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Abstract 

Achieving good performance in bytecoded language inter- 
preters is difficult without sacrificing both simplicity and 
portability. This is due to the complexity of dynamic trans- 
lation (“just-in-time compilation”) of bytecodes into native 
code, which is the mechanism employed universally by high- 
performance interpreters. 

We demonstrate that a few simple techniques make it 
possible to create highly-portable dynamic translators that 
can attain as much as 70% the performance of optimized C 
for certain numerical computations. nanslators based on 
such techniques can offer respectable performance without 
sacrificing either the simplicity or portability of much slower 
“pure” bytecode interpreters. 

Keywords: bytecode interpretation, threaded code, inlin- 
ing, dynamic translation, just-in-time compilation. 

1 Introduction 

Bytecoded languages such as Smalltalk [Go183], Cam1 
[Ler97] and Java [Arn96, Lin97] offer significant engineer- 
ing advantages over more conventional languages: higher 
levels of abstraction, dynamic execution environments with 
incremental debugging and code modification, compact rep- 
resentation of executable code, and (in most cases) platform 
independence. 

The success of Java is due largely to its promise of plat- 
form independence and compactness of code. The com- 
pactness of bytecodes has important advantages for net- 
work computing where code must downloaded “on-demand” 
for execution on an arbitrary platform and operating sys- 
tem while keeping bandwidth requirements to a minimum. 
The disadvantage is that bytecode interpreters typically of- 
fer lower performance than compiled code, and can consume 
significantly more resources. 

Most modern virtual machines perform some degree of 
dynamic translation to improve program performance 
jDeu84). Such techniques significantly increase the com- 
plexity of the virtual machine, which must be tailored for 
each hardware architecture in much the same way as a con- 
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ventional compiler’s back-end. This increases development 
costs (requiring specific knowledge about the target archi- 
tecture and the time for writing specific code), and reduces 
reliability (by introducing more code to debug and support). 

Some of these languages (Cam1 for example) also have 
more traditional compilers that produce high-performance 
native code, but this defeats the advantages that comk with 
platform independence and compactness. 

We propose a novel dynamic retranslation technique that 
can be applied to a certain class of virtual machines. This 
technique delivers high performance, up to 70% that of opti- 
mized C. It is easy to “retrofit” to existing virtual machines, 
and requires almost no effort to port to a new architecture. 

This paper continues as follows. The next section gives 
a brief survey of bytecode interpretation mechanisms, pro- 
viding a context for the remainder of the paper. Our novel 
dynamic retranslation technique is explained in Section 3. 
Section 4 presents the results of applying the technique to 
two interpreters: the small RISC-like interpreter that in- 
spired this work, and a “production” virtual machine for 
Objective Cam]. The final two sections contrast our tech- 
nique with related work and present some final conclusions. 

2 Background 

Interpreter performance can depend heavily on the repre- 
sentation chosen for executable code, and the mechanism 
used to dispatch opcodes. This section describes some of 
the common techniques. 

2.1 Pure bytecode interpreters 

The inner loop of a pure bytecode interpreter is very simple: 
fetch the next bytecode and dispatch to the implementation 
using a switch statement. Figure 1 shows a typical pure 
bytecode interpreter loop, and an array of bytecodes that 
calculate ‘3 + 4’ (we will use this as a running example). 

The interpreter is an infinite loop containing a switch 
statement to dispatch successive bytecodes. Each case in 
the body of the switch implements one bytecode, and passes 
control to the next bytecode by breaking out of the switch 
to pass control back to the start of the infinite loop. 

Assuming the compiler optimizes the jump chains from 
the breaks through the implicit jump at the end of the for 
body back to its beginning, the overheads associated with 
this approach are as follows: 

l increment the instructionPointer; 

l fetch the next bytecode from memory; 

291 



compiled code: 

unsigned char codo[] = 1 . . . , 
bytecode-push3, 
bytscode-push4. 
bytecode-add. . . . 1: 

bytecode implementations: 

unsigned char *instructionPointer p code - 1; 
for (;;I i 

unsigned char bytecode = +++instructioaPointer; 
switch (bytecods) < 
/* . . . */ 
case bytecoda-push3: 

*++stackPointe+ = 3; 
break; 

case bytecode-push4: 
*++stackPointer = 4; 
break; 

case bytecoda-add: 
--stsckPointsr; 
l atackPointar += stackPointer[l] ; 
break; 

/a . . . */ 
1 

1 

Figure 1: Pure bytecode interpreter. 

compiled code: 

void *cods[] = ( . . . . 
&topcods_push3, 
kkopcodevpush4, 
tlopcode-add, . . . 1; 

opcode implementatione: 

/+ dispatch next instruction */ 
#define NF.XT() goto *+++instructionPointar 

void **instructionPointer = code - 1; 
/+ start execution: dispatch first opcode */ 

NEXT0 i 
/* opcode implementations... */ 
opcode-push3: 

*++atackPointer = 3; 
NEXTO; 

opcode-push4: 
l ++stackPointer = 4; 
NEW); 

opcode-add: 
--stackPointer; 
**tackPointar += atackPointor[il; 
NEXT0 ; 

/+ . . . */ 

l a redundant range check on the argument to switch; 

l fetch the address of the destination case label from a 
table; 

l jump to that address; 

and then at the end of each bytecode: 

l jump back to the start of the for body to fetch the 
next bytecode. 

Eleven machine instructions must be executed on the Pow- 
erPC to perform the push3 bytecode. Nine of these instruc- 
tions are dedicated to the dispatch mechanism, including 
two memory references and two jumps (among the most ex- 
pensive instructions on modern architectures). 

Pure bytecoded interpreters are easy to write and under- 
stand, and are highly portable - but rather slow. In the 
case where most bytecodes perform simple operations (as in 
the push3 example) the majority of execution time is wasted 
in performing the dispatch. 

2.2 Threaded code interpreters 

Threaded code was popularized by the Forth programming 
language [Moo70]. There are various kinds of threaded code, 
the most efficient of which is generally direct threading 
[Ert98]. 

Bytecodes are simply integers: dispatch involves fetch- 
ing the next opcode (bytecode), looking up the address of 
the associated implementation (either in an explicit table, 
or implicitly using switch) and then transferring control to 
that address. Direct threaded code improves performance 
by eliminating this table lookup: executable code is repre- 
sented as a sequence of opcode implementation addresses, 
and dispatch involves fetching the next opcode (implemen- 
tation address) and jumping directly to that address. 

An additional optimization eliminates the centralized dis- 
patch. Instead of returning to a central dispatch loop, each 
direct threaded opcode’s implementation ends with the code 

Figure 2: Direct threaded code. 

required to dispatch the next opcode. The direct threaded 
version of our ‘3 + 4’ example is shown in Figure 2.’ 

Execution begins by fetching the address of the first op- 
code’s implementation from the compiled code and then 
jumping to that address. Each opcode performs its own 
work, and then dispatches to the next opcode implied by 
the compiled code. (Hence the name: control flow “threads” 
its way through the opcodes in the order implied by the 
compiled code, without ever returning to a central dispatch 
loop.) 

The overheads associated with threaded code are much 
lower than those associated with a pure bytecode inter- 
preter. For each opcode executed, the only additional over- 
head is dispatching to the next opcode: 

l increment the instructionPointer; 

l fetch the next opcode address from memory; 

l jump to that address. 

Five machine instructions are required to implement push3 
on the PowerPC. Three of these are associated with opcode 
dispatch, with only one memory reference and one jump. 

We have saved six instructions over the “pure bytecode” 
approach. Most importantly we have saved one memory 
reference and one jump instruction (both of which axe ex- 
pensive). 

2.3 Dynamic translation to threaded code 

The benefits of direct threaded code can easily be obtained 
in a bytecoded language by translating the bytecodes into 
direct threaded code before execution. This is illustrated in 

‘Tlw threaded code examples are written using the first-class la- 
bels provided by GNU C. The expression “void *addr = C&label” as- 
signs the address (of type “void +“) of the statement attached to the 
given label to addr. Control can be transferred to this location using 
a goto that dereferences the address: “goto *ad&“. Note that gee’s 
first-class labels are not required to implement these techniques: the 
same effects can be achieved with a couple of macros containing a few 
lines of a*m. 
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translation table: 

void *opcodesCI ; 
/* . . . */ 
opcodesIbytscode_pu~bU = kkopcodswpush3; 
opcodes[bytecode_push4] = kkopcode-puah4; 
opcodeaCbytmcode_addI = kkopcode-add; 
/* . . . */ 

dynamic translator: 

unsigned char *bytecodePointer = first.Bytacods; 
void **opcodaPointor Q translatedCodeForFunction; 
while (moreBytecodeaToTranslate) 

ropcodePointer++ = opcodes[*bytecodePointer+tl; 

Figure 3: Dynamic translation of bytecodes into thre- 
aded code. 

Figure 3. The translation loop reads each bytecode, looks 
up the address of its implementation in a table, and then 
writes this address into the direct threaded code. 

The only complication is that most bytecode sets have 
extension bytes. These provide additional information that 
cannot be encoded within the bytecode itself: branch offsets, 
indices into literal tables or environments, and so on. These 
extension bytes are normally placed inline in the translated 
threaded code by the translator, immediately after the thre- 
aded opcode corresponding to the bytecode. 

Translation to threaded code permits other kinds of op- 
timization. Smalltalk, for example, contains a range of six 
bytecodes for pushing an implicit integer constant (between 
-1 and +2) onto the stack. The translator loop could easily 
translate these as a single pushLiteral opcode followed by 
the constant to be pushed as an inline operand. The same 
treatment can be applied to other kinds of literal quantity, 
relative branch offsets, and so on. Another possibility is 
“‘partial decoding”, where the translator loop examines an 
“overloaded” bytecode at translation time, and translates it 
into one of several threaded opcodes. 

The translator loop must be aware of the kind of operand 
that it is copying. A relative offset, for example, might 
require modification or scaling during the translation loop. 

It is possible to make an approximate evaluation of this 
approach in a realistic system. Squeak [Ing97] is a portable 
“pure bytecode” implementation of Smalltalk-80; it per- 
forms numerical computations at approximately 3.7% the 
speed of optimized C. BrouHaHa [Mir87] is a portable Small- 
talk virtual machine that is very similar to the Squeak VM, 
except that it dynamically translates bytecodes into direct 
threaded code for execution [MirSl]. BrouHaHa performs 
the same numerical computations at about 15% the speed 
of optimized C. Both implementations have been carefully 
hand-tuned for performance; the essential difference between 
them is the use of dynamic translation to direct threaded 
code in BrouHaHa. 

2.4 Optimizing common bytecode sequences 

Bytecodes can typically only represent 256 operations. Thre- 
aded opcodes can represent many more, since they are en- 
coded as pointers. Translating bytecodes into threaded code 
therefore gives us the opportunity to make arbitrary trans- 
formations on the executable code. One such transformation 
is to detect common sequences of bytecodes and translate 
them as a single threaded “macro” opcode; this macro op- 
code performs the work of the entire sequence of original 
bytecodes. For example, the bytecodes “push literal, push 

variable, add, store variable” can be translated as a single 
“add-literal-to-variable” opcode in the translated threaded 
code. 

Such optimizations are effective because they avoid the 
overhead of the multiple dispatches that are implied by the 
original bytecodes (but elided within the macro opcode). 
A single macro opcode that is translated from a sequence 
of N original bytecodes avoids N - 1 opcode dispatches at 
execution time. 

This technique is particularly important in cases where 
the bytecodes are simple (as in the ‘3 + 4’ example), when 
the implementation of each bytecode can be as short as 
as single register-register machine instruction. The cost of 
threading can often be significantly larger than the cost of 
“useful” execution. If three instructions must be executed 
to dispatch to the next opcode then the overhead for this 
threading for ‘3 + 4’ is 75% (four useful instructions exe- 
cuted and 12 instructions for dispatching the threaded op- 
codes). This overhead drops to 43% when the operation is 
optimized into a single macro opcode (four useful instruc- 
tions and 3 instructions for threading).’ 

Dispatching to opcode implementations at non-contig- 
uous addresses also undermines code locality, causing un- 
necessary processor pipeline stalls and inefficient utilization 
of the instruction cache and TLBs. Combining common seq- 
uences of bytecodes into a single macro opcode considerably 
reduces these effects. The compiler will also have a chance to 
make inter-bytecode optimizations (within the implementa- 
tion of the single macro opcode) that are impossible to make 
between the implementations of the individual bytecodes. 

Determining an appropriate set of common bytecode seq- 
uences is not difficult. The virtual machine can be instru- 
mented to record execution traces, and a simple offline anal- 
ysis will reveal the likely candidates. The corresponding pat- 
tern matching and macro opcode implementations can then 
be incorporated manually into the VM. For example, such 
analysis has been applied to an earlier version of the Objec- 
tive Cam1 bytecode set, resulting in a new set of bytecodes 
that includes several “macro-style” operations. 

2.5 Problems with static optimization 

The most significant problem with this static approach 
is that the number of possible permutations of even the 
shortest common sequences of consecutive bytecodes is pro- 
hibitive. For example, Smalltalk provides 4 bytecodes to 
push the most popular integer constants (minus one through 
two), and bytecodes to load and store 32 temporary and 256 
“receiver” variables. Manually optimizing the possible per- 
mutations for incrementing and decrementing a variable by 
a small constant would require the translator to implement 
explicitly 2304 special cases. This is clearly unreasonable. 

The problem is made more acute since different appli- 
cations running on the same virtual machine will favor dif- 
ferent sequences of bytecodes. Statically chasing a single 
“optimal” set of common sequences is therefore impossible. 

Our technique focuses on making this choice at runtime, 
which allows the set of common sequences to be optimal for 
the particular application being run. 

“‘Instruction counting” is not a very accurate way to estimate the 
savings, since the instructions that we avoid are some of the most 
expensive to execute. 
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dynamic-opcode-push3-pushrl-add: 
*++stackPointer = 3; 
*++stackPointer = 4; 
stackPointsr--; 
rata&Pointer += stackPointterC11; 
goto **++instructionPointar; 

Figure 4: Equivalent macro opcode for push3, push4, add. 

int nfibscint n) 

: nfibs(n - 2) + nfibs(n - 1) + 1; 
> 

Figure 5: Benchmark function in C. 

3 Dynamically rewriting opcode sequences 

We generate implementations for common bytecode sequen- 
ces dynamically. These implementations are available as 
new macro opcodes, where a single such macro opcode re- 
places the several threaded opcodes generated from the orig- 
inal common bytecode sequence. These dynamically gen- 
erated macro opcodes are executed in precisely the same 
manner as the interpreter’s predefined opcodes; the original 
execution mechanism (direct threading) requires no modifi- 
cation at all. The transformation can be performed either 
during bytecode-to-threaded code translation, or as a sepa- 
rate pass over already threaded code. 

Figure 4 shows the equivalent C for a dynamically gen- 
erated threaded opcode for the sequence of three bytecodes 
needed to evaluate the ‘3 + 4’ example. 

The translator concatenates the compiled C implemen- 
tations for several intrinsic threaded opcodes, each one cor- 
responding to a bytecode in the sequence being optimized. 
Since this involves relocating code, it is only safe to perform 
this concatenation for threaded opcodes whose implementa- 
tion is position independent. In general there are three cases 
to consider when concatenating opcode implementations: 

l A threaded opcode cannot be inlined if its implemen- 
tation contains a call to a C function, where the desti- 
nation address is relative to the processor’s PC. Such 
destination addresses would be invalidated as they are 
copied to form the new macro opcode’s implementa- 
tion. 

l Any threaded opcode that changes the flow of control 
through the threaded code must only appear at the 
end of a translated sequence. This is because different 
paths through the sequence might consume different 
numbers of inline arguments. 

l Any threaded opcode that is a branch destination can 
only appear at the beginning of a macro opcode, since 
incorporating it into the middle of a macro opcode 
would delete the branch destination in the final thre- 
aded code. 

The above can be simplified to the following rule: we 
only consider basic blocks for inlining, where a basic block 
begins with a jump destination and ends with either a jump 

nfibs: push 
move 
jsa 
=cont 
POP 
return 

cone : more 
sub 
Cdl 
wfibs 
*"SIP 
sub 
call 
anfibs 
add 
add 
POP 
rsturn 

start: mmw 
call 
=nfibs 
print 
halt 

l-1 ; rl saved during call 
m2 rl ; if brg < 2) 
l-0 rl a 

rl ; restore rl 
91 ; rwJrn 1 
t-0 l-1 ; &I* arg -> rl 
t1 ro ; call nfibs(ar,yl) 
0 

ra rl ; nfibs(arg-1) -> rl, arg -> r0 
1)2 l-0 ; call nfiba(aeg-2) 
a 

r1 ro ; nfibs(arg-2) + 1 -> r0 
t1 ro ; nfibscarg-1) + nfibs(arg-2) + 1 -> r0 
X9 ; rsstore rl 
r0 ; return nfibm(arg-1) + nfibs(arg-2) + 1 

it32 1.0 ; call nfibo(32) 
0 

r0 ; print result 
; atop 

Figure 6: Threaded code for nf ibs benchmark, before inlining. 

destination or a change of control flow. For inlining pur- 
poses, opcodes that contain a C function call are considered 
to be single-opcode basic blocks. (This restriction can be 
relaxed if the target architecture and/or the compiler used 
to build the VM uses absolute addresses for function call 
destinations.) 

Our technique was designed for (and works best with) 
fine-grained opcodes, where the implementations are short 
(typically a few machine instructions) and therefore the cost 
of opcode dispatch dominates. The next section presents an 
example in such a context. 

3.1 Simple example 

We will illustrate our technique by applying it to a simple 
“RISC-like,, virtual machine executing the “nfibs” func- 
tion, as shown in Figure 5.s 

Our example interpreter implements a register-based ex- 
ecution model. It has a handful of “registers” for performing 
arithmetic, and a stack that is used for saving return ad- 
dresses and the contents of clobbered registers during sub- 
routine calls. The direct threaded code has two kinds of in- 
line operand: instruction pointer-relative offsets for branch 
destinations, and absolute addresses for function call desti- 
nations. 

The interpreter translates bytecodes into threaded code 
in two passes. It makes a first pass over the bytecodes, 
expanding them into threaded opcodes with no inlining, ex- 
actly as explained in Section 2.3. Figure 6 shows a symbolic 
listing of the nf ibs function, implemented for our example 
interpreter’s opcode set, after this initial translation into 
threaded code. 

Bytecode operands are placed inline in the threaded code 
during translation. For example, the offset for the jge op- 
code and the call destinations are placed directly in the 
opcode stream, immediately after the associated opcode. 
These are represented as the pseudo-operand %’ in the fig- 

‘This doubly-recursive function has the interesting property that 
its result is the number of function calls required to calculate the 
result. 
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nfiba: Xl -b { pu& rl, EIOW S2 rl, jga dl rl 0, <thr> ) 
=cont 
%2 + < pop rl, return 11, <thr> ) 

cent: %3 + { move r0 rl, nub ll r0, call 0, <thr> 1 
=nfibs 
%4 + { swap r0 rl, sub t2 r0, call 0, <thr> ) 
=nfiba 
16 --+ t add rl r0, add 11 r0, pop rl, return r0, <thr> ) 

Figure 7: Threaded code for nfibs benchmark, af- 
ter inlining. The implementations of the new macro 
opcodes are shown on the right. 

ure, and appear on a separate line in the code prefixed with 
‘2 

‘After this initial translation to threaded code, a second 
pass performs inlining on the threaded code: basic blocks 
are identified, used to dynamically generate new threaded 
macro opcodes, and the corresponding original sequences of 
threaded opcodes are replaced with single macro opcodes. 
The rewriting of the threaded code can be performed in-situ, 
since optimizing an opcode sequence will always result in a 
shorter sequence of optimized code; there is no possibility of 
overwriting an opcode that has not yet been considered for 
inlining. 

Figure 7 shows the code for the nfibs function after in- 
lining has taken place. The function has been reduced to 
five threaded macro opcodes (shown as ‘Xl’ through 35’)) 
each replacing a basic block in the original code. The imple- 
mentation of each new macro opcode is the concatenation of 
the implementations of the opcodes that it replaces. These 
new implementations are written in a separate area of mem- 
ory called the macro cache. Five such implementations are 
required for nf ibs, and are shown within curly braces in the 
figure. Each one ends with a copy of the implementation of 
the pseudo-opcode <thr>, which is the threading operation 
to dispatch the next opcode. 

Inline arguments are copied verbatim, except for cant (a 
jump offset) which is adjusted appropriately by the transla- 
tor. (These inline arguments are used by the macro opcode 
implementations at the points marked with ‘0’ in the figure.) 

To help with the identification of basic blocks, we classify 
our threaded opcodes into four classes, as follows: 

INLINE - the opcode’s implementation can be inlined 
into a macro opcode without restriction (the srith- 
metic opcodes belong to this class); 

PROTECT - the implementation contains a C function 
call and therefore cannot be inlined (the print opcode 
belongs to this class); 
FINAL - the opcode changes the flow of control and 
therefore defines the end of a basic block (e.g. the call 
opcode); 

RELATIVE - the opcode changes the flow of control 
and therefore defines the end of a basic block (e.g. the 
conditional branch jge). 

The only difference between FINAL and RELATIVE is the way 
in which the opcode’s inline operand is treated. In the first 
case the operand is absolute, and can be copied directly into 
the final translated code. In the second csse the operand is 
relative to the current threaded program counter, and so 
must be adjusted appropriately in the final translated code. 

Figure 8 shows the translator code that initializes the 
threaded opcode table, along with representative implemen- 
tations of several of our threaded opcodes (each of the four 
classes of threaded opcode is represented). 

M*fin* PUSH(I) (*++sp = (long)(X)) 
Ildafia* POP0 (rap--) 
#define GET0 ((Iong)(t++ip)) /* read inlins operand */ 
Idafine NEXT0 goto **++ip /+ dispatch naxt opcoda */ 

tdafine PRGTECT (O&J) /* never expanded */ 
#define INLINE (l<(O) /* axpand.d */ 
#define FINAL (l<(l) /* expanded, enda a basic block */ 
#define RELATIVE (1~2) /* arpanded, ends a basic block, 

offa*t follows +/ 

#define OP(NANE, NARGS, FLAGS) \ 
caaa WANE: \ 
I\ 

info[op].nargs = NARGS; info Cop1 .flags = FLAGS; \ 
info[opJ.addr = kkltart-llONAI(E; \ 
info[op].end = Lkend-WNANE; \ 
info[op].six. = (int)kkend-WNANE - (int)kkstart-**NAa; \ 
if (!initialIP) break; \ 

start-ttNAl4E: 
/+ opcode body */ 

#define END(NAME) \ 
end-#tNANE: NEXT0 \ 
1 

/* initialize rather than execute (see macro 'OP') */ 
initialIP = 0; 
for (int op = FIRST-OPCODE; OP <= LAST-OPCOW ++Op) 

switch (0;) < 
OP(add-l_rO, 0, INLINE) I ro += 1; END(add-l-r0); ) 
OP(mul-rl_rO, 0, INLINE) { ro *= rl; FND(mul-rl-r0); ) 
DP(jga-rO-rl, 1, RgLATIVE) i register long offsot = GETO; 

if b-0 >= rl) in +- offs*t: 

OP(cal1. 
END(jge-rO_ri);') 

1. FINAL) < register long dest = GETO; 
PUHE(ip); 

= (void *t)deat - 1; 

OP(raturn-r0, 0, FINAL) i ip - (void **)POP(); 
END(raturn-ro) : ) 

OP(print-r0, 0, PRGTECT) ( printf("Xld\n;'; i0); 
gND(printJ0); 1 

default: 
fprintf(stdarr, "panic: op Xd is undefined!\n", 0~); 
abort(); 

1 

Figure 8: Opcode table initialization. 

The translator’s inlining loop is shown in Figure 9. It is 
not as complex as it might first appear. code is a pointer to 
the translated threaded code, which is rewritten in-situ. in 
and out are indices into code pointing to the next opcode 
to be copied (or inlined) and the location to which it will be 
copied, respectively (in >= out at all times). 

The loop considers each in opcode for inlining: the inlin- 
ing loop is entered only if both the current opcode and the 
opcode following it can be inlined. If this is not the csse, 
the opcode at in is copied (along with any inline arguments) 
directly to out. 

nextMacro is a pointer to the next unused location in 
the macro cache. The inlining loop first writes this address 
to out (it represents the “opcode” for the macro opcode 
implementation that is about to be generated), and then 
copies the compiled implementations of opcodes from in 
into the macro cache. The inlined threaded opcodes are not 
copied, although any inline arguments that are encountered 
are copied directly to out. 

The inlining loop continues until it copies an opcode that 
either explicitly ends a basic block or cannot be inlined, or 
until the next opcode is a branch destination (implying the 
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int in = 0, out = 0; 
while (thisOp = codeCin1) i 

int nextIn = in + 1 + infoCthisOpl.narga; 
long nsrtOp = codaCnaxtIn1; 
relocationa [id] = out; 
if (info[thisOp] .flaga == INLINE CC 

info[nertOpl .flags != PROTECT kk 
!destination[nertIn]) { 

/t CAN INLINE: create new macro opcode at nextMacro C/ 
void *ep = nextMacro; 
codelout++] = (long)sp; /* new macro opcode */ 
while (info[thisOpl.flags != PROTECT) < 

icopy(info[thisOpl.addr, sp, info[thisOp) .sizs); 
BP += infoCthisOp1 .aize; 
++in; /* skip opcode */ 
if (info[thisOpl .flags == RELATIVE) < 

patcbList[patchIndex++] = out; /+ locn of offset */ 
code[out++I = in + 1 + code[inl; /* original destn */ 
++in; 

) else c 
for (int i = info[thisOp] .nargs; i > 0; --i) 

code [out++] = code [in++] ; 
1 
if (info[thisOpl .flaga == FINAL I I 

info[thisOpl .flags == RELATIVE i 1 
destination[in]) 

break; /* end of basic block t/ 
thiaOp = code [in] : 

1 
/L copy threading operation t/ 
icopy(info[thr] .addr, ‘p, info[tbr] .aize); 
ep += infoCthr3. size; 
nextltacro = ap; 

) else ( 
I* CAN’T INLINE: copy opcode and inline arguments t/ 
code[out++I = (long)info[thisLlpl .addr; 
++in; /t skip opcode */ 
if (info[thisOpl .flags == RELATIVE) { 

patchlist [patchIndex++] = out; 
code[out++] = in + 1 + code[inl; 
++in; 

) else I 
/* copy literal arguments */ 
for (int i = infoCthiaOp1 .nargs; i > 0; --i) 

code [out++] = code [in++] ; 
> 

I 
1 

Figure 9: Dynamic translator loop. 

end the current basic block). The translator then appends 
the implementation of the pseudo-opcode thr, which is the 
“threading” operation itself. The nextMacro location is then 
updated ready for the next inlining operation. 

The translator loop uses an array of flags “destina- 
tion,, that identifies branch destinations within the thre- 
aded code. This array is easily constructed during the trans- 
lator’s first pass, as bytecodes are expanded into non-inlined 
threaded code. The loop also creates two arrays, reloca- 
tions and patchlist, that are used to recalculate relative 
branch offsets.4 

The inlining loop concatenates opcode implementations 
using the icopy function, shown in Figure 10. This function 
is similar to bcopy except that it also synchronizes the pro- 
cessor’s instruction and data caches to ensure that the new 
macro opcode’s implementation is executable. It contains 
the only line of platform-dependent code in our interpreter. 

4TIle branch destination identification and relative offset recalcu- 
lation are not shown here. These can be seen in the full source code 
for the example interpreter, which is available online. (See Section 6.) 

static inline void icopy(void *source, void *dent., size-t size) 
t 

bcopy(aource, dent, size) ; 
while (size > 0) ( 

Xii definod(PPC) 
am (“dcbst 0,X0; qnnc; icbi 0,X0; isync” :: “r”(p)); 

telif def ined(--spare) 
asm (“flush X0; atbar” :: ‘9 (p) 1 ; 

Oelif def inad{--i386) 
/* no-op */ 

telif definedc...) 
. . . 

tendif 
dest += 4: size -= 4; 

Figure 10: The icopy function, containing the single 
line of platform-dependent code. 

3.2 Saving space 

Translating multiple copies of the same opcode sequences 
would waste space. We therefore keep a cache of dynami- 
cally generated macro opcodes, keyed on a hash value com- 
puted from the incoming (unoptimized) opcodes during 
translation. In the case of a cache hit we reuse the exist- 
ing macro opcode in the translated code, and immediately 
reclaim the macro cache space occupied by the newly trans- 
lated version. In the case of a cache miss, the newly gen- 
erated macro opcode is used in the translated code and the 
hash table updated to include this opcode. This ensures that 
we never have more than one macro opcode corresponding 
to a given sequence of unoptimized opcodes. 

4 Experimental results 

We are particularly interested in the performance benefits 
when dynamic inlining is applied to interpreters with fine- 
grain instruction sets. Nevertheless, we were also curious to 
see how the technique would perform when applied to an 
interpreter having a more coarse-grained bytecode set. We 
took measurements in both of these contexts, using our own 
RISC-like interpreter and the widely-used (but less suited) 
interpreter for the Objective Cam1 language. 

4.1 Fine-grained opcodes 

Our RISC-like interpreter has an opcode set similar to that 
presented in Section 3.1. It can be configured (at compile 
time) to use bytecodes, direct threaded code, or direct thre- 
aded code with dynamically-generated macro opcodes. The 
performance of two benchmarks was measured using this in- 
terpreter: the function-call intensive Fibonacci benchmark 
presented earlier (nfibs), and a memory intensive, function 
call free, prime number generator (sieve). 

Table 1 shows the number of seconds required to execute 
these benchmarks on several architectures (133MHz Pen- 
tium, SparcStation 20, and 200MHz PowerPC 603ev). The 
figures shown are for a simple bytecode interpreter, the same 
interpreter performing translation into direct threaded code, 
then direct threaded code with dynamic inlining of common 
opcode sequences, and finally the benchmark written in C 
and compiled with the same optimization options (-02) as 
our interpreter. The final column shows the performance of 
the inlined threaded code compared to optimized C. 
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nf ibs 
machine bytecode threaded inlined C inlined/C 

Pentium 63.2 37.1 22.3 11.1 49.8% 
spare 93.6 51.4 24.9 18.1 72.7% 
PowerPC 40.6 20.3 10.4 6.0 57.7% 

sieve 
machine bytecode threaded inlined C Mined/C 

Pentium 25.1 17.6 13.2 4.6 34.8% 
spare 41.5 23.9 15.1 4.4 29.1% 
PowerPC 24.0 12.8 8.7 2.4 27.6% 

Table 1: nfibs and sieve benchmark results for the 
three architectures tested. The final column shows 
the speed of the inlined threaded code relative to op- 
timized C. 

%C nfibs 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pentium spare PowerPC 

%C sieve 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

20 

0 
Pentium spare PowerPC 

El bytecode m direct threaded H inlined 

Figure 11: Benchmark performance relative to optimized C. 

nf ibs spends much of its time performing arithmetic be- 
tween registers. Memory operations are performed only dur- 
ing function call and return. 

Our interpreter allocates the first few VM registers in 
physical machine registers whenever possible. The opcodes 
that perform arithmetic are therefore typically compiled into 
a single machine instruction on the Spare and PowerPC. 
These two architectures show a marked improvement in per- 
formance when common sequences are inlined into single 

macro opcodes, due to the significantly reduced ratio of op- 
code dispatch to “real” work. The effect is less pronounced 
on the Pentium, which has so few machine registers that 
all the VM registers must be kept in memory. Each arith- 
metic opcode compiles into several Pentium instructions, 
and therefore the ratio of dispatch overhead to real work 
is lower than for the RISC architectures. 

We observe a marked improvement (approximately a fac- 
tor of two) between successive versions of the interpreter for 
nf ibs. 

sieve shows a less pronounced improvement because it 
spends the majority of its time performing memory opera- 
tions. The contribution of opcode dispatch to the overall 
execution time is therefore smaller than with nf ibs. 

It is also interesting to observe the performance of each 
version of the interpreter relative to that of optimized C. 
Figure 11 shows that nfibs gains approximately 14% the 
speed of optimized C when moving from a bytecoded rep- 
resentation to threaded code. The gain when moving from 
threaded to inlined threaded code is more dependent on the 
architecture: approximately 20% for the Pentium, and 38% 
for the Spare. The gains for sieve are both smaller and less 
dependent on the architecture: approximately 9% at each 
step, for all three architectures. 

4.2 Objective Cam1 

We also applied our technique to the Objective Cam1 byte- 
code interpreter, in order to obtain realistic measurements 
of its performance and overheads in a less favorable environ- 
ment. 

Objective Cam1 was chosen because the design and im- 
plementation of the interpreter’s core is clean and simple, 
and so understanding it before making the required modifi- 
cations did not present a significant challenge. Furthermore 
it is a fully-fledged system that includes a bytecode com- 
piler, a benchmark suite, and some large applications. This 
made it easier to collect meaningful statistics. 

The interpreter is also equipped with a mechanism to 
bulk-translate the bytecodes into threaded code at startup 
(on those platforms that support it).’ We needed only to 
extend this initial translation phase to perform the analysis 
of opcode sequences, generate macro opcode implementa- 
tions, and rewrite the threaded code in-situ to use these 
dynamically-generated macro opcodes. Implementing our 
technique for the Cam1 virtual machine took one day. There 
were only two small details that required careful attention. 

The first was the presence of the SWITCH opcode. This 
performs a multi-way branch, and is followed in the threaded 
code by an inline table mapping values onto branch offsets. 
We added a special case to our translator loop to handle this 
opcode. 

The second was the existence of a handful of opcodes 
that consume two inline arguments (a literal and a rela- 
tive offset). We introduced a new opcode class RELATIVE2 
for these, which differs from RELATIVE only by copying an 
additional inline literal argument before the offset in the 
translator loop. 

Our translation algorithm was identical in all other re- 
spects to the one presented in Section 3. 

We ran the standard Objective Cam1 benchmark suite’ 
with our modified VM (see Table 2). The VM was in- 
strumented to gather statistics relating to execution speed, 

‘It uses gee’s first-class labels to do this portably. 
eftP://ftP.inria.fr/INRIA/Project~/cri~tal/Xavi~r.Leroy/ 

benchmarka/objcaml.tar.ge 
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I Pentium m spare I---I PowerPC 

Figure 12: Objective-Cam1 benchmark results for the three architectures tested. The vertical axis shows the performance 
relative to the original (non-inlining) interpreter. Asterisks indicate versions of the benchmarks compiled with array bounds 
checking disabled. 

fib 
genlex 
kb 
qsort 
sieve 
soli 
take 
taku 

term processing, function calls 
integer arithmetic, function calls (1 arg) 
lexing, parsing, symbolic processing 
term processing, function calls, functionals 
integer arrays, loops 
integer arithmetic, list processing, functionals 
puzzle solving, arrays, loops 
integer arithmetic, function calls (3 args, curried) 
integer arithmetic, function calls (3 args, tuplified) 

Table 2: Objective Cam1 benchmarks. 

memory usage, and the characteristics of dynamically gen- 
erated macro opcodes. 

Figure 12 shows the performance of the benchmarks after 
inlining, relative to the original performance without inlin- 
ing. 

It is important to note that the Objective Caml byte- 
code set has already been optimized statically, as described 
in Section 2.4 [Ler98]. Any further improvements are there- 
fore due mainly to the elimination of dispatch overhead in 
common sequences that are particular to each application. 
Virtual machines whose bytecode sets have not been “stat- 
ically” optimized in this way would benefit more from our 
technique. 

Figure 12 shows that the majority of benchmarks benefit 
from a significant performance advantage after inlining. In 
most cases the inlined version runs more than 50% faster 
than the original, with two of the benchmarks running twice 
as fast as the original non-inlined version. 

It is clear that the improvements are related to the pro- 
cessor architecture. This is probably due to differences in 
the cost of the threading operation. On the Spare, for ex- 
ample, avoiding the pipeline stalls associated with threading 
seems to make a significant difference. 

Figure 13 shows the final size of the macro cache for 
each benchmark on the Spare, plotted as a factor of the size 
of the original (unoptimized) code. The final macro cache 
sizes vary slightly for each architecture, since they depend 

1 10 100 1000 
original code size (kbytes) 

Figure 13: Macro cache size (diamonds) and opti- 
mized threaded code size (crosses), plotted as a factor 
of the original code size. 

on the size of the bytecode implementations. However, the 
shape is the same in each case. The average ratios of original 
bytecode size to the macro cache size show that the cost is 
between three and four times the size of the original code on 
the Spare. (The ratio is almost identical for the PowerPC, 
and slightly smaller for the Pentium.) 

We observe that this ratio decreases gradually as the 
original code size increases. This is to be expected, since 
larger bodies of code will tend to reuse macro opcodes rather 
than generating new ones. We tested this by translating the 
bytecoded version of the Objective Cam1 compiler: 421,532 
bytes of original code generated 941,008 bytes of macro op- 
code implementation on the Spare. This is approximately 
2.2 times the size of the original code, and is shown as the 
rightmost point in the graph. 

Inlined threaded code is always smaller than the original 
code from which is generated. Figure 13 also shows the final 
optimized code size for each benchmark. We observe that 
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the ratio is independent of the size of the benchmark. This is 
also to be expected, since the reduction in size is dependent 
on the average number of opcodes in a common sequence 
and the density of the corresponding macro opcodes in the 
final code. These depend mainly on the characteristics of 
the language and its opcode set. 

Some systems have a long-lived object memory, and gen- 
erate new executable code at runtime. A realistic implemen- 
tation for such systems would recycle the macro cache space, 
and possibly use profiling to optimize only popular areas of 
the program. For example, the 6804OLC emulator found on 
Macintosh systems performs dynamic translation of 68040 
into PowerPC code; it normally requires only 250Kb of cache 
in which the most commonly used translated code sequences 
are stored [Tho95]. A similar (fixed) cache size is effective 
in the BrouHaHa Smalltalk system [Mir97]. 

Translation speed is also an important factor. To mea- 
sure this we ran the Object Cam1 bytecode compiler (a much 
larger program than any of the benchmarks) with our modi- 
fied interpreter. The 105,383 opcodes of the Objective Cam1 
compiler are translated in 0.22 seconds on the Spare, a rate 
of 480,000 opcodes per second. The inlining interpreter ex- 
ecutes the compiler at a rate of 2.4 million opcodes per sec- 
ond. Translation is therefore approximately five times slower 
than execution.’ 

5 Related work 

BrouHaHa and Objective Cam1 have both demonstrated the 
benefits of creating specialized macro opcodes that perform 
the work of a sequence of common opcodes. In Objective 
Cam1 this led to a new bytecode set. In BrouHaHa the 
standard Smalltalk- bytecodes are translated into thre- 
aded code for execution; the detection of a limited number 
of pre-determined common bytecode sequences is performed 
during translation, and a specialized opcode is substituted 
in the executable code. Our contribution is the extension of 
this technique to dynamically analyze and generate imple- 
mentations for new macro opcodes at runtime. 

Several systems use concatenation of pre-compiled seq- 
uences of code at runtime [Aus96, NoegG], but in a com- 
pletely different context. Their precompiled code sequences 
are generic “templates” that can be parameterized at run- 
time with particular constant values. 

A template-based approach is also used in some com- 
mercial Smalltalk virtual machines that perform dynamic 
compilation to native code [Mir97]. However, this technique 
is complex and requires a significant effort to implement the 
templates for a new architecture. 

An interesting system for portable dynamic code gener- 
ation is vcode [Eng95], an architecture-neutral runtime as- 
sembler. It generates code that approaches the performance 
of C on some architectures. Its main disadvantage is that 
retrofitting it to an existing virtual machine requires a signif- 
icant amount of effort - certainly more than the single day 
that was required to implement our technique in a produc- 
tion virtual machine. (Our simple nfibs benchmark runs 
about 40% faster using vcode, compared to our RISC-like 
inlined threaded code virtual machine.) 

‘Since translation is performed only mce for each opcode, the 
“break-even” point is passed in any program that executes more than 
six times tbe number of opcodes that it contains. 

6 Conclusions 

This work was inspired by the need to create an interpreter 
with a very fine-grain RISC-like opcode set, that is both 
general (not tied to any particular high-level language) and 
amenable to traditional compiler optimizations. The cost 
of opcode dispatch is more significant in such a context, 
compared to more abstract interpreters whose bytecodes are 
carefully matched to the language semantics. 

The expected benefits of our technique are related to the 
average semantic content of a bytecode. We would expect 
languages such as Tel and Per], which have relatively high- 
level opcodes, to benefit less from macroization. Interpreters 
with a more RISC-like opcode set will benefit more - since 
the cost of dispatch is more significant when compared to the 
cost of executing the body of each bytecode. The Objective 
Cam1 bytecode set is positioned between these two extremes, 
containing both simple and complex opcodes.’ 

Vcode has better performance than our technique be- 
cause its instruction set matches very closely the underlying 
architecture. It can exert very fine control over the code that 
is generated, such as performing some degree of reordering 
for better instruction scheduling. We believe that similar re- 
sults can be achieved with our RISC-like inlining threaded 
code interpreter, but in a more portable manner. 

Out technique is limited mainly by the inability of the 
compiler to perform the inter-opcode optimizations that are 
possible when a static analysis is performed and new macro 
opcodes implemented manually in the interpreter. We be- 
lieve that these limitations are less important when using a 
very fine-grain opcode set, corresponding more closely to a 
traditional RISC architecture. Most opcodes will be imple- 
mented as a single machine instruction, and new opportu- 
nities for inter-opcode optimization will be available to the 
translator’s code generator. 

Our technique is portable, simple to implement, and or- 
thogonal to the implementation of the virtual machine’s op- 
codes. In reducing the overhead of opcode dispatch, it helps 
to bring the performance of fine-grained bytecodes to the 
same level as that of more abstract, language-dependent op- 
code sets. 

The complete source code for the simple inlining dy- 
namic threaded-code translator that was used to generate 
the benchmark results, and our modified version of Objec- 
tive Cam1 1.05, are available online.g 
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space (bytes) 

Spare 
original inlined cache 

13800 8324 42012 
5288 3320 20160 

45696 26856 156892 
20968 13048 75868 

6676 3932 26416 
6532 3884 25280 
5200 3312 20124 
6644 3952 25516 
6544 3908 24548 
4784 3012 18652 
4812 3036 18296 

Appendix 

Figure 14 shows the raw results for the Objective Cam1 
benchmarks. The execution speed (in seconds) is shown 
for all three architectures, for both the original interpreter 
and the inlined interpreter. The inlined interpreter speed is 
shown both as an absolute figure and as a percentage rela- 
tive to the original interpreter’s speed. 

The final three columns show the sizes of the original 
threaded code, the threaded code after inlining, and the fmal 
size of the macro cache for the Spare only. All are measured 
in bytes. 
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