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Abstract

Dynamic optimization is emerging as a promising ap-
proach to overcome many of the obstacles of traditional
static compilation. But while there are a number of com-
piler infrastructures for developing static optimizations,
there are very few for developing dynamic optimizations.
We present a framework for implementing dynamic analy-
ses and optimizations. We provide an interface for build-
ing external modules, or clients, for the DynamoRIO dy-
namic code modification system. This interface abstracts
away many low-level details of the DynamoRIO runtime
system while exposing a simple and powerful, yet efficient
and lightweight, API. This is achieved by restricting opti-
mization units to linear streams of code and using adaptive
levels of detail for representing instructions. The interface
is not restricted to optimization and can be used for instru-
mentation, profiling, dynamic translation, etc.

To demonstrate the usefulness and effectiveness of our
framework, we implemented several optimizations. These
improve the performance of some applications by as much
as 40% relative to native execution. The average speedup
relative to base DynamoRIO performance is 12%.

1 Introduction

The power and reach of static analysis is diminishing
for modern software, which heavily utilizes dynamic class
loading, shared libraries, and runtime binding. Not only is
it difficult or impossible for a static compiler to analyze the
whole program, but static optimization is limited by the ac-
curacy of its predictions of runtime program behavior. Us-
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ing profile information improves the predictions but still
falls short for programs whose behavior changes dynami-
cally. Additionally, many software vendors are hesitant to
ship binaries that are compiled with high levels of static op-
timization because they are hard to debug.

Shifting optimizations to runtime solves these problems.
Dynamic optimization allows the user to improve the per-
formance of binaries without relying on how they were
compiled. Furthermore, several types of optimizations are
best suited to a dynamic optimization framework. These in-
clude adaptive, architecture-specific, and inter-module opti-
mizations.

Adaptive optimizations require instant responses to
changes in program behavior. When performed statically, a
single profiling run is taken to be representative of the pro-
gram’s behavior. Within a dynamic optimization system,
ongoing profiling identifies which code is currently hot, al-
lowing optimizations to focus only where they will be most
effective.

Acrchitecture-specific code transformations may be done
statically if the resulting executable is only targeting a sin-
gle processor, or by using dynamic dispatch to select among
several transformations prepared for different processors.
The first option unduly restricts the executable while the
second bloats the executable size. Performing the optimiza-
tion dynamically solves the problem by allowing the exe-
cutable to remain generic and specialize itself to the proces-
sor it happens to be running on.

Inter-module optimizations cannot be done statically in
the presence of shared and dynamically loaded libraries.
But all code is available to a dynamic optimizer, present-
ing optimizations with a view of the code that cuts across
the static units used by the compiler for optimization.

Dynamic optimizations have one significant disadvan-
tage versus static optimizations. The overhead of perform-
ing the optimization must be amortized before any improve-
ment is seen. This limits the scope of optimizations that can



be done online, and makes the efficiency of the optimiza-
tion infrastructure extremely critical. For this reason, while
there are numerous flexible and general compiler infrastruc-
tures for developing static optimizations, there are very few
for the development of dynamic optimizations.

Another important contrast with static compilation is
transparency. Unlike a static compiler optimization, a dy-
namic optimization cannot use the same memory alloca-
tion routines or input/output buffering as the application,
because the optimization’s operations are interleaved with
those of the application.

The main contribution of this paper is a framework for
implementing dynamic analyses and optimizations. The
framework is based on the DynamoRIO dynamic code
modification system. We export an interface for building
external modules, or clients, for DynamoRIO. With this
API, custom runtime code transformations are simple to
develop. Efficiency is achieved through two key princi-
ples: restricting optimization units to linear streams of code
and using adaptive levels of detail for representing instruc-
tions. Our interface provides direct support for customiz-
able traces and adaptive optimization of traces, while main-
taining transparency with respect to the application. It is
general enough to be used for non-optimization purposes,
including instrumentation, profiling, and security [23]. The
system is available to the public in binary form [16].

The paper is organized as follows. We first present in
Section 2 a description of the DynamoRIO system. Dy-
namoRIO operates on unmodified native binaries and re-
quires no special hardware or operating system support. It
is implemented for both 1A-32 Windows [5] and Linux, and
is capable of running large desktop applications. Section 3
describes our optimization interface in detail, and Section 4
gives some examples of dynamic optimizations written us-
ing the interface. We give experimental results in Section 5.
We discuss two other dynamic code modification interfaces
along with other related work in Section 6.

2 DynamoRIO

Our optimization infrastructure is built on a dynamic op-
timizer called DynamoRI1O. DynamoRIO is the 1A-32 ver-
sion [5] of Dynamo [4]. It is implemented for both 1A-32
Windows and Linux, and is capable of running large desk-
top applications.

The goal of DynamoRIO is to observe and potentially
manipulate every single application instruction prior to its
execution. The simplest way to do this is with an inter-
pretation engine. However, interpretation via emulation is
slow, especially on an architecture like 1A-32 with a com-
plex instruction set, as shown in Table 1. DynamoRIO uses
a typical trick to avoid emulation overhead: it caches trans-
lations of frequently executed code so they can be directly

executed in the future.

DynamoRIO copies basic blocks (sequences of instruc-
tions ending with a single control transfer instruction) into
a code cache and executes them natively. At the end of
each block the application’s machine state must be saved
and control returned to DynamoRIO (a context switch) to
copy the next basic block. If a target basic block is al-
ready present in the code cache, and is targeted via a direct
branch, DynamoRIO links the two blocks together with a
direct jJump. This avoids the cost of a subsequent context
switch.

Indirect branches cannot be linked in the same way be-
cause their targets may vary. To maintain transparency,
original program addresses must be used wherever the ap-
plication stores indirect branch targets (for example, re-
turn addresses for function calls). These addresses must be
translated into their corresponding code cache addresses in
order to jump to the target code. This translation is per-
formed as a fast hashtable lookup.

To improve the efficiency of indirect branches, and to
achieve better code layout, basic blocks that are frequently
executed in sequence are stitched together into a unit called
a trace. When connecting beyond a basic block that ends
in an indirect branch, a check is inserted to ensure that the
actual target of the branch will keep execution on the trace.
This check is much faster than the hashtable lookup, but if
the check fails the full lookup must be performed. The su-
perior code layout of traces goes a long way toward amor-
tizing the overhead of creating them and often speeds up the
program [4, 32].

A flow chart showing the operation of DynamoRIO is
presented in Figure 1. The figure concentrates on the flow
of control in and out of the code cache, which is the bottom
portion of the figure. The copied application code looks
just like the original code with the exception of its control
transfer instructions, which are shown with arrows in the
figure.

Table 1 shows the typical performance improvement of
each enhancement to the basic interpreter design. Caching
is a dramatic performance improvement, and adding direct
links is nearly as dramatic. The final steps of adding a fast
in-cache lookup for indirect branches and building traces
improve the performance significantly as well.

The Windows operating system directly invokes appli-
cation code or changes the program counter for callbacks,
exceptions, asynchronous procedure calls, set j np, and the
Set Thr eadCont ext API routine. These types of control
flow are intercepted in order to ensure that all application
code is executed under DynamoRIO [5]. Signals on Linux
must be similarly intercepted.

DynamoRIO maintains thread-private code caches, each
separated into a basic block cache and a trace cache. It was
found that, in most multi-threaded applications, very little
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Figure 1. Flow chart of the DynamoRIO system infrastructure. Dark shading indicates application
code. Note that the context switch is simply between the code cache and DynamoRIO; application
code and DynamoRIO code all runs in the same process and address space. Dotted lines indicate
the performance-critical cases where control must leave the code cache and return to DynamoRIO.

Normalized

System Type Execution Time

crafty vpr
Emulation ~300.0 | ©300.0
+ Basic block cache 26.1 26.0
+ Link direct branches 5.1 3.0
+ Link indirect branches 2.0 1.2
+ Traces 1.7 1.1

Table 1. Performance achieved when vari-
ous features are added to an interpreter,
measured on two of the SPEC2000 bench-
marks [34], crafty and vpr. Pure emulation
results in a slowdown factor of several hun-
dred. Successively adding caching, linking,
and traces brings the performance down dra-
matically.

code was shared between threads, so the cost of duplicat-
ing the small amount that was shared for each thread was
far outweighed by the savings of not having to synchronize
changes in the cache with all the running threads [5]. Ad-
ditionally, thread-private code caches enable thread-specific
optimizations.

In this paper we will use the term fragment to mean either
a hasic block or a trace in the code cache.

3 Client Interface

DynamoRIO exports a rich Application Programming
Interface (API) to the user for building a DynamoRIO
client [16]. A DynamoRIO client is coupled with Dy-
namoRIO in order to jointly operate on an input program. In

addition to using the API, the client supplies specific hook
functions which are called by DynamoRIO.

The client interface supports the development of custom
program transformations. It hides low-level details of Dy-
namoRIO such as cache management, trace building, and
context switching, focusing only on how the application
code is modified when it is placed into the code cache.
The interface also has explicit support for maintaining trans-
parency with respect to the application.

To keep overheads down, the interface restricts all in-
struction sequences to have linear control flow and uses
adaptive levels of detail in representing instructions.

3.1 Instruction Representation

DynamoRIO operates on two kinds of code sequences:
basic blocks and traces. Both have linear control flow, with
a single entrance and potentially multiple exits, but no inter-
nal join points (all transfers of control that originate inside
must exit). Optimizations make use of the linear control
flow present in traces. The single-entry multiple-exit format
simplifies analysis algorithms, which reduces optimization
overheads.

Since DynamoRIO deals only with linear streams of
code, it represents a basic block or trace as a linked list of
instructions called an I nstr Li st. A single instruction, or
a group of bundled un-decoded instructions, is represented
in the list by an | nst r data structure.

In any system designed to manipulate machine instruc-
tions, the instruction representation is key. Ease and flex-
ibility of use have been traditional concerns for compiler
writers. Dynamic frameworks add an additional concern
for performance. Since the decoding and encoding of ma-



Level 0 8d 34 01 8b 46 Oc 2b 46 lc Of b7 4e 08 cl el 07 3b cl Of 8d a2 0a 00 00 l
raw bits
8d 34 01
8b 46 Oc
2b 46 lc
Level 1 0f b7 4e 08
cl el 07
3b cl
0f 8d a2 0a 00 00
raw bits
8d 34 01 lea
8b 46 Oc mov
2b 46 1lc sub WCPAZSO
Level 2 0f b7 4e 08 movzx
cl el 07 shl WCPAZSO
3b cl cmp WCPAZSO
0f 8d a2 0a 00 00 jnl RSO
raw bits opcode eflags
8d 34 01 lea (ecx, %eax,1) -> %esi
8b 46 Oc mov
2b 46 lc sub WCPAZSO
Level 3 0f b7 4e 08 movzx 0x8 (¥esi) -> %ecx
cl el 07 shl $0x07 %ecx -> %ecx WCPAZSO
3b cl cmp %eax %ecx WCPAZSO
0f 8d a2 0a 00 00 jnl $0x77£52269 RSO
raw bits opcode operands eflags
lea (%ecx, %eax, 1) -> %edi
mov Oxc(%edi) -> %eax
sub Oxlc (%edi) seax -> %eax WCPAZSO
Level 4 movzx 0x8 (¥edi) -> %ecx
cl el 07 shl $0x07 %ecx -> %ecx WCPAZSO
3b cl cmp %eax %ecx WCPAZSO
0f 8d a2 0a 00 00 jnl $0x77£52269 RSO
raw bits opcode operands eflags

Figure 2. Example sequence of instructions
at each of the five levels of representation.

chine instructions is performed at runtime under a dynamic
framework, many dynamic systems resort to low-level, of-
ten difficult-to-use, representations in the interest of effi-
ciency. The problem is especially pronounced in CISC in-
struction sets such as 1A-32, where instructions vary greatly
in length and complexity, and require significant overhead
to fully decode. DynamoRIO addresses this issue by using
an adaptive level-of-detail instruction representation with
five different levels, which are illustrated in Figure 2:

Level 0 — At its lowest level of detail, an I nstr holds
the raw instruction bytes of a series of instructions and
only records the final instruction boundary.

Level 1 — A Level O I nstr is split such that an I nstr is
created for each machine instruction. Each | nst r still
holds only the un-decoded raw bits for the instruction
it represents.

Level 2 — The instruction is decoded enough to determine
its opcode and effect on the ef | ags register (which
contains condition codes and status flags) for quick de-
termination of whether the ef | ags need to be saved or
restored around inserted instructions. Many 1A-32 in-
structions modify the ef | ags register, making them
an important factor to consider in any code transfor-
mation.

Level 3 — A fully-decoded instruction whose raw bits
are valid. 1 nstr has fields for opcode, prefixes, and
ef | ags effects, plus two dynamically-allocated arrays
of operands, one for sources and one for destinations.
These arrays are dynamically-allocated because 1A-
32 instructions may contain between zero and eight
sources and destinations. This level combines quick
encoding (simply copy the raw bits) with high-level
information.

Level 4 — A fully-decoded instruction that has been modi-
fied (or newly created) and does not have a valid copy
of raw instruction bits. This is the only level at which
instructions must be encoded (or re-encoded) to obtain
the machine representation.

The initial level of an | nst r is determined by which API
routine is used to build the instruction. Later operations can
change the level, either implicitly or explicitly. For exam-
ple, modifying an operand will cause the raw bytes to be-
come invalid, moving an instruction up to Level 4. This au-
tomatic adjustment makes it easy for an optimization to use
the lowest cost representation possible. Switching incre-
mentally between levels costs no more than a single switch
spanning multiple levels.

To support the multiple I nstr levels, multiple decod-
ing strategies are employed. The lowest level simply finds
instruction boundaries (even this is non-trivial for 1A-32).
Although the instruction boundaries need to be determined
for both Level 0 and Level 1, the boundary information may
not be needed later. Level 0 avoids storing that information,
and further simplifies encoding by allowing a single mem-
ory copy rather than an iteration over multiple boundaries.
Level 2 decodes just enough to determine the opcode and
the instruction’s effect on the ef | ags. Finally, for Level 3
and Level 4, a full decode determines all of the operands.

To encode an | nst r, first the raw bit pointer is checked.
If it is valid, the instruction is encoded by simply copying
the raw bits. If the raw bits are invalid (Level 4), the in-
struction must be fully encoded from its operands. Encod-
ing an 1A-32 instruction is costly, as many instructions have
special forms when the operands have certain values. The
encoder must walk through every operand and find an in-
struction template that matches. Avoiding this by copying
raw bits whenever possible is important.



Level | Time (us) | Memory (bytes) |

0 2.12 64.00
1 12.42 628.95
2 13.01 629.07
3 19.10 791.55
4 61.79 791.55

Table 2. Average time and memory used to
decode and then encode the basic blocks of
the SPEC2000 benchmarks [34].

As an example of the use of various levels of instruc-
tion representation, consider the creation of a basic block
fragment. All that DynamoRIO needs to know about is con-
trol flow instruction terminating the block. Accordingly, the
I nstrList fora basic block might contain only two I n-
strs. The first I nstr (at Level 0) simply points to the raw
bits of an arbitrarily long sequence of non-control flow in-
structions, while the second I nstr (at Level 3) holds the
fully decoded state for the block-ending control flow in-
struction, ready for modification. When performing opti-
mizations, DynamoRIO fully decodes all instructions in a
trace’s | nstrLi st, but keeps their raw bit pointers valid
(Level 3). All unmodified instructions can be quickly en-
coded by simply copying the bits.

For a quantitative evaluation of the different levels of in-
struction representation, we measured the time and memory
used to decode and then encode basic blocks at each level of
representation. Table 2 shows the average time and memory
across all blocks for the SPEC2000 benchmarks [34].

3.2 DynamoRIO API

DynamoRIO exports a rich set of functions and data
structures to manipulate 1A-32 instructions, using the data
structures discussed in Section 3.1. Instruction generation
is simplified through a set of macros. A macro is provided
for every 1A-32 instruction. The macro takes as arguments
only those operands that are explicit and automatically fills
in the implicit operands (many IA-32 instructions have im-
plicit operands). The IA-32 instruction set abstraction level
can also be bypassed by specifying an opcode and complete
list of operands.

To support transparency, DynamoRIO provides routines
for input/output and memory allocation (global and thread-
private) that do not interfere with the application. A client
that instead uses the same buffers or memory allocation rou-
tines as the application has a good chance of affecting pro-
gram correctness.

DynamoRIO uses special thread-local slots to spill reg-
isters. It exports an API routine that will save a register
to one of these slots. Additionally, it provides a generic

thread-local storage field for use by clients. DynamoRIO
also provides a field in the | nstr data structure that can
be used by the client for annotations while it is processing
instructions.

Frequently, an optimization will make an assumption in
order to optimize a sequence of code. If the assumption is
violated, some clean-up action is required. To maintain the
linearity of traces, DynamoRIO provides a mechanism for
implementing this kind of clean-up code in the form of cus-
tom exit stubs. Each exit from a trace or basic block has
its own stub. When it is not linked to another trace, con-
trol goes to the stub, which records where the trace was
exited and then performs the context switch back to Dy-
namoRIO. The client can specify a list of instructions to
be pre-pended to the stub corresponding to any exit from a
trace or basic block fragment, and can specify that the exit
should go through the stub even when linked. The body of
the fragment is then optimized for the assumption. Con-
ditional branches direct control flow to the custom stub if
the assumption is violated. Without this direct support, a
client would be forced to add branches targeting the middle
of the trace, destroying the linear control flow which may
be expected by other optimizations.

DynamoRIO also provides routines that identify features
of the underlying processor, making it easy to perform
architecture-specific optimizations.

3.3 DynamoRIO Client

A DynamoRIO client can implement several functions
shown in Table 3 that will be called by DynamoRIO at ap-
propriate moments. The two most important client-supplied
hooks are those for basic block and trace creation, dy-
nanor i o_basi c_bl ock and dynanori o_t r ace. Through
these hooks the client has the ability to inspect and trans-
form any piece of code that is emitted into the code cache.

DynamoRIO calls dynanori o_basi c_bl ock each time
a block is created. The basic block is passed as a pointer to
an I nstrList. This routine is used by clients that need to
operate on every piece of application code.

DynamoRIO calls dynanori o_t r ace each time a trace
is created, just before the trace is placed in the trace cache.
The trace is passed as an | nst r Li st that has already been
completely processed by DynamoRIO. The client sees ex-
actly the code that will execute in the code cache (with the
exception of the exit stubs). Most client optimizations only
operate on traces, restricting themselves to hot code.

dynanori o_fragment _del et ed is called each time a
fragment is deleted from the block or trace cache. Such
information is needed if the client maintains its own data
structures about emitted fragment code that must be kept
consistent across fragment deletions.

dynanori o_end_t r ace is described in Section 3.5.



Client Routine

Description

voi d dynanorio.init()

Client initialization

voi d dynanorio_exit()

Client finalization

voi d dynanorio_thread.init(void *context)

Client per-thread initialization

voi d dynanorio_t hread_exit(void *context)

Client per-thread finalization

voi d dynanori o_basi c_bl ock(voi d *context,
app_pc tag, InstrList *bb)

Client processing of basic block

voi d dynanorio_trace(voi d *context,
app-pc tag, InstrList *trace)

Client processing of trace

app-pc tag)

voi d dynanori o_fragment del eted(voi d *cont ext,

Notifies client when a fragment is deleted from the
code cache

int dynanorio_end_trace(void *context,
app-pc trace_tag, app-pc next_tag)

Asks client whether to end the current trace

Table 3. Client routines imported by DynamoRIO. The client is not expected to inspect or modify the
cont ext parameter, which is an opaque pointer to the current thread context. The tag parameters
serve to uniquely identify fragments by their original application origin.

3.4 Extensionsfor Adaptive Optimization

Two additional routines are exported by DynamoRIO to
support adaptive optimization:

InstrList* dr_decode_fragment (
voi d *context, app-pc tag);

bool dr_repl acefragnent (void *context,
app-pc tag, InstrList *il);

Clients may wish to re-optimize code after it is placed
in the code cache. To do this, clients need to re-create
the InstrList for a trace from the cache, modify it,
and then replace the old version with the new. For ex-
ample, consider a client that inserts profiling code into
selected traces. Once a threshold is reached, the pro-
filing code calls dr decode fragnent and then rewrites
the trace by modifying the I nstrList. Once finished,
dr _repl ace_fragnent is called to install the new version
of the trace.

DynamoRIO is able to perform this replacement while
execution is still inside the old fragment, allowing a trace
to generate a new version of itself. This is accomplished by
delaying the removal of the old fragment until a safe point.
All links targeting and originating from the old fragment
are immediately modified to use the new fragment. This
means that the current thread will continue to execute in
the old fragment only until the next branch. Since there are
no loops except in explicit links, the time spent in the old
fragment is minimal, and all future executions use the new
fragment.

Enabling optimizations to be performed in a separate
thread requires surprisingly few additions to the adaptive
optimization interface. To make fragment replacement pos-

sible from a separate thread, we simply prevent the opti-
mizing thread and the application thread from both being
in DynamoRIO code at the same time. If the application
thread remains in the code cache until after the replacement
is complete, no synchronization cost is incurred. We plan
to investigate using a concurrent thread for “sideline opti-
mization” using this low-overhead trace replacement.

3.5 Extensionsfor Custom Traces

A client can direct the building of traces through a com-
bination of the client hook dynanori o_end_t r ace and this
API routine:

voi d dr _mark_trace_head(void *context,
app-pc tag);

The basic trace building mechanism is similar to the
original Dynamo [4] traces. Certain basic blocks are consid-
ered trace heads. A counter associated with each trace head
is incremented upon each execution of that basic block.
Once the counter exceeds a threshold, DynamoRIO enters
trace generation mode. Each subsequent basic block ex-
ecuted is added to the trace, until a termination point is
reached.

Dynamo only considered targets of backward branches
and exits of existing traces to be trace heads. Our inter-
face allows a client to choose its own traces heads, mark-
ing them with dr _mar k_t r ace_head. When DynamoRIO
is in trace generation mode, it calls the client’s dy-
nanori o_end_trace routine before adding a basic block
to the current trace. The client can direct DynamoRIO to
either end the trace, not end the trace, or use its default test
(which stops at a backward branch or upon reaching an ex-



isting trace) for whether to end the trace. For an example of
using this interface, see Section 4.4.

4 Examples

We present four sample optimizations implemented with
the DynamoRIOQ client interface. Section 5 shows the per-
formance impact of these optimizations.

4,1 Redundant Load Removal

We took a traditional compiler optimization, redundant
load removal, and implemented it dynamically. Because
there are so few registers in 1A-32, local variables are fre-
quently loaded from and stored back to the stack. If a vari-
able’s value is already in a register, a subsequent load can be
removed. The compiler should be able to eliminate redun-
dant loads within basic blocks, but we found that gcc at its
highest optimization level still emits a number of redundant
loads within blocks. It also produces redundant loads across
basic block boundaries, which are a little more difficult for
the compiler to identify. This optimization shows that even
code compiled at high optimization levels stands to benefit
from dynamic application of traditional optimizations.

4.2 Strength Reduction

On the Pentium 4 the i nc instruction is slower than add
1 (and dec is slower than sub 1). The opposite is true on
the Pentium 3, however. As the code in Figure 3 shows, all
a DynamoRIO client needs to do to perform this strength-
reduction optimization is walk the instructions in each ba-
sic block and look for i nc instructions. A simple analysis
needs to be done to determine if the ef | ags differences
between i nc and add are acceptable for this block. If so,
the i nc is replaced by add 1. In a similar manner, dec is
replaced with sub 1.

This is a perfect example of an architecture-specific op-
timization that is best performed dynamically, tailoring the
program to the actual processor it is running on. It would
be awkward to try this at load time. The variable-length IA-
32 instruction set makes it difficult or impossible to analyze
binaries statically, because the internal module boundaries
are not known. Furthermore, a loader would have to rewrite
all code in all shared libraries, regardless of how little of
that code is actually run, and would need to specially han-
dle dynamically determined libraries (loaded using dl open
or LoadLi brary).

4.3 Indirect Branch Dispatch

As an example of adaptive optimization, we perform
value profiling of indirect branch targets. DynamoRIO, like

EXPORT voi d dynamorio_init() {
enable = (proc_get_fam|ly() == FAMLY_PENTI UM I V);
num exanm ned = O;
num converted = 0; }

EXPORT voi d dynanorio_exit() {
if (enable) {
dr_printf("converted % out of %l\n",
num converted, numexamnined); }
el se { dr_printf("kept original inc/dec\n"); } }

EXPORT voi d dynanorio_trace
(void *context, app_pc tag, InstrList *trace) {
Instr *instr, *next_instr;
i nt opcode;
if (!enable) return;
for (instr = instrlist_first(bb); instr != NULL;
instr = next_instr) {
next _instr = instr_get_next(instr);
opcode = instr_get_opcode(instr);
if (opcode == OP_inc || opcode == OP_dec ) {
num exani ned++;
if (inc2add(context, instr, trace))
num converted++ } } }

static bool inc2add
(void *context, Instr *instr, InstrList *trace) {
Instr *in;
uint efl ags;
int opcode = instr_get_opcode(instr);
bool ok_to_replace = false;
/* add wites CF, inc does not, check ok! */
for (in=instr; in !'= NULL; in=instr_get_next(in)) {
eflags = instr_get_eflags(in);
if ((eflags & EFLAGS_READ CF) != 0) return fal se;
/* if wites but doesn’t read, we can replace */
if ((eflags & EFLAGS_ WRITE_CF) != 0) {
ok_to_replace = true;
break; }
/* sinplification: stop at first exit */
if (instr_is_exit_cti(in)) return false; }
if ('ok_to_replace) return false;
if (opcode == OP_inc )
in = | NSTR_CREATE_add( cont ext,
instr_get_dst(instr,0), OPND CREATE_I NT8(1));
el se
in = | NSTR_CREATE_sub( cont ext,
instr_get_dst(instr,0), OPND CREATE_INT8(1));
instr_set_prefixes(in, instr_get_prefixes(instr));
instrlist_replace(trace, instr, in);
instr_destroy(context, instr);
return true; }

Figure 3. Code for a client implementing an
i nc to add 1 strength reduction optimization.

Embra [37] and Dynamo [4], inlines one target of an indi-
rect branch when it builds a trace across the branch. How-
ever, whenever the indirect branch has a target other than the
inlined target, a hashtable lookup is required. This lookup
is the single greatest source of overhead in DynamoRIO. To
mitigate the overhead, a series of compares and conditional
direct branches for each frequent target are inserted prior to
the hashtable lookup. This is similar to the “inline caching”
of virtual call targets in Smalltalk [14] and Self [21], but ap-
plied to returns and indirect jumps as well as indirect calls.

The optimization works as follows: when an indirect
branch inlined in a trace has a target different from that
recorded when the trace was created, it usually transfers



call prof_routine
j mp hasht abl e_l ookup

U
cnp real target, hot_target_1
je hot target_1
cnp real target, hot_target_2
je hot target 2
call prof _routine
j mp hasht abl e_l ookup

Figure 4. Code transformation by our indi-
rect branch dispatch optimization. A profil-
ing routine rewrites its own trace to insert
dispatches for the hottest targets among its
samples, avoiding a hashtable lookup.

control to the hashtable lookup routine. The optimization
diverts that control transfer to a code sequence at the bot-
tom of the trace. This code sequence consists of a series of
compare-plus-conditional-branch pairs followed by a call to
a profiling routine, as shown in Figure 4. After the call is
a jump to the hashtable lookup routine. Initially there are
no compare-branch pairs and control immediately goes to
the profiling call. The profiling routine records the target of
the indirect branch each time it is called. Once a threshold
is reached in the number of samples collected, the profil-
ing routine rewrites the trace to add compare-branch pairs
for the hottest targets. The profiling call is kept in the trace
but is only reached if none of the hot targets are matched,
adaptively replacing the hashtable lookup with a series of
compares and direct branches.

No profiling is done to determine if the inserted targets
remain hot; once a target is inserted, it is never removed.
Improving this is an area of future work, requiring the devel-
opment of always-on, low-overhead profiling techniques.

4.4 Custom Traces

As an example of our custom trace interface, we built
a client that attempts to inline entire procedure calls into
traces. The standard DynamoRIO traces focus on loops and
often end up with a hot procedure call’s return in a different
trace from the call. This causes many hashtable lookups as
the call is invoked from different call sites and the inlined
return target keeps missing.

Our custom traces simply mark calls as trace heads and
returns as end-of-trace conditions. A trace will be termi-
nated if a maximum size is reached, to prevent too much
unrolling of loops inside calls. Once a return is reached,
the trace is ended after the next basic block. This inlines
the return and nearly guarantees that the inlined target will
match. Our implementation goes ahead and assumes that
the calling convention holds, in which case the return can
be removed entirely.

5 Experimental Results

This section shows the performance results of the op-
timizations from Section 4. All of the results in this sec-
tion are for the SPEC2000 benchmarks [34] (excluding the
FORTRAN 90 benchmarks) on Linux, compiled with full
optimization (gcc - @) and run with unlimited code cache
space on a Pentium 4 2.2GHz Xeon. The best of four runs
was used for each data point.

Figure 5 shows normalized execution time (the ratio of
our time to native execution time, so smaller is better) for
six data points. The first bar gives the performance of the
base DynamoRIO infrastructure. DynamoRIO breaks even
on many benchmarks, even though it is not performing any
optimizations beyond efficient code layout when creating
traces. For the benchmarks with slowdowns, most of the
overhead comes from handling indirect branches and deal-
ing with ef | ags changes caused by introduced code. Dy-
namoRIO suffers from more costly indirect branch mispre-
dictions than the native application, as it translates all indi-
rect branches (including returns and indirect calls) into in-
direct jumps. The Pentium processors have return address
predictors, but not indirect jump predictors, penalizing Dy-
namoRIO, which cannot efficiently use the return address
predictor (also, to do so would require storing code cache
addresses on the stack, violating transparency).

Comparing DynamoRIO’s base performance to that of
Dynamo [4], the underlying architecture’s treatment of indi-
rect branches is the key difference, with CISC versus RISC
secondary. Dynamo ran on PA-RISC, which does not have a
return address predictor. Dynamo’s sole goal was optimiza-
tion, and it gave up (returning control to native execution)
if it was not performing well. DynamoRIO is a platform
for dynamic code modification, not just optimization, and
as such it maintains control over the entire application run.

The second bar in Figure 5 gives the performance for
our redundant load removal optimization. This optimiza-
tion achieves a forty percent speedup for ngri d and also
does well on a number of other floating-point benchmarks.
Its effects on the integer benchmarks are less dramatic. The
third bar shows the results for the i nc to add 1 transfor-
mation, which is able to speed up a number of benchmarks.
The fourth bar gives the performance of the adaptive indi-
rect branch target optimization. It does quite well on several
of the integer benchmarks. The fifth bar shows the custom
traces optimization of. It speeds up a number of the inte-
ger benchmarks. We have not finished tweaking the custom
trace parameters, and we hope to find trace strategies that
perform well even for benchmarks like per | bk and gcc.

Our optimizations result in slight slowdowns relative to
base DynamoRIO performance on a few benchmarks. The
largest slowdowns are on per | bnk and gcc. Both of these
consist of multiple short runs with little code re-use. It is
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Figure 5. Normalized program execution time (the ratio of our execution time to native execution time)
on the SPEC2000 benchmarks [34]. Six data points are shown: the base DynamoRIO performance,
each of our four sample optimizations applied independently, and all of them applied in combination.

difficult to amortize overheads in such conditions. The time
spent performing the optimizations outweighs any benefits
for these benchmarks.

The final bar in Figure 5 gives the performance of run-
ning all four of our sample optimizations at once. The mean
execution time for the floating-point benchmarks is a 12%
improvement over native. Combining floating-point and in-
teger, the mean performance exactly matches native, a 12%
improvement over the base DynamoRIO performance. We
hope to improve the efficiency of the DynamoRIO infras-
tructure itself in the future, to achieve better end results.

6 Reated Work

There are two other systems we know of that export
an API for the creation of custom dynamic optimizations,
DELI [13] and Strata [33]. DELI has hooks for transform-
ing traces as they are built, but has no mechanism for re-
optimizing traces after they have been placed in the code
cache. As with Dynamo [4], profiling is used only up front
to build a trace: once built, a trace is no longer profiled. To
adapt to changes in program behavior, the entire cache must
be flushed, which is too coarse-grained for general adaptive



optimizations. Furthermore, DELI’s instruction representa-
tion has a single level of detail.

Strata [33] separates part of its system into a client in-
terface which can be modified to build custom dynamic
code modification tools. The interface includes hooks into
Strata’s fragment creation and emission routines, but has
no support for re-optimizing fragments once they are in the
cache. The instruction representation is not discussed.

API-less dynamic optimization systems include Dy-
namo [4] for PA-RISC; Wiggins/Redstone [12], which
employs program counter sampling to form traces which
are then specialized for a particular Alpha machine; and
Mojo [7], which targets Windows NT running on 1A-32, but
has no available information beyond the basic infrastructure
of the system. Kistler [24] proposes “continuous program
optimization” that involves operating system re-design to
support adaptive dynamic optimization.

Hardware dynamic optimization of the instruction
stream is performed in superscalar processors. The Trace
Cache [32] allows such optimizations to be performed off
of the critical path.

Dynamic translation systems resemble dynamic opti-
mizers in that they cache native translations of frequently
executed code. Domains include instruction set emula-
tion [9, 17] and binary compatibility [8, 25]. Recent dy-
namic translation systems such as UQDBT [36] and Dy-
namite [31] separate the source and target architectures to
create extensible systems that can be re-targeted.

Dynamic compilation has proven essential for efficient
implementation of high-level languages [14, 1]. Some just-
in-time compilers perform profiling to identify which meth-
ods to spend more optimization time on [22]. The Jalapefio
Java virtual machine [3, 26] utilizes idle processors in an
SMP system to optimize code at runtime. Jalapefio opti-
mizes all code at an initial low level of optimization, em-
bedding profiling information that is used to trigger re-
optimization of frequently executed code at higher levels.
Self [21] uses a similar adaptive optimization scheme.

Staged dynamic compilers postpone a portion of compi-
lation until runtime, when code can be specialized based on
runtime values [11, 19, 27, 28, 18]. These systems usually
focus on spending as little time as possible in the dynamic
compiler, performing extensive offline pre-computations to
avoid needing any intermediate representation at runtime.

Dynamic instrumentation can be used to build runtime
code analyzers and, to some degree, runtime code modi-
fiers. Both Dyninst [6] and Vulcan [35] can insert code into
running processes. Dyninst is based on dynamic instrumen-
tation technology [20] developed as part of the Paradyn Par-
allel Performance Tools project [29]. Because these tools
modify the original code by inserting trampolines, exten-
sive modification of the code is unwieldy.

Other related fields include link-time optimization [30,
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10] and low-overhead profiling [2, 15].

7 Conclusions

This paper presents a flexible yet efficient infrastruc-
ture for the development of adaptive dynamic optimiza-
tions. Dynamic optimization has great potential to solve
the problems of static compilation of modern, dynamic soft-
ware. However, there are few dynamic optimization infras-
tructures, due to the engineering challenges in building the
core system and strict requirements of efficiency and trans-
parency for operating while the program is executing.

The key principles used by our infrastructure to maintain
efficiency are restricting optimization units to linear streams
of code (traces) and using adaptive levels of detail for repre-
senting instructions. Our interface provides direct support
for building customizable traces and custom adaptive op-
timization of traces, while maintaining transparency with
respect to the application.

We have demonstrated the usefulness and effectiveness
of our framework with several example optimizations. We
do not rely on hardware, operating system, or compiler sup-
port, and operate on unmodified binaries on both generic
Linux and Windows 1A-32 platforms.

Our infrastructure is general enough to be used for pur-
poses other than optimization. Potential applications are
numerous: instrumentation, profiling, statistics gathering,
sandboxing, intrusion detection, on-the-fly code decom-
pression or decryption, code streaming, dynamic transla-
tion. The benefits are vast for a dynamic code modification
infrastructure that is general while maintaining efficiency.
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