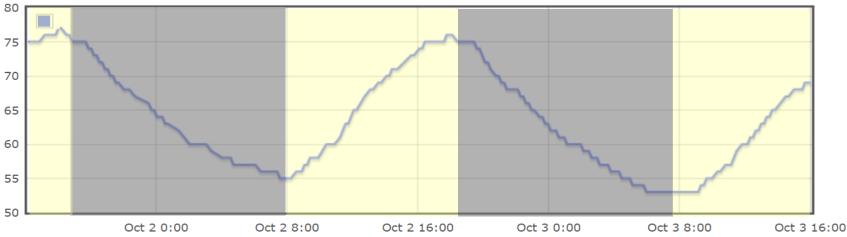
4x 250w polycrystalline 24v PV panels



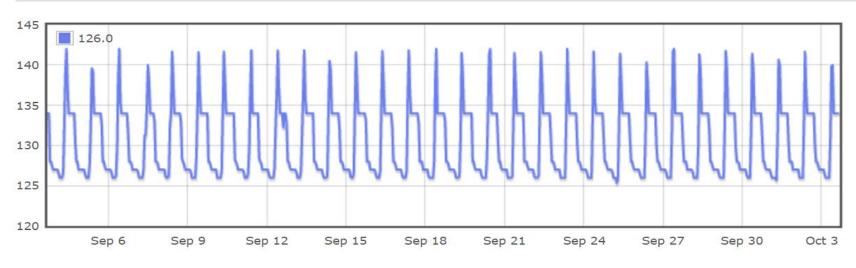
Automatic Packet Reporting System (APRS) Telemetry

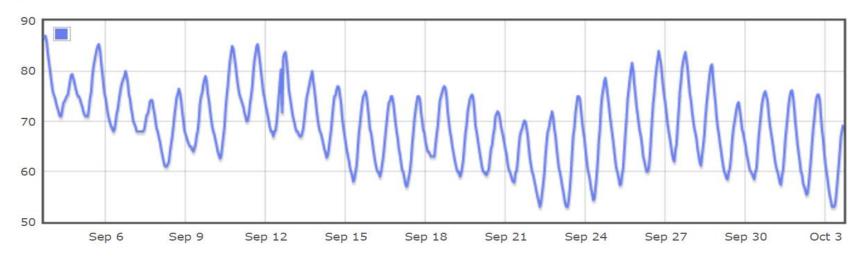


Callsign: KK6DAC-15 Search Clear Completed generating statistics (took 0.015 s). Real-time page updates enabled.
Start date (YYYY-MM-DD HH:MM): End date (YYYY-MM-DD HH:MM): 2017-10-04 23:27:15 Im
It is possible to search using wildcards (*?) after a prefix. Example: VK*
Telemetry from KK6DAC-15 🚋 - info
Comment: Battery: 13.4V Temp: 77F Mic-E message: Off duty Location: 37°28.69' N 122°08.98' W - locator CM87WL24AS - show map - static map 0.8 miles Northwest bearing 324° from East Palo Alto, San Mateo County, California, United States [?] 2.4 miles Northeast bearing 47° from Menlo Park, San Mateo County, California, United States 16.9 miles Northwest bearing 305° from San Jose, Santa Clara County, California, United States 25.2 miles Southeast bearing 144° from San Francisco, San Francisco County, California, United States
Last position: 2017-10-06 16:25:25 PDT (1m50s ago) 2017-10-06 16:25:25 PDT local time at East Palo Alto, United States [?]
Last telemetry: 2017-10-06 15:59:42 PDT (27m ago) 2017-10-06 15:59:42 PDT local time at East Palo Alto, United States [?] Altitude: 33.5 Values: Channel 1: 134 (TLM: 134 EQN: 0,1,0)
Channel 2: 76 (TLM: 76 EQN: 0,1,0) Channel 3: 255 (TLM: 255 EQN: 0,1,0) Channel 4: 91 (TLM: 91 EQN: 0,1,0) Channel 5: 67 (TLM: 67 EQN: 0,1,0) Bit sense: 1 3 4 5 6 2 8 (TLM: BITS: 1111111)
Telemetry history graphs for KK6DAC-15
[24 hours · 48 hours · week · month · year]

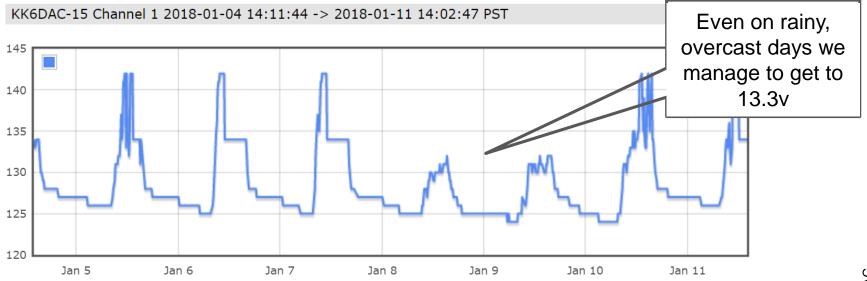

KK6DAC-15 Channel 1 2017-10-04 16:28:02 -> 2017-10-06 15:59:42 PDT

Menlo Park – 48 Hours of Collected Data

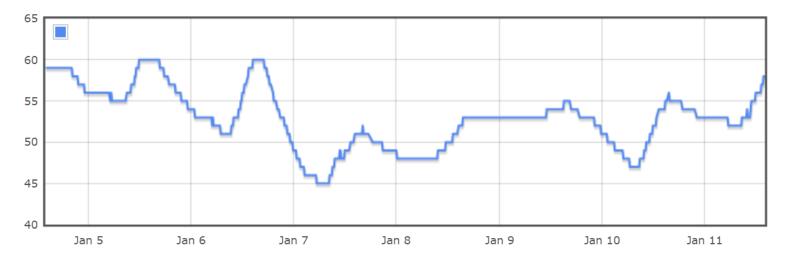

KK6DAC-15 Channel 2 2017-10-01 16:12:57 -> 2017-10-03 16:02:29 PDT


5

Menlo Park – 1 Month of Collected Data


KK6DAC-15 Channel 1 2017-09-03 16:00:00 -> 2017-10-03 16:00:00 PDT

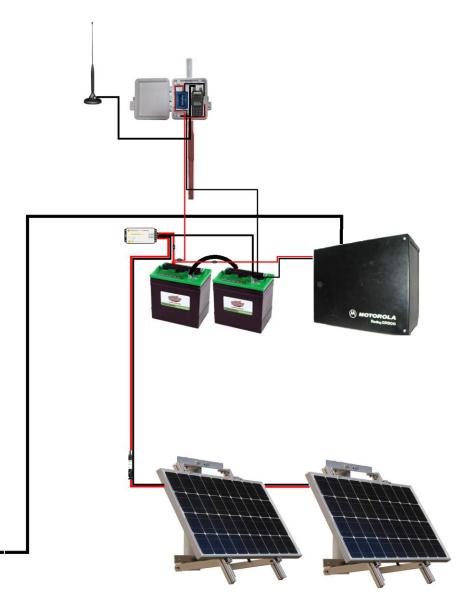
KK6DAC-15 Channel 2 2017-09-03 16:00:00 -> 2017-10-03 16:00:00 PDT



26

Menlo Park – How Are We Doing this Winter?

KK6DAC-15 Channel 2 2018-01-04 14:11:44 -> 2018-01-11 14:02:47 PST

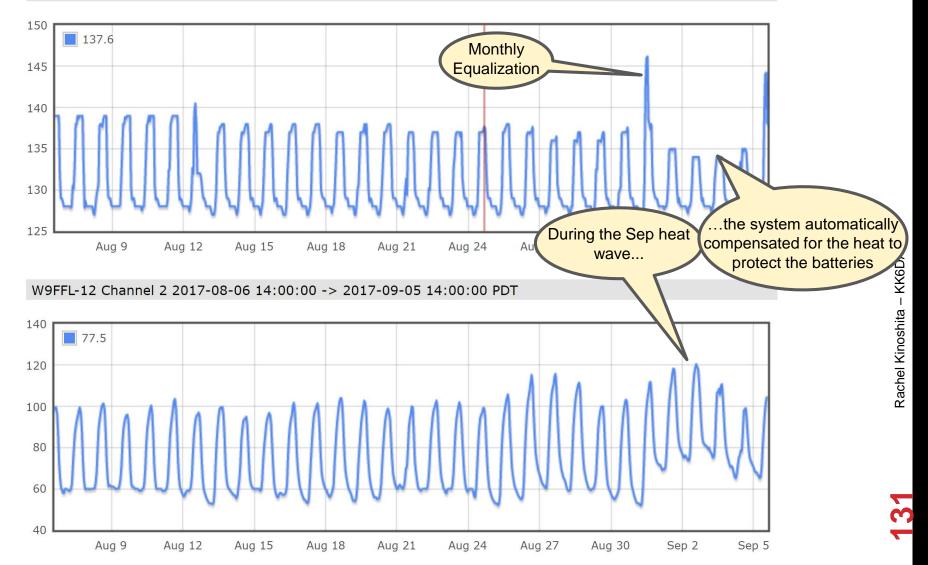


Menlo Park CERT – What Did it Cost?

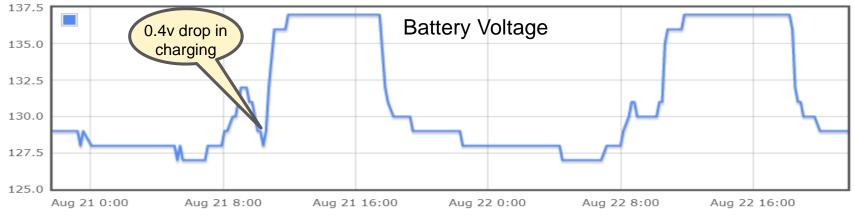
Qty	Desc	Price	Total
4	Trojan 12v 140ah AGM Battery	\$420.00	\$1,680.00
4	Amerisolar 250w 24v PV panel	\$170.00	\$680.00
2	Solarline 50' cables with MC4 connectors	\$44.00	\$88.00
4	Aluminum Z bracket kit	\$9.00	\$36.00
1	Outback FX60 12-48v MPPT Charge Controller	\$602.00	\$602.00
1	Midnite Solar MNPV6 Combiner Box	\$95.00	\$95.00
4	Midnite 150VDC MNEPV DIN Mount Breaker	\$16.00	\$64.00
1	Misc wire and connectors	\$200.00	\$200.00
1	Lab bolts and sealant	\$40.00	\$40.00
1	Shipping	\$400.00	\$400.00
	Total		\$3 <i>,</i> 885.00

Almaden Valley – Off-Grid GMRS Repeater

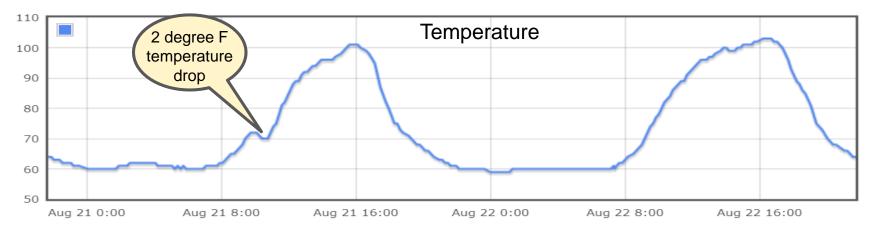
5


Almaden Valley – Solar Components

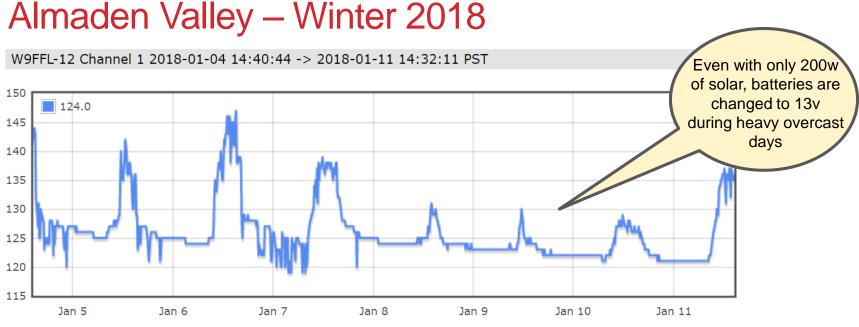
Qty	Desc	Price	Total
2	Costco (Interstate) 6v 210 Ah Golf Cart Battery	\$76.00	\$152.00
2	Renogy 100w Monocrystalline Solar Panel	\$135.00	\$270.00
1	Genasun 10.5a MPPT Charge Controller	\$99.00	\$99.00
2	Aluminum Tilt Mounts for Solar Panels	\$47.00	\$94.00
1	Cable	\$15.00	\$15.00
1	MC4 Y Branch Parallel Connector	\$8.99	\$8.99
1	Misc wire and connectors	\$10.00	\$10.00
1	Fuses	\$20.00	\$20.00
	Total		\$668.99

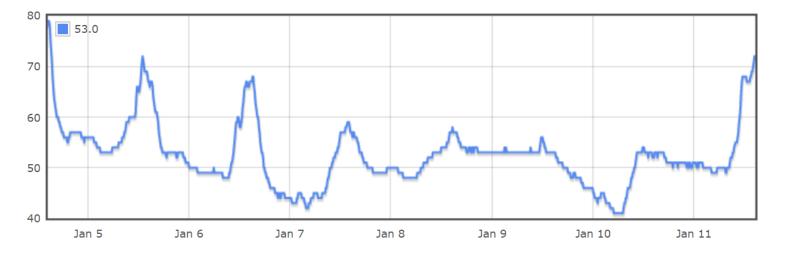

Almaden Valley – Solar Performance

W9FFL-12 Channel 1 2017-08-06 14:00:00 -> 2017-09-05 14:00:00 PDT



Almaden Valley – Solar Performance




W9FFL-12 Channel 2 2017-08-20 20:22:25 -> 2017-08-22 20:11:53 PDT

32

W9FFL-12 Channel 2 2018-01-04 14:40:44 -> 2018-01-11 14:32:11 PST

- Good for both short and long-term emergencies
- Initial costs are higher, but the only fuel it requires is the sun
- No moving parts to break or wear out
- No noise, no exhaust fumes
- Need sufficient battery reserves to run overnight or for overcast/rainy days
- Nearly maintenance free

Questions

