

The Why of Y

Richard P. Gabriel
Lucid, Inc. and Stanford University

Did you ever wonder how Y works and how anyone could ever have thought of it? In this note I’ll try
to explain to you not only how it works, but how someone could have invented it. I’ll use Scheme
notation because it is easier to understand when functions passed as arguments are being applied.

The point of Y is to provide a mechanism to write self-referential programs without a special built-in
means of accomplishing it. In Scheme there are several mechanisms for writing such programs,
including global function definitions and letrec. Here is one way to write the factorial function in
Scheme:

(define fact
 (lambda (n)
 (if (< n 2) 1 (* n (fact (- n 1))))))

This works because there is a global variable, fact, that has its value set to the value of the lambda
expression. When the variable fact in the body of the function is evaluated to determine which
function to invoke, the value is found in the global variable. In some sense using a global variable as a
function name is unpleasant because it relies on a global and hence a vulnerable resource—the global
variable space.

The Scheme self-reference form letrec is usually implemented using a side effect. It is easier to rea-
son about programming languages and programs that have no side effects. Therefore it is of theoreti-
cal interest to establish the ability to write recursive functions without the use of side effects.

The following is a program that uses letrec:

(letrec
 ((f (lambda (n)
 (if (< n 2) 1 (* n (f (- n 1)))))))
 (f 10))

This program computes 10!. The reference to f inside the lambda expression is to the binding of f
established by the letrec.

One could implement letrec using let and set!.

(letrec ((f (lambda ...))) ...)

This is equivalent to the following:

(let ((f <undefined>)) (set! f (lambda ...)) ...)

All references to f in the body of the lambda expression will refer to the value of the lambda expres-
sion.
The Why of Y February 3, 2001 1

Y is a function that takes a function that could be viewed as describing a recursive or self-referential
function, and returns another function that implements that recursive function. Here is how Y is
used to compute 10!.

(let ((f (y (lambda (h)
 (lambda (n)
 (if (< n 2) 1 (* n (h (- n 1)))))))))
 (f 10))

Notice that the function passed to Y as an argument is one that takes a function as an argument and
returns a function that looks like the factorial function we want to define. That is, the function
passed to Y is (lambda (h) ...). The body of this function looks like the factorial function,
except that where we would expect a recursive call to the factorial function, h is called instead. Y
arranges for an appropriate value to be supplied as the value of h.

People call Y the applicative-order fixed point operator for functionals. Let’s look at what this means in
our factorial example. Suppose F is the true mathematical factorial function, possibly in Plato’s
heaven. Let F denote the following function:

F = (lambda (h) (lambda (n) (if (< n 2) 1 (* n (h (- n 1))))))

Then ((F F) n)= (F n). That is, F is a fixed point of F: F maps (in some sense) F onto F. Y satisfies
the following property: ((F (Y F)) x) = ((Y F) x). This is a very important property of Y. The other
important property is that the least defined fixed point for functionals is unique, and therefore
(Y F) and F are in some sense the same.

Applicative-order Y is not the same as classical Y, which is a combinator. In some texts, what we call
Y is called Z.

To derive Y, I will start with an example recursive function, factorial. In the derivation I will make
use of three techniques. The first is to pass an additional argument to avoid using any self-reference
primitives from Scheme. The second is to convert multiple-parameter functions to nested single-
parameter functions in order to separate manipulation of the self-reference parameters from manip-
ulation of ordinary parameters. The third is to introduce functions through abstraction.

All code examples will use the variables n and m to refer to integers, the variable x to refer to an
unknown but undistinguished argument, and the variables f, g, h, q, and r to refer to functions.

The basic form of the factorial function is the following:

(lambda (n) (if (< n 2) 1 (* n (h (- n 1)))))

The variable h should refer to the function we wish to invoke when a recursive call is made, which is
the factorial function itself. Since we have no way to have h refer directly to the correct function, let’s
pass it in as an argument:

(lambda (h n) (if (< n 2) 1 (* n (h h (- n 1)))))

In the recursive call to h, the first argument will also be h because we want to pass on the correct
function to use in the recursive situation to later invocations of the function.

Therefore, to compute 10! we would write the following:
The Why of Y February 3, 2001 2

(let ((g (lambda (h n)
 (if (< n 2) 1 (* n (h h (- n 1)))))))
 (g g 10))

During the evaluation of the body of g, the value of h is the same as the value of g that the let estab-
lished; that is, during execution of g, h refers to the executing function. When the function call
(h h (- n 1)) happens, this same value is passed along as an argument to h: h passes itself to
itself.

What we want to do, though, is to pull apart the management of the self-reference to the function
from the management of other arguments. In this case we want to separate the management of h
from the management of n. The usual way to handle this is with a technique called currying. Before
we curry this example, let’s look at another example of currying. Here is a program that also com-
putes 10!, but in a slightly more clever way.

(letrec ((f (lambda (n m)
 (if (< n 2) m (f (- n 1) (* m n))))))
 (f 10 1))

Here the trick is to use an accumulator, m, to compute the result. This function is iterative in
Scheme, but that’s not important. Let’s curry the definition of f:

(letrec ((f (lambda (n)
 (lambda (m)
 (if (< n 2) m ((f (- n 1)) (* m n)))))))
 ((f 10) 1))

The idea of currying is that every function has one argument, and passing multiple arguments is
accomplished with nested function application: the first application returns a function that will take
the second argument and complete the computation of the value. In the above piece of code, the
recursive call ((f (- n 1)) (* m n)) has two steps: the proper function to apply is computed,
and then it is applied to the right argument.

We can use this idea to curry the other factorial program:

(let ((g (lambda (h)
 (lambda (n)
 (if (< n 2) 1 (* n ((h h) (- n 1))))))))
 ((g g) 10))

In this piece of code, the recursive call also has two steps, and the first is to compute the proper func-
tion to apply. But that proper function is computed by applying a function to itself.

Applying a function to itself is how we get the basic functionality of a self-reference. The self-applica-
tion (g g) in the last line of the program calls g with g itself as an argument. This returns a closure
in which the variable h is bound to the outside g. This closure will take a number and do the basic
factorial computation. If that computation needs to perform a recursive call, it invokes the closed-
over h with the closed-over h as an argument, but all these h’s are bound to the function g defined by
the let.

We can summarize this trick. Suppose we have a self-referential function that uses letrec as in the
following code skeleton:

(letrec ((f (lambda (x) ... f ...))) ... f ...)
The Why of Y February 3, 2001 3

Then this can be turned into a self-referential function that uses let as follows:

(let ((f (lambda (r) (lambda (x) ... (r r) ...)))) ... (f f) ...))

where r is a fresh identifier.

Let’s concentrate on how to further separate the management of h in our factorial function from the
management of n. Recall that the factorial program looks like this:

(let ((g (lambda (h)
 (lambda (n)
 (if (< n 2) 1 (* n ((h h) (- n 1))))))))
 ((g g) 10))

Our plan of attack is to abstract the if expression over (h h) and n. This will accomplish two
things: the resulting function will be independent of its surrounding bindings, and the management
of the control argument will be separated from the numeric argument. The following is the result of
the abstraction:

(let ((g (lambda (h)
 (lambda (n)
 (let ((f (lambda (q n)
 (if (< n 2) 1 (* n (q (- n 1)))))))
 (f (h h) n))))))
 ((g g) 10))

We can curry the definition of f, which will also change the call to it.

(let ((g (lambda (h)
 (lambda (n)
 (let ((f (lambda (q)
 (lambda (n)
 (if (< n 2) 1 (* n (q (- n 1))))))))
 ((f (h h)) n))))))
 ((g g) 10))

Notice that the definition of the function f does not need to be deeply embedded in the function g.
Therefore, we can extract the main part of the function—the part that computes factorial—from the
rest of the code.

(let ((f (lambda (q) (lambda (n) (if (< n 2) 1 (* n (q (- n 1))))))))
 (let ((g (lambda (h) (lambda (n) ((f (h h)) n)))))
 ((g g) 10)))

Notice two things: first, the form of f is once again the parameterized form of factorial; second, we
can abstract this expression over f, which produces Y as follows:

(define Y (lambda (f)
 (let ((g (lambda (h)
 (lambda (x) ((f (h h)) x)))))
 (g g))))

This is one way to derive Y.
The Why of Y February 3, 2001 4

