
Optimizing direct threaded code by selective inlining

Ian Piumarta and Fabio Riccardi

INRIA Roquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
email: ian.piumarta@inria.fr

fabio.riccardi(Dinria.fr

Abstract

Achieving good performance in bytecoded language inter-
preters is difficult without sacrificing both simplicity and
portability. This is due to the complexity of dynamic trans-
lation (“just-in-time compilation”) of bytecodes into native
code, which is the mechanism employed universally by high-
performance interpreters.

We demonstrate that a few simple techniques make it
possible to create highly-portable dynamic translators that
can attain as much as 70% the performance of optimized C
for certain numerical computations. nanslators based on
such techniques can offer respectable performance without
sacrificing either the simplicity or portability of much slower
“pure” bytecode interpreters.

Keywords: bytecode interpretation, threaded code, inlin-
ing, dynamic translation, just-in-time compilation.

1 Introduction

Bytecoded languages such as Smalltalk [Go183], Cam1
[Ler97] and Java [Arn96, Lin97] offer significant engineer-
ing advantages over more conventional languages: higher
levels of abstraction, dynamic execution environments with
incremental debugging and code modification, compact rep-
resentation of executable code, and (in most cases) platform
independence.

The success of Java is due largely to its promise of plat-
form independence and compactness of code. The com-
pactness of bytecodes has important advantages for net-
work computing where code must downloaded “on-demand”
for execution on an arbitrary platform and operating sys-
tem while keeping bandwidth requirements to a minimum.
The disadvantage is that bytecode interpreters typically of-
fer lower performance than compiled code, and can consume
significantly more resources.

Most modern virtual machines perform some degree of
dynamic translation to improve program performance
jDeu84). Such techniques significantly increase the com-
plexity of the virtual machine, which must be tailored for
each hardware architecture in much the same way as a con-

B 1998 ACM 0-89791.987498/0006...$5.00

ventional compiler’s back-end. This increases development
costs (requiring specific knowledge about the target archi-
tecture and the time for writing specific code), and reduces
reliability (by introducing more code to debug and support).

Some of these languages (Cam1 for example) also have
more traditional compilers that produce high-performance
native code, but this defeats the advantages that comk with
platform independence and compactness.

We propose a novel dynamic retranslation technique that
can be applied to a certain class of virtual machines. This
technique delivers high performance, up to 70% that of opti-
mized C. It is easy to “retrofit” to existing virtual machines,
and requires almost no effort to port to a new architecture.

This paper continues as follows. The next section gives
a brief survey of bytecode interpretation mechanisms, pro-
viding a context for the remainder of the paper. Our novel
dynamic retranslation technique is explained in Section 3.
Section 4 presents the results of applying the technique to
two interpreters: the small RISC-like interpreter that in-
spired this work, and a “production” virtual machine for
Objective Cam]. The final two sections contrast our tech-
nique with related work and present some final conclusions.

2 Background

Interpreter performance can depend heavily on the repre-
sentation chosen for executable code, and the mechanism
used to dispatch opcodes. This section describes some of
the common techniques.

2.1 Pure bytecode interpreters

The inner loop of a pure bytecode interpreter is very simple:
fetch the next bytecode and dispatch to the implementation
using a switch statement. Figure 1 shows a typical pure
bytecode interpreter loop, and an array of bytecodes that
calculate ‘3 + 4’ (we will use this as a running example).

The interpreter is an infinite loop containing a switch
statement to dispatch successive bytecodes. Each case in
the body of the switch implements one bytecode, and passes
control to the next bytecode by breaking out of the switch
to pass control back to the start of the infinite loop.

Assuming the compiler optimizes the jump chains from
the breaks through the implicit jump at the end of the for
body back to its beginning, the overheads associated with
this approach are as follows:

l increment the instructionPointer;

l fetch the next bytecode from memory;

291

compiled code:

unsigned char codo[] = 1 . . . ,
bytecode-push3,
bytscode-push4.
bytecode-add. . . . 1:

bytecode implementations:

unsigned char *instructionPointer p code - 1;
for (;;I i

unsigned char bytecode = +++instructioaPointer;
switch (bytecods) <
/* . . . */
case bytecoda-push3:

*++stackPointe+ = 3;
break;

case bytecode-push4:
*++stackPointer = 4;
break;

case bytecoda-add:
--stsckPointsr;
l atackPointar += stackPointer[l] ;
break;

/a . . . */
1

1

Figure 1: Pure bytecode interpreter.

compiled code:

void *cods[] = (. . . .
&topcods_push3,
kkopcodevpush4,
tlopcode-add, . . . 1;

opcode implementatione:

/+ dispatch next instruction */
#define NF.XT() goto *+++instructionPointar

void **instructionPointer = code - 1;
/+ start execution: dispatch first opcode */

NEXT0 i
/* opcode implementations... */
opcode-push3:

*++atackPointer = 3;
NEXTO;

opcode-push4:
l ++stackPointer = 4;
NEW);

opcode-add:
--stackPointer;
**tackPointar += atackPointor[il;
NEXT0 ;

/+ . . . */

l a redundant range check on the argument to switch;

l fetch the address of the destination case label from a
table;

l jump to that address;

and then at the end of each bytecode:

l jump back to the start of the for body to fetch the
next bytecode.

Eleven machine instructions must be executed on the Pow-
erPC to perform the push3 bytecode. Nine of these instruc-
tions are dedicated to the dispatch mechanism, including
two memory references and two jumps (among the most ex-
pensive instructions on modern architectures).

Pure bytecoded interpreters are easy to write and under-
stand, and are highly portable - but rather slow. In the
case where most bytecodes perform simple operations (as in
the push3 example) the majority of execution time is wasted
in performing the dispatch.

2.2 Threaded code interpreters

Threaded code was popularized by the Forth programming
language [Moo70]. There are various kinds of threaded code,
the most efficient of which is generally direct threading
[Ert98].

Bytecodes are simply integers: dispatch involves fetch-
ing the next opcode (bytecode), looking up the address of
the associated implementation (either in an explicit table,
or implicitly using switch) and then transferring control to
that address. Direct threaded code improves performance
by eliminating this table lookup: executable code is repre-
sented as a sequence of opcode implementation addresses,
and dispatch involves fetching the next opcode (implemen-
tation address) and jumping directly to that address.

An additional optimization eliminates the centralized dis-
patch. Instead of returning to a central dispatch loop, each
direct threaded opcode’s implementation ends with the code

Figure 2: Direct threaded code.

required to dispatch the next opcode. The direct threaded
version of our ‘3 + 4’ example is shown in Figure 2.’

Execution begins by fetching the address of the first op-
code’s implementation from the compiled code and then
jumping to that address. Each opcode performs its own
work, and then dispatches to the next opcode implied by
the compiled code. (Hence the name: control flow “threads”
its way through the opcodes in the order implied by the
compiled code, without ever returning to a central dispatch
loop.)

The overheads associated with threaded code are much
lower than those associated with a pure bytecode inter-
preter. For each opcode executed, the only additional over-
head is dispatching to the next opcode:

l increment the instructionPointer;

l fetch the next opcode address from memory;

l jump to that address.

Five machine instructions are required to implement push3
on the PowerPC. Three of these are associated with opcode
dispatch, with only one memory reference and one jump.

We have saved six instructions over the “pure bytecode”
approach. Most importantly we have saved one memory
reference and one jump instruction (both of which axe ex-
pensive).

2.3 Dynamic translation to threaded code

The benefits of direct threaded code can easily be obtained
in a bytecoded language by translating the bytecodes into
direct threaded code before execution. This is illustrated in

‘Tlw threaded code examples are written using the first-class la-
bels provided by GNU C. The expression “void *addr = C&label” as-
signs the address (of type “void +“) of the statement attached to the
given label to addr. Control can be transferred to this location using
a goto that dereferences the address: “goto *ad&“. Note that gee’s
first-class labels are not required to implement these techniques: the
same effects can be achieved with a couple of macros containing a few
lines of a*m.

292

translation table:

void *opcodesCI ;
/* . . . */
opcodesIbytscode_pu~bU = kkopcodswpush3;
opcodes[bytecode_push4] = kkopcode-puah4;
opcodeaCbytmcode_addI = kkopcode-add;
/* . . . */

dynamic translator:

unsigned char *bytecodePointer = first.Bytacods;
void **opcodaPointor Q translatedCodeForFunction;
while (moreBytecodeaToTranslate)

ropcodePointer++ = opcodes[*bytecodePointer+tl;

Figure 3: Dynamic translation of bytecodes into thre-
aded code.

Figure 3. The translation loop reads each bytecode, looks
up the address of its implementation in a table, and then
writes this address into the direct threaded code.

The only complication is that most bytecode sets have
extension bytes. These provide additional information that
cannot be encoded within the bytecode itself: branch offsets,
indices into literal tables or environments, and so on. These
extension bytes are normally placed inline in the translated
threaded code by the translator, immediately after the thre-
aded opcode corresponding to the bytecode.

Translation to threaded code permits other kinds of op-
timization. Smalltalk, for example, contains a range of six
bytecodes for pushing an implicit integer constant (between
-1 and +2) onto the stack. The translator loop could easily
translate these as a single pushLiteral opcode followed by
the constant to be pushed as an inline operand. The same
treatment can be applied to other kinds of literal quantity,
relative branch offsets, and so on. Another possibility is
“‘partial decoding”, where the translator loop examines an
“overloaded” bytecode at translation time, and translates it
into one of several threaded opcodes.

The translator loop must be aware of the kind of operand
that it is copying. A relative offset, for example, might
require modification or scaling during the translation loop.

It is possible to make an approximate evaluation of this
approach in a realistic system. Squeak [Ing97] is a portable
“pure bytecode” implementation of Smalltalk-80; it per-
forms numerical computations at approximately 3.7% the
speed of optimized C. BrouHaHa [Mir87] is a portable Small-
talk virtual machine that is very similar to the Squeak VM,
except that it dynamically translates bytecodes into direct
threaded code for execution [MirSl]. BrouHaHa performs
the same numerical computations at about 15% the speed
of optimized C. Both implementations have been carefully
hand-tuned for performance; the essential difference between
them is the use of dynamic translation to direct threaded
code in BrouHaHa.

2.4 Optimizing common bytecode sequences

Bytecodes can typically only represent 256 operations. Thre-
aded opcodes can represent many more, since they are en-
coded as pointers. Translating bytecodes into threaded code
therefore gives us the opportunity to make arbitrary trans-
formations on the executable code. One such transformation
is to detect common sequences of bytecodes and translate
them as a single threaded “macro” opcode; this macro op-
code performs the work of the entire sequence of original
bytecodes. For example, the bytecodes “push literal, push

variable, add, store variable” can be translated as a single
“add-literal-to-variable” opcode in the translated threaded
code.

Such optimizations are effective because they avoid the
overhead of the multiple dispatches that are implied by the
original bytecodes (but elided within the macro opcode).
A single macro opcode that is translated from a sequence
of N original bytecodes avoids N - 1 opcode dispatches at
execution time.

This technique is particularly important in cases where
the bytecodes are simple (as in the ‘3 + 4’ example), when
the implementation of each bytecode can be as short as
as single register-register machine instruction. The cost of
threading can often be significantly larger than the cost of
“useful” execution. If three instructions must be executed
to dispatch to the next opcode then the overhead for this
threading for ‘3 + 4’ is 75% (four useful instructions exe-
cuted and 12 instructions for dispatching the threaded op-
codes). This overhead drops to 43% when the operation is
optimized into a single macro opcode (four useful instruc-
tions and 3 instructions for threading).’

Dispatching to opcode implementations at non-contig-
uous addresses also undermines code locality, causing un-
necessary processor pipeline stalls and inefficient utilization
of the instruction cache and TLBs. Combining common seq-
uences of bytecodes into a single macro opcode considerably
reduces these effects. The compiler will also have a chance to
make inter-bytecode optimizations (within the implementa-
tion of the single macro opcode) that are impossible to make
between the implementations of the individual bytecodes.

Determining an appropriate set of common bytecode seq-
uences is not difficult. The virtual machine can be instru-
mented to record execution traces, and a simple offline anal-
ysis will reveal the likely candidates. The corresponding pat-
tern matching and macro opcode implementations can then
be incorporated manually into the VM. For example, such
analysis has been applied to an earlier version of the Objec-
tive Cam1 bytecode set, resulting in a new set of bytecodes
that includes several “macro-style” operations.

2.5 Problems with static optimization

The most significant problem with this static approach
is that the number of possible permutations of even the
shortest common sequences of consecutive bytecodes is pro-
hibitive. For example, Smalltalk provides 4 bytecodes to
push the most popular integer constants (minus one through
two), and bytecodes to load and store 32 temporary and 256
“receiver” variables. Manually optimizing the possible per-
mutations for incrementing and decrementing a variable by
a small constant would require the translator to implement
explicitly 2304 special cases. This is clearly unreasonable.

The problem is made more acute since different appli-
cations running on the same virtual machine will favor dif-
ferent sequences of bytecodes. Statically chasing a single
“optimal” set of common sequences is therefore impossible.

Our technique focuses on making this choice at runtime,
which allows the set of common sequences to be optimal for
the particular application being run.

“‘Instruction counting” is not a very accurate way to estimate the
savings, since the instructions that we avoid are some of the most
expensive to execute.

293

dynamic-opcode-push3-pushrl-add:
*++stackPointer = 3;
*++stackPointer = 4;
stackPointsr--;
rata&Pointer += stackPointterC11;
goto **++instructionPointar;

Figure 4: Equivalent macro opcode for push3, push4, add.

int nfibscint n)

: nfibs(n - 2) + nfibs(n - 1) + 1;
>

Figure 5: Benchmark function in C.

3 Dynamically rewriting opcode sequences

We generate implementations for common bytecode sequen-
ces dynamically. These implementations are available as
new macro opcodes, where a single such macro opcode re-
places the several threaded opcodes generated from the orig-
inal common bytecode sequence. These dynamically gen-
erated macro opcodes are executed in precisely the same
manner as the interpreter’s predefined opcodes; the original
execution mechanism (direct threading) requires no modifi-
cation at all. The transformation can be performed either
during bytecode-to-threaded code translation, or as a sepa-
rate pass over already threaded code.

Figure 4 shows the equivalent C for a dynamically gen-
erated threaded opcode for the sequence of three bytecodes
needed to evaluate the ‘3 + 4’ example.

The translator concatenates the compiled C implemen-
tations for several intrinsic threaded opcodes, each one cor-
responding to a bytecode in the sequence being optimized.
Since this involves relocating code, it is only safe to perform
this concatenation for threaded opcodes whose implementa-
tion is position independent. In general there are three cases
to consider when concatenating opcode implementations:

l A threaded opcode cannot be inlined if its implemen-
tation contains a call to a C function, where the desti-
nation address is relative to the processor’s PC. Such
destination addresses would be invalidated as they are
copied to form the new macro opcode’s implementa-
tion.

l Any threaded opcode that changes the flow of control
through the threaded code must only appear at the
end of a translated sequence. This is because different
paths through the sequence might consume different
numbers of inline arguments.

l Any threaded opcode that is a branch destination can
only appear at the beginning of a macro opcode, since
incorporating it into the middle of a macro opcode
would delete the branch destination in the final thre-
aded code.

The above can be simplified to the following rule: we
only consider basic blocks for inlining, where a basic block
begins with a jump destination and ends with either a jump

nfibs: push
move
jsa
=cont
POP
return

cone : more
sub
Cdl
wfibs
*"SIP
sub
call
anfibs
add
add
POP
rsturn

start: mmw
call
=nfibs
print
halt

l-1 ; rl saved during call
m2 rl ; if brg < 2)
l-0 rl a

rl ; restore rl
91 ; rwJrn 1
t-0 l-1 ; &I* arg -> rl
t1 ro ; call nfibs(ar,yl)
0

ra rl ; nfibs(arg-1) -> rl, arg -> r0
1)2 l-0 ; call nfiba(aeg-2)
a

r1 ro ; nfibs(arg-2) + 1 -> r0
t1 ro ; nfibscarg-1) + nfibs(arg-2) + 1 -> r0
X9 ; rsstore rl
r0 ; return nfibm(arg-1) + nfibs(arg-2) + 1

it32 1.0 ; call nfibo(32)
0

r0 ; print result
; atop

Figure 6: Threaded code for nf ibs benchmark, before inlining.

destination or a change of control flow. For inlining pur-
poses, opcodes that contain a C function call are considered
to be single-opcode basic blocks. (This restriction can be
relaxed if the target architecture and/or the compiler used
to build the VM uses absolute addresses for function call
destinations.)

Our technique was designed for (and works best with)
fine-grained opcodes, where the implementations are short
(typically a few machine instructions) and therefore the cost
of opcode dispatch dominates. The next section presents an
example in such a context.

3.1 Simple example

We will illustrate our technique by applying it to a simple
“RISC-like,, virtual machine executing the “nfibs” func-
tion, as shown in Figure 5.s

Our example interpreter implements a register-based ex-
ecution model. It has a handful of “registers” for performing
arithmetic, and a stack that is used for saving return ad-
dresses and the contents of clobbered registers during sub-
routine calls. The direct threaded code has two kinds of in-
line operand: instruction pointer-relative offsets for branch
destinations, and absolute addresses for function call desti-
nations.

The interpreter translates bytecodes into threaded code
in two passes. It makes a first pass over the bytecodes,
expanding them into threaded opcodes with no inlining, ex-
actly as explained in Section 2.3. Figure 6 shows a symbolic
listing of the nf ibs function, implemented for our example
interpreter’s opcode set, after this initial translation into
threaded code.

Bytecode operands are placed inline in the threaded code
during translation. For example, the offset for the jge op-
code and the call destinations are placed directly in the
opcode stream, immediately after the associated opcode.
These are represented as the pseudo-operand %’ in the fig-

‘This doubly-recursive function has the interesting property that
its result is the number of function calls required to calculate the
result.

294

nfiba: Xl -b { pu& rl, EIOW S2 rl, jga dl rl 0, <thr>)
=cont
%2 + < pop rl, return 11, <thr>)

cent: %3 + { move r0 rl, nub ll r0, call 0, <thr> 1
=nfibs
%4 + { swap r0 rl, sub t2 r0, call 0, <thr>)
=nfiba
16 --+ t add rl r0, add 11 r0, pop rl, return r0, <thr>)

Figure 7: Threaded code for nfibs benchmark, af-
ter inlining. The implementations of the new macro
opcodes are shown on the right.

ure, and appear on a separate line in the code prefixed with
‘2

‘After this initial translation to threaded code, a second
pass performs inlining on the threaded code: basic blocks
are identified, used to dynamically generate new threaded
macro opcodes, and the corresponding original sequences of
threaded opcodes are replaced with single macro opcodes.
The rewriting of the threaded code can be performed in-situ,
since optimizing an opcode sequence will always result in a
shorter sequence of optimized code; there is no possibility of
overwriting an opcode that has not yet been considered for
inlining.

Figure 7 shows the code for the nfibs function after in-
lining has taken place. The function has been reduced to
five threaded macro opcodes (shown as ‘Xl’ through 35’))
each replacing a basic block in the original code. The imple-
mentation of each new macro opcode is the concatenation of
the implementations of the opcodes that it replaces. These
new implementations are written in a separate area of mem-
ory called the macro cache. Five such implementations are
required for nf ibs, and are shown within curly braces in the
figure. Each one ends with a copy of the implementation of
the pseudo-opcode <thr>, which is the threading operation
to dispatch the next opcode.

Inline arguments are copied verbatim, except for cant (a
jump offset) which is adjusted appropriately by the transla-
tor. (These inline arguments are used by the macro opcode
implementations at the points marked with ‘0’ in the figure.)

To help with the identification of basic blocks, we classify
our threaded opcodes into four classes, as follows:

INLINE - the opcode’s implementation can be inlined
into a macro opcode without restriction (the srith-
metic opcodes belong to this class);

PROTECT - the implementation contains a C function
call and therefore cannot be inlined (the print opcode
belongs to this class);
FINAL - the opcode changes the flow of control and
therefore defines the end of a basic block (e.g. the call
opcode);

RELATIVE - the opcode changes the flow of control
and therefore defines the end of a basic block (e.g. the
conditional branch jge).

The only difference between FINAL and RELATIVE is the way
in which the opcode’s inline operand is treated. In the first
case the operand is absolute, and can be copied directly into
the final translated code. In the second csse the operand is
relative to the current threaded program counter, and so
must be adjusted appropriately in the final translated code.

Figure 8 shows the translator code that initializes the
threaded opcode table, along with representative implemen-
tations of several of our threaded opcodes (each of the four
classes of threaded opcode is represented).

M*fin* PUSH(I) (*++sp = (long)(X))
Ildafia* POP0 (rap--)
#define GET0 ((Iong)(t++ip)) /* read inlins operand */
Idafine NEXT0 goto **++ip /+ dispatch naxt opcoda */

tdafine PRGTECT (O&J) /* never expanded */
#define INLINE (l<(O) /* axpand.d */
#define FINAL (l<(l) /* expanded, enda a basic block */
#define RELATIVE (1~2) /* arpanded, ends a basic block,

offa*t follows +/

#define OP(NANE, NARGS, FLAGS) \
caaa WANE: \
I\

info[op].nargs = NARGS; info Cop1 .flags = FLAGS; \
info[opJ.addr = kkltart-llONAI(E; \
info[op].end = Lkend-WNANE; \
info[op].six. = (int)kkend-WNANE - (int)kkstart-**NAa; \
if (!initialIP) break; \

start-ttNAl4E:
/+ opcode body */

#define END(NAME) \
end-#tNANE: NEXT0 \
1

/* initialize rather than execute (see macro 'OP') */
initialIP = 0;
for (int op = FIRST-OPCODE; OP <= LAST-OPCOW ++Op)

switch (0;) <
OP(add-l_rO, 0, INLINE) I ro += 1; END(add-l-r0);)
OP(mul-rl_rO, 0, INLINE) { ro *= rl; FND(mul-rl-r0);)
DP(jga-rO-rl, 1, RgLATIVE) i register long offsot = GETO;

if b-0 >= rl) in +- offs*t:

OP(cal1.
END(jge-rO_ri);')

1. FINAL) < register long dest = GETO;
PUHE(ip);

= (void *t)deat - 1;

OP(raturn-r0, 0, FINAL) i ip - (void **)POP();
END(raturn-ro) :)

OP(print-r0, 0, PRGTECT) (printf("Xld\n;'; i0);
gND(printJ0); 1

default:
fprintf(stdarr, "panic: op Xd is undefined!\n", 0~);
abort();

1

Figure 8: Opcode table initialization.

The translator’s inlining loop is shown in Figure 9. It is
not as complex as it might first appear. code is a pointer to
the translated threaded code, which is rewritten in-situ. in
and out are indices into code pointing to the next opcode
to be copied (or inlined) and the location to which it will be
copied, respectively (in >= out at all times).

The loop considers each in opcode for inlining: the inlin-
ing loop is entered only if both the current opcode and the
opcode following it can be inlined. If this is not the csse,
the opcode at in is copied (along with any inline arguments)
directly to out.

nextMacro is a pointer to the next unused location in
the macro cache. The inlining loop first writes this address
to out (it represents the “opcode” for the macro opcode
implementation that is about to be generated), and then
copies the compiled implementations of opcodes from in
into the macro cache. The inlined threaded opcodes are not
copied, although any inline arguments that are encountered
are copied directly to out.

The inlining loop continues until it copies an opcode that
either explicitly ends a basic block or cannot be inlined, or
until the next opcode is a branch destination (implying the

295

int in = 0, out = 0;
while (thisOp = codeCin1) i

int nextIn = in + 1 + infoCthisOpl.narga;
long nsrtOp = codaCnaxtIn1;
relocationa [id] = out;
if (info[thisOp] .flaga == INLINE CC

info[nertOpl .flags != PROTECT kk
!destination[nertIn]) {

/t CAN INLINE: create new macro opcode at nextMacro C/
void *ep = nextMacro;
codelout++] = (long)sp; /* new macro opcode */
while (info[thisOpl.flags != PROTECT) <

icopy(info[thisOpl.addr, sp, info[thisOp) .sizs);
BP += infoCthisOp1 .aize;
++in; /* skip opcode */
if (info[thisOpl .flags == RELATIVE) <

patcbList[patchIndex++] = out; /+ locn of offset */
code[out++I = in + 1 + code[inl; /* original destn */
++in;

) else c
for (int i = info[thisOp] .nargs; i > 0; --i)

code [out++] = code [in++] ;
1
if (info[thisOpl .flaga == FINAL I I

info[thisOpl .flags == RELATIVE i 1
destination[in])

break; /* end of basic block t/
thiaOp = code [in] :

1
/L copy threading operation t/
icopy(info[thr] .addr, ‘p, info[tbr] .aize);
ep += infoCthr3. size;
nextltacro = ap;

) else (
I* CAN’T INLINE: copy opcode and inline arguments t/
code[out++I = (long)info[thisLlpl .addr;
++in; /t skip opcode */
if (info[thisOpl .flags == RELATIVE) {

patchlist [patchIndex++] = out;
code[out++] = in + 1 + code[inl;
++in;

) else I
/* copy literal arguments */
for (int i = infoCthiaOp1 .nargs; i > 0; --i)

code [out++] = code [in++] ;
>

I
1

Figure 9: Dynamic translator loop.

end the current basic block). The translator then appends
the implementation of the pseudo-opcode thr, which is the
“threading” operation itself. The nextMacro location is then
updated ready for the next inlining operation.

The translator loop uses an array of flags “destina-
tion,, that identifies branch destinations within the thre-
aded code. This array is easily constructed during the trans-
lator’s first pass, as bytecodes are expanded into non-inlined
threaded code. The loop also creates two arrays, reloca-
tions and patchlist, that are used to recalculate relative
branch offsets.4

The inlining loop concatenates opcode implementations
using the icopy function, shown in Figure 10. This function
is similar to bcopy except that it also synchronizes the pro-
cessor’s instruction and data caches to ensure that the new
macro opcode’s implementation is executable. It contains
the only line of platform-dependent code in our interpreter.

4TIle branch destination identification and relative offset recalcu-
lation are not shown here. These can be seen in the full source code
for the example interpreter, which is available online. (See Section 6.)

static inline void icopy(void *source, void *dent., size-t size)
t

bcopy(aource, dent, size) ;
while (size > 0) (

Xii definod(PPC)
am (“dcbst 0,X0; qnnc; icbi 0,X0; isync” :: “r”(p));

telif def ined(--spare)
asm (“flush X0; atbar” :: ‘9 (p) 1 ;

Oelif def inad{--i386)
/* no-op */

telif definedc...)
. . .

tendif
dest += 4: size -= 4;

Figure 10: The icopy function, containing the single
line of platform-dependent code.

3.2 Saving space

Translating multiple copies of the same opcode sequences
would waste space. We therefore keep a cache of dynami-
cally generated macro opcodes, keyed on a hash value com-
puted from the incoming (unoptimized) opcodes during
translation. In the case of a cache hit we reuse the exist-
ing macro opcode in the translated code, and immediately
reclaim the macro cache space occupied by the newly trans-
lated version. In the case of a cache miss, the newly gen-
erated macro opcode is used in the translated code and the
hash table updated to include this opcode. This ensures that
we never have more than one macro opcode corresponding
to a given sequence of unoptimized opcodes.

4 Experimental results

We are particularly interested in the performance benefits
when dynamic inlining is applied to interpreters with fine-
grain instruction sets. Nevertheless, we were also curious to
see how the technique would perform when applied to an
interpreter having a more coarse-grained bytecode set. We
took measurements in both of these contexts, using our own
RISC-like interpreter and the widely-used (but less suited)
interpreter for the Objective Cam1 language.

4.1 Fine-grained opcodes

Our RISC-like interpreter has an opcode set similar to that
presented in Section 3.1. It can be configured (at compile
time) to use bytecodes, direct threaded code, or direct thre-
aded code with dynamically-generated macro opcodes. The
performance of two benchmarks was measured using this in-
terpreter: the function-call intensive Fibonacci benchmark
presented earlier (nfibs), and a memory intensive, function
call free, prime number generator (sieve).

Table 1 shows the number of seconds required to execute
these benchmarks on several architectures (133MHz Pen-
tium, SparcStation 20, and 200MHz PowerPC 603ev). The
figures shown are for a simple bytecode interpreter, the same
interpreter performing translation into direct threaded code,
then direct threaded code with dynamic inlining of common
opcode sequences, and finally the benchmark written in C
and compiled with the same optimization options (-02) as
our interpreter. The final column shows the performance of
the inlined threaded code compared to optimized C.

296

nf ibs
machine bytecode threaded inlined C inlined/C

Pentium 63.2 37.1 22.3 11.1 49.8%
spare 93.6 51.4 24.9 18.1 72.7%
PowerPC 40.6 20.3 10.4 6.0 57.7%

sieve
machine bytecode threaded inlined C Mined/C

Pentium 25.1 17.6 13.2 4.6 34.8%
spare 41.5 23.9 15.1 4.4 29.1%
PowerPC 24.0 12.8 8.7 2.4 27.6%

Table 1: nfibs and sieve benchmark results for the
three architectures tested. The final column shows
the speed of the inlined threaded code relative to op-
timized C.

%C nfibs

.

Pentium spare PowerPC

%C sieve

.

.

40 .

20

0
Pentium spare PowerPC

El bytecode m direct threaded H inlined

Figure 11: Benchmark performance relative to optimized C.

nf ibs spends much of its time performing arithmetic be-
tween registers. Memory operations are performed only dur-
ing function call and return.

Our interpreter allocates the first few VM registers in
physical machine registers whenever possible. The opcodes
that perform arithmetic are therefore typically compiled into
a single machine instruction on the Spare and PowerPC.
These two architectures show a marked improvement in per-
formance when common sequences are inlined into single

macro opcodes, due to the significantly reduced ratio of op-
code dispatch to “real” work. The effect is less pronounced
on the Pentium, which has so few machine registers that
all the VM registers must be kept in memory. Each arith-
metic opcode compiles into several Pentium instructions,
and therefore the ratio of dispatch overhead to real work
is lower than for the RISC architectures.

We observe a marked improvement (approximately a fac-
tor of two) between successive versions of the interpreter for
nf ibs.

sieve shows a less pronounced improvement because it
spends the majority of its time performing memory opera-
tions. The contribution of opcode dispatch to the overall
execution time is therefore smaller than with nf ibs.

It is also interesting to observe the performance of each
version of the interpreter relative to that of optimized C.
Figure 11 shows that nfibs gains approximately 14% the
speed of optimized C when moving from a bytecoded rep-
resentation to threaded code. The gain when moving from
threaded to inlined threaded code is more dependent on the
architecture: approximately 20% for the Pentium, and 38%
for the Spare. The gains for sieve are both smaller and less
dependent on the architecture: approximately 9% at each
step, for all three architectures.

4.2 Objective Cam1

We also applied our technique to the Objective Cam1 byte-
code interpreter, in order to obtain realistic measurements
of its performance and overheads in a less favorable environ-
ment.

Objective Cam1 was chosen because the design and im-
plementation of the interpreter’s core is clean and simple,
and so understanding it before making the required modifi-
cations did not present a significant challenge. Furthermore
it is a fully-fledged system that includes a bytecode com-
piler, a benchmark suite, and some large applications. This
made it easier to collect meaningful statistics.

The interpreter is also equipped with a mechanism to
bulk-translate the bytecodes into threaded code at startup
(on those platforms that support it).’ We needed only to
extend this initial translation phase to perform the analysis
of opcode sequences, generate macro opcode implementa-
tions, and rewrite the threaded code in-situ to use these
dynamically-generated macro opcodes. Implementing our
technique for the Cam1 virtual machine took one day. There
were only two small details that required careful attention.

The first was the presence of the SWITCH opcode. This
performs a multi-way branch, and is followed in the threaded
code by an inline table mapping values onto branch offsets.
We added a special case to our translator loop to handle this
opcode.

The second was the existence of a handful of opcodes
that consume two inline arguments (a literal and a rela-
tive offset). We introduced a new opcode class RELATIVE2
for these, which differs from RELATIVE only by copying an
additional inline literal argument before the offset in the
translator loop.

Our translation algorithm was identical in all other re-
spects to the one presented in Section 3.

We ran the standard Objective Cam1 benchmark suite’
with our modified VM (see Table 2). The VM was in-
strumented to gather statistics relating to execution speed,

‘It uses gee’s first-class labels to do this portably.
eftP://ftP.inria.fr/INRIA/Project~/cri~tal/Xavi~r.Leroy/

benchmarka/objcaml.tar.ge

297

I Pentium m spare I---I PowerPC

Figure 12: Objective-Cam1 benchmark results for the three architectures tested. The vertical axis shows the performance
relative to the original (non-inlining) interpreter. Asterisks indicate versions of the benchmarks compiled with array bounds
checking disabled.

fib
genlex
kb
qsort
sieve
soli
take
taku

term processing, function calls
integer arithmetic, function calls (1 arg)
lexing, parsing, symbolic processing
term processing, function calls, functionals
integer arrays, loops
integer arithmetic, list processing, functionals
puzzle solving, arrays, loops
integer arithmetic, function calls (3 args, curried)
integer arithmetic, function calls (3 args, tuplified)

Table 2: Objective Cam1 benchmarks.

memory usage, and the characteristics of dynamically gen-
erated macro opcodes.

Figure 12 shows the performance of the benchmarks after
inlining, relative to the original performance without inlin-
ing.

It is important to note that the Objective Caml byte-
code set has already been optimized statically, as described
in Section 2.4 [Ler98]. Any further improvements are there-
fore due mainly to the elimination of dispatch overhead in
common sequences that are particular to each application.
Virtual machines whose bytecode sets have not been “stat-
ically” optimized in this way would benefit more from our
technique.

Figure 12 shows that the majority of benchmarks benefit
from a significant performance advantage after inlining. In
most cases the inlined version runs more than 50% faster
than the original, with two of the benchmarks running twice
as fast as the original non-inlined version.

It is clear that the improvements are related to the pro-
cessor architecture. This is probably due to differences in
the cost of the threading operation. On the Spare, for ex-
ample, avoiding the pipeline stalls associated with threading
seems to make a significant difference.

Figure 13 shows the final size of the macro cache for
each benchmark on the Spare, plotted as a factor of the size
of the original (unoptimized) code. The final macro cache
sizes vary slightly for each architecture, since they depend

1 10 100 1000
original code size (kbytes)

Figure 13: Macro cache size (diamonds) and opti-
mized threaded code size (crosses), plotted as a factor
of the original code size.

on the size of the bytecode implementations. However, the
shape is the same in each case. The average ratios of original
bytecode size to the macro cache size show that the cost is
between three and four times the size of the original code on
the Spare. (The ratio is almost identical for the PowerPC,
and slightly smaller for the Pentium.)

We observe that this ratio decreases gradually as the
original code size increases. This is to be expected, since
larger bodies of code will tend to reuse macro opcodes rather
than generating new ones. We tested this by translating the
bytecoded version of the Objective Cam1 compiler: 421,532
bytes of original code generated 941,008 bytes of macro op-
code implementation on the Spare. This is approximately
2.2 times the size of the original code, and is shown as the
rightmost point in the graph.

Inlined threaded code is always smaller than the original
code from which is generated. Figure 13 also shows the final
optimized code size for each benchmark. We observe that

298

the ratio is independent of the size of the benchmark. This is
also to be expected, since the reduction in size is dependent
on the average number of opcodes in a common sequence
and the density of the corresponding macro opcodes in the
final code. These depend mainly on the characteristics of
the language and its opcode set.

Some systems have a long-lived object memory, and gen-
erate new executable code at runtime. A realistic implemen-
tation for such systems would recycle the macro cache space,
and possibly use profiling to optimize only popular areas of
the program. For example, the 6804OLC emulator found on
Macintosh systems performs dynamic translation of 68040
into PowerPC code; it normally requires only 250Kb of cache
in which the most commonly used translated code sequences
are stored [Tho95]. A similar (fixed) cache size is effective
in the BrouHaHa Smalltalk system [Mir97].

Translation speed is also an important factor. To mea-
sure this we ran the Object Cam1 bytecode compiler (a much
larger program than any of the benchmarks) with our modi-
fied interpreter. The 105,383 opcodes of the Objective Cam1
compiler are translated in 0.22 seconds on the Spare, a rate
of 480,000 opcodes per second. The inlining interpreter ex-
ecutes the compiler at a rate of 2.4 million opcodes per sec-
ond. Translation is therefore approximately five times slower
than execution.’

5 Related work

BrouHaHa and Objective Cam1 have both demonstrated the
benefits of creating specialized macro opcodes that perform
the work of a sequence of common opcodes. In Objective
Cam1 this led to a new bytecode set. In BrouHaHa the
standard Smalltalk- bytecodes are translated into thre-
aded code for execution; the detection of a limited number
of pre-determined common bytecode sequences is performed
during translation, and a specialized opcode is substituted
in the executable code. Our contribution is the extension of
this technique to dynamically analyze and generate imple-
mentations for new macro opcodes at runtime.

Several systems use concatenation of pre-compiled seq-
uences of code at runtime [Aus96, NoegG], but in a com-
pletely different context. Their precompiled code sequences
are generic “templates” that can be parameterized at run-
time with particular constant values.

A template-based approach is also used in some com-
mercial Smalltalk virtual machines that perform dynamic
compilation to native code [Mir97]. However, this technique
is complex and requires a significant effort to implement the
templates for a new architecture.

An interesting system for portable dynamic code gener-
ation is vcode [Eng95], an architecture-neutral runtime as-
sembler. It generates code that approaches the performance
of C on some architectures. Its main disadvantage is that
retrofitting it to an existing virtual machine requires a signif-
icant amount of effort - certainly more than the single day
that was required to implement our technique in a produc-
tion virtual machine. (Our simple nfibs benchmark runs
about 40% faster using vcode, compared to our RISC-like
inlined threaded code virtual machine.)

‘Since translation is performed only mce for each opcode, the
“break-even” point is passed in any program that executes more than
six times tbe number of opcodes that it contains.

6 Conclusions

This work was inspired by the need to create an interpreter
with a very fine-grain RISC-like opcode set, that is both
general (not tied to any particular high-level language) and
amenable to traditional compiler optimizations. The cost
of opcode dispatch is more significant in such a context,
compared to more abstract interpreters whose bytecodes are
carefully matched to the language semantics.

The expected benefits of our technique are related to the
average semantic content of a bytecode. We would expect
languages such as Tel and Per], which have relatively high-
level opcodes, to benefit less from macroization. Interpreters
with a more RISC-like opcode set will benefit more - since
the cost of dispatch is more significant when compared to the
cost of executing the body of each bytecode. The Objective
Cam1 bytecode set is positioned between these two extremes,
containing both simple and complex opcodes.’

Vcode has better performance than our technique be-
cause its instruction set matches very closely the underlying
architecture. It can exert very fine control over the code that
is generated, such as performing some degree of reordering
for better instruction scheduling. We believe that similar re-
sults can be achieved with our RISC-like inlining threaded
code interpreter, but in a more portable manner.

Out technique is limited mainly by the inability of the
compiler to perform the inter-opcode optimizations that are
possible when a static analysis is performed and new macro
opcodes implemented manually in the interpreter. We be-
lieve that these limitations are less important when using a
very fine-grain opcode set, corresponding more closely to a
traditional RISC architecture. Most opcodes will be imple-
mented as a single machine instruction, and new opportu-
nities for inter-opcode optimization will be available to the
translator’s code generator.

Our technique is portable, simple to implement, and or-
thogonal to the implementation of the virtual machine’s op-
codes. In reducing the overhead of opcode dispatch, it helps
to bring the performance of fine-grained bytecodes to the
same level as that of more abstract, language-dependent op-
code sets.

The complete source code for the simple inlining dy-
namic threaded-code translator that was used to generate
the benchmark results, and our modified version of Objec-
tive Cam1 1.05, are available online.g

7 Acknowledgements

The authors would like to thank Xavier Leroy, John Mal-
oney, Eliot Miranda, Dave Ungar, Mario Wolczko and the
anonymous referees, for making helpful comments on a draft
of this paper.

References

[Am961 K. Arnold and J. Gosling, The Java Progmmming
Language, Addison Wesley, 1996. ISBN o-201-63455-4

[Aus Joel Auslander, Matthai Philipose, Craig Chambers,
Susan J. Eggem and Brian Bershad, Fast, Eflectiue Dynamic
Compilation, Proc. PLDI’96, published as ACM SIGPLAN
Notices 31(5).

‘Significant overheads are associated with the techuique used to
check for stack overflow and pending signals in Objective Can& but
a discussion of these are beyond the scope if this paper.

‘http://wv-sor.inria.fr/rupiumarta/pldi98/

299

benchmark

boyer
fib
genlex
kb
qsort
qsort*
sieve
soli
soli*
take
taku

Pentium
original inlined

2.0 1.81 (111%)
2.0 1.44 (140%)
1.0 0.93 (110%)

10.3 8.15 (126%)
5.8 3.95 (146%)
4.8 3.04 (158%)
3.0 2.79 (107%)
3.1 2.18 (144%)
2.4 1.38 (172%)
2.8 1.91 (144%)
4.9 3.20 (152%)

Figure 4: Raw results for the Objective-Cam1 benchmarks.

speed (seconds)

spar-c
I

PowerP C
on’oinal inlined orioinal inlined

2.3 1.50 (154%)
4.0 2.47 (163%)
1.1 0.84 (127%)

16.9 7.71 (219%)
9.5 5.39 (175%)
8.0 4.26 (188%)
2.5 2.22 (110%)
5.1 2.98 (170%)
4.0 2.00 (202%)
5.0 3.26 (152%)
7.0 4.14 (170%)

1.4 1.19 (113%)
1.6 1.12 (139%)
0.7 0.59 (118%)
6.3 5.36 (118%)
4.1 2.98 (137%)
3.3 2.27 (147%)
1.9 1.86 (100%)
2.1 1.50 (142%)
1.6 0.93 (168%)
2.1 1.47 (142%)
3.2 2.33 (139%)

[Deu84] L. Peter Deutsch and Alan M. Schil%nan, Eficient
Implementation of the Smalltalk- System, Proc. POPL ‘84.

[Eng95] Dawson R. Engler, VCODE: A Retargetable, Extensible,
Very Fast Dynamic Code Genemtion System, Proc. PLD1’96,
published as ACM SIGPLAN Notices 31(5).

[Ert98] M. Anton Ertl, A Portable Forth Engine.
http://vvm.complang.tuvien.ac.at/forth/
threaded-code.html

[Go1831 Adele Goldberg and David Robson, Smalltalk-80: The
Language and its Implementation, Addison-Wesley, 1983.
ISBN O-201-11371-6

[Ing97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace
and Alan Kay, Back to the Future: the Story of Squeak, a
Usable Smalltalk Written in Itself, Proc. OOPSLA ‘97,
October 5-9 1997, Atlanta, Georgia.

[Ler97] Xavier Leroy, The Objective Cam1 system release 1.05,
INRIA, 1997.

[Ler98] Xavier Leroy, private communication.

[Lin97] Tim Lindholm and Frank Yellin, The Java Virtual
Machine Specification, Addison-Wesley, 1997. ISBN
0-201-63452-X

[Mir87] Eliot Miranda, BrvuHaHa - A Portable Smalltalk
Interpreter, Proc. OOPSLA ‘87, published as ACM
SIGPLAN Notices 22(12).

[MirSl] Eliot Miranda, Portable Fast Direct Threaded Code,
posted to camp. compilers.
http://cuivw.unige.ch/0SG/people/jvitek/Compilsrs/
Year91/msg00215.html

[Mir97] Eliot Miranda, private communication.

[Moo701 Charles H. Moore and Geoffrey C. Leach, FORTH -
A Language for Intemctive Computing, Technical Report,
Mohasco Industries, Inc., 1970.
http://ww.dnai.com/~jfoxlF7OPOST.ZIP

[Noe96] Fran cois Nofl, Luke Hornof, Charles Consel and Julia
L. Lawall, Automatic, Template-Based Run-Time
Specialization: Implementation and Experimental Study,
Proc. ICCL’98.
http://uuw.irisa.ir/compose/papexs/rt-bench.ps.gz

[Tho95] Tom Thompson, Building the Better Virtual CPU,
Byte Magazine, August 1995.

space (bytes)

Spare
original inlined cache

13800 8324 42012
5288 3320 20160

45696 26856 156892
20968 13048 75868

6676 3932 26416
6532 3884 25280
5200 3312 20124
6644 3952 25516
6544 3908 24548
4784 3012 18652
4812 3036 18296

Appendix

Figure 14 shows the raw results for the Objective Cam1
benchmarks. The execution speed (in seconds) is shown
for all three architectures, for both the original interpreter
and the inlined interpreter. The inlined interpreter speed is
shown both as an absolute figure and as a percentage rela-
tive to the original interpreter’s speed.

The final three columns show the sizes of the original
threaded code, the threaded code after inlining, and the fmal
size of the macro cache for the Spare only. All are measured
in bytes.

300

